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ABSTRACT: Modeling of equiaxed solidification is vital for understanding the solidification 18 

process of metallic alloys. In this work, an extended literature review is given for the models 19 

currently used for equiaxed solidification simulations. Based on this analysis, we present a 20 

three-phase multiscale equiaxed solidification model in which some approximations regarding 21 

solute transport at microscopic scale are put together in a new way and incorporated into 22 

macroscopic transport equations. For the latter, a term relating to the momentum exchange 23 

between the two phases is revised, and a modification for the grain packing algorithm is proposed. 24 

A modernized model for equiaxed dendrite growth is tested using a case of solidification of 25 

Sn-5wt.%Pb alloy in a parallelepiped cavity that mimics the Hebditch-Hunt experiment. The 26 

results obtained using two approaches to calculate diffusion length are presented and compared 27 

both with each other and with numerical results from elsewhere. It is demonstrated that diffusion 28 

length has a crucial effect on the final segregation pattern. 29 

 30 

KEY WORDS: Equiaxed solidification, Macrosegregation, Diffusion length, Grain growth, 31 

Multiphase flow32 
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I. Introduction 33 

Modeling the equiaxed regime for alloy solidification is essential for predicting the structure 34 

and composition of solidifying material in the casting process. Indeed, sedimentation or flotation 35 

of free equiaxed grains leads to composition inhomogeneity; growth of equiaxed dendrites can 36 

block growth of columnar ones either mechanically or by rejected solute and induces columnar to 37 

equiaxed transition (CET).
[1,2]

 However, despite serious efforts to develop dedicated numerical 38 

models, such simulation remains challenging due to the complexity of coupled multiscale 39 

phenomena. Indeed, numerical analysis of equiaxed dendritic solidification accompanied by 40 

convective flow basically needs to address the following issues: (1) individual grain growth inside 41 

an undercooled melt, which is governed by the mass, heat and chemical species transfers between 42 

phases, which, in turn, are affected by grain growth; (2) motion of liquid and growing grains, and 43 

corresponding transport of solute concentration, energy and grain number density. Contemporary 44 

numerical models propose different approaches to resolve these issues. To provide readers with a 45 

clear vision of the differences between the models, an extended review regarding treatment of the 46 

aforementioned issues is given in the introduction. Based on this analysis, in section II we present 47 

a three-phase multiscale equiaxed solidification model in which some approximations regarding 48 

microscopic scale phenomena are put together and incorporated into macroscopic mass, 49 

momentum, energy and solute transportation equations in a new way. Particular attention is paid to 50 

calculation of diffusion length around the dendrite envelope, which is crucial for grain growth 51 

kinetics. Furthermore, the choice of momentum exchange coefficient, the improvements to the 52 

grain packing method, and a double time step algorithm are also explained in detail. The proposed 53 

model is applied to simulation of the Hebditch-Hunt experiment, which is briefly described in 54 

section III. In section IV, the results obtained using two approaches to calculate diffusion length 55 

are presented and show us the drastic influence of the diffusion length model on the final 56 

segregation pattern. These results are also compared with numerical results that can be found 57 

elsewhere.  58 

A. Models for growth of an individual grain accounting for convection 59 

Regarding diffusive growth of an individual dendrite grain, most models are based on the 60 

utilization of three phases as was initially proposed by Thévoz et al.
[3]

. These three phases (see 61 

Figure 1) are: the solid dendrite, or s-phase; the liquid between the solid dendrite arms, the 62 
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so-called interdendritic liquid, or d-phase; and the liquid outside of the dendrite envelope, the 63 

so-called extradendritic liquid, or l-phase. Each phase is characterized by a corresponding volume 64 

fraction and averaged values for velocity, temperature and solute concentration. The liquid 65 

concentration at the solid-liquid interface 𝑐𝑙
∗ is generally supposed to be equal to the 66 

thermodynamic equilibrium concentration, which is related to local temperature through a phase 67 

diagram. In most three-phase models, the interdendritic liquid is considered well mixed, and its 68 

average solute concentration 𝑐𝑑 is equal to 𝑐𝑙
∗[4–7]

. Alternatively, for example in a model by Wu 69 

et al.
[8]

, the value of 𝑐𝑑 is calculated according to the diffusion rate at both s-d and l-d interfaces, 70 

as shown schematically in Figure 1(b). This approach maintains a small gap between 𝑐𝑑 and 𝑐𝑙
∗, 71 

avoiding the fluctuation of solute concentration in case of abrupt change in temperature, and thus 72 

enhancing model stability under convective flow. 73 

 74 

 75 

Fig. 1—(a) Schematic representation of grain growth with phase assignment, and (b)effect of 76 

diffusion length on average solute concentration in each phase. 77 

The transition from the liquid to the solid phase can be seen as a combination of dendrite growth, 78 

associated with the elongation of the primary dendrite arms at the expense of the extradendritic 79 

liquid, and the lateral growth of secondary arms during which the interdendritic liquid solidifies. 80 

In theory, dendrite tip growth velocity can be calculated accounting for the convective flow that 81 

leads to cumbersome expressions.
[9,10] Therefore, in macroscopic models, it is generally accepted 82 

that dendrite tip growth velocity can be estimated using the Lipton-Glicksman-Kurz (LGK) 83 

model
[11] in steady diffusive growth, or using modified LGK models

[12,13]
 when accounting for 84 



 

 5  

convection. In the LGK model, tip growth velocity 𝑣𝑡𝑖𝑝 depends on the constitutional 85 

undercooling ahead of the dendrite tip or ahead of a so-called grain envelope. This undercooling 86 

corresponds to the local difference between 𝑐𝑙
∗ and external liquid concentration 𝑐𝑙. According to 87 

the scheme presented in Figure 1, this difference greatly depends on the diffusion length in l-phase 88 

denoted by 𝑙𝑙. A theoretical solution for 𝑙𝑙 exists for diffusive growth of a single grain under 89 

steady conditions
[14]

 that gives: 90 

 𝑙𝑙 =
𝐷𝑙

𝑣tip
 [1] 

where 𝐷𝑙 is the solute diffusion coefficient in l-phase, and 𝑣tip is the primary dendrite tip 91 

velocity. For a spherical envelope, 𝑣tip is also the l-d interface movement velocity relative to 92 

grain growth. For a non-spherical envelope, 𝑣𝑡𝑖𝑝 should be replaced by 𝑣𝑒𝑛𝑣=ϕM𝑣𝑡𝑖𝑝, ϕM is a 93 

shape factor. 94 

This formulation was used by Wu et al.
[8]

 in the equiaxed solidification problem with grain 95 

transportation and fluid flow although it does not take into account the intensification of the 96 

diffusive flux by convection. It can be assumed that convection leads to a smaller diffusion length 97 

than that defined by Eq. [1], i.e. transport of the solute from the d-phase to the l-phase will be 98 

intensified, thus promoting enrichment of the l-phase. To take this into account, for example, in a 99 

three-phase model by Wang et al. ,
[13]

 a relative velocity between the l- and the s- phases was 100 

introduced in the expression for 𝑙𝑙 . For two-phase models, which can be globular
[15–17]

 or 101 

dendritic,
[18]

 there is no distinction between d- and l-phases: instead, a liquid phase, or f-phase, is 102 

considered. In this case, the diffusion length in the f-phase is denoted by 𝑙𝑓. In the two-phase 103 

model by Ni et al.,
[17]

 the effect of convective flow was accounted for via a Sherwood number, 104 

which had to be, however, carefully chosen from experimental data.
[19]

 According to Wang et al., 
[7]

 105 

in a dendritic growth of equiaxed grains with spherical envelope shape, diffusion length 𝑙𝑙 should 106 

be smaller than the value given by Eq.[1] to keep a continuous enrichment process of the l-phase. 107 

A similar criterion was used in a non-spherical equiaxed solidification model by replacing tip 108 

velocity with an envelope growth velocity.
[8]

 To satisfy this, in the description of mass transport 109 

for a single equiaxed crystal moving in an infinite medium, Appolaire et al.
[12]

 used a boundary 110 

layer around an equivalent sphere accounting for the convection as 𝑙𝑙 and then limited its 111 

maximum value by the length given in Eq. [1]. The most representative models for diffusion 112 

length are grouped in Table I. 113 
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 114 

B. Motion of liquid and dendrites: “hydrodynamic” phases, drag force 115 

The expression of the momentum exchange or drag force between phases i and j, denoted as 116 

�⃗⃗� 𝑖𝑗
𝐷, depends on the choice of phases that represent macroscopic motion in the system. The phase j 117 

related to the dendritic grain can be presented only as the solid dendrite in the liquid (Figure 2(a)), 118 

or as a union of the solid dendrite and the interdendritic liquid (grain) in the extradendritic liquid 119 

(Figure 2(b)). In the latter case, however, a difference in macroscopic velocities between the solid 120 

phase, inter- and extradendritic liquid can be taken into account �⃗� 𝑑 ≠ �⃗� 𝑙 (Figure 2(c)). 121 

 122 

Fig. 2—Schematic figure for different unions of phases: (a) solid dendrite (𝑠- phase) and liquid 123 

phase (𝑓-phase), (b) equiaxed grain phase (𝑒-phase) and extradendritic liquid phase (𝑙- phase), and 124 

(c) the solid dendrite (𝑠-phase), inter- and extradendritic liquid phases (𝑑- and 𝑙-phases). 125 

In an averaged description, the phase j that represents dendrites is generally considered to be a 126 

porous medium, due to the complexity of an individual dendrite structure. It is customary to treat 127 

the momentum exchange while the liquid phase i is passing through a medium phase j using a 128 

generalized exchange coefficient 𝐾𝑖𝑗 and the difference in phase velocities. 𝐾𝑖𝑗 can be expressed 129 

either via a configuration factor 𝐹𝐾(𝑓𝑗 , 𝑑𝑗) and permeability K of the solidifying phase, or via 130 

another configuration factor 𝐹𝐶𝐷(𝑓𝑗 , 𝑑𝑗) along with a notion of a drag coefficient 𝐶𝐷, resulting 131 

from consideration of a particle moving through the liquid: 132 

 �⃗⃗� 𝑖𝑗
𝐷 = 𝐾𝑖𝑗(�⃗� 𝑖 − �⃗� 𝑗) = 𝐹𝐾(𝑓𝑗 , 𝑑𝑗)

𝜇𝑖

𝐾
(�⃗� 𝑖 − �⃗� 𝑗) = 𝐹𝐶𝐷(𝑓𝑗 , 𝑑𝑗)𝐶𝐷𝜌𝑙|�⃗� 𝑖 − �⃗� 𝑗|(�⃗� 𝑖 − �⃗� 𝑗) [2] 

In Eq. [2] both functions 𝐹𝐾(𝑓𝑗 , 𝑑𝑗) and 𝐹𝐶𝐷(𝑓𝑗 , 𝑑𝑗) depend on the fraction and characteristic 133 

size and sphericity of the particles of phase j. Note that the drag coefficient 𝐶𝐷 can take into 134 

account the permeability of phase j and thus that the two configurations indicated above can be 135 
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equivalent. Different approximations for these functions and coefficients (see Table II) can be 136 

found in literature.  137 

The most common model, traditionally used for permeability of the mushy zone in columnar 138 

dendrite growth, is the Kozeny-Carman relation
[20]

 (Table II), which was formulated for the 139 

pressure drop in a laminar flow passing through a stationary packed column. The latter was treated 140 

as a bundle of tangled tubes of various cross-sections. This relation was used in the model with 141 

two phases and globular equiaxed grains developed by Wu et al.
[21]

 and further adopted by these 142 

authors for the drag force between l-phase and e-phase �⃗⃗� 𝑙𝑒
𝐷 = −�⃗⃗� 𝑒𝑙

𝐷  (Figure 2(b)) in a three-phase 143 

model.
[22]

    144 

In another two-phase solidification model with globular equiaxed grains, Ni et al.
[17]

 used an 145 

expression for the drag coefficient 𝐶𝐷 that accounted for a modification of flow character during 146 

the solidification process. For low solid fractions (𝑓𝑠 < 0.5) the grains were supposed to move 147 

relatively freely in the liquid, i.e. the interfacial momentum balance between the solid and liquid 148 

could be presented using Stokes’ law for an individual object moving through the liquid. For 149 

𝑓𝑠 > 0.5, the solid phase was similar to a packed bed, thus allowing momentum balance to be 150 

presented with the Kozeny-Carman expression. A similar approach was adopted by Leriche et al.
[4]

 151 

in a three-phase model. For slurry regions, they applied the model used by Ni et al.
[17]

 but replaced 152 

the solid-phase fraction with a grain-phase fraction. For packed regions, a permeability related to 153 

secondary arm spacing is applied. 154 

In Wang et al.’s model,
[13]

 the l- and d-phases were united as the f- phase: 𝑓𝑓 = 𝑓𝑑 + 𝑓𝑙, yet, the 155 

difference between velocities �⃗� 𝑑 and �⃗� 𝑙 was preserved (Figure 2(c)). An expression for the 156 

momentum exchange coefficient 𝐾𝑓𝑠( Table II) between f- and s-phases was obtained for all solid 157 

fractions ranging from 0 to 1 through a general correlation 𝐾𝑓𝑠 = {[(1 − 𝑓𝑙)𝐾𝑑𝑠]
𝑛 + (𝐾𝑙𝑒)

𝑛}1/𝑛. In 158 

this equation, coefficient 𝐾𝑑𝑠 was evaluated from the secondary dendrite arm spacing, and 159 

coefficient 𝐾𝑙𝑒 was taken from Happel’s approach that considered the viscous flow relative to the 160 

bed of spherical particles
[23]

. Wang et al.’s model
[13]

 took into account a shape factor 𝐶𝑝(Φe) for 161 

the dendrite grain to provide freedom for estimation of surface area concentration. 162 

In Appolaire et al.’s work
[12]

, another model proposed for the momentum exchange coefficient 163 

in a three-phase system was verified with the equiaxed grain sedimentation experiment. Table II 164 

gives more details on different models for calculating the momentum exchange coefficient. 165 
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As indicated above, another important phenomenon related to the motion of equiaxed grains is 166 

their packing, after which the grains can be considered immovable. However, for the sake of 167 

brevity, in this paper we prefer not to discuss the various models used to implement packing 168 

phenomena: some references are indicated elsewhere
[24]

. A description of the procedures used in 169 

the model is given below in section II-C. 170 

 171 

II. Description of the present model 172 

The present model is based on three phases, which consist of the liquid outside of the envelope 173 

of equiaxed dendrite (l-phase), the interdendritic liquid (d-phase), and the solid dendrite (s-phase) 174 

(Figure 2(b)). The phase fractions satisfy the following constraint: 𝑓𝑑 + 𝑓𝑠 + 𝑓𝑙 = 1. A union of the 175 

solid dendrite and the interdendrite liquid makes the grain phase 𝑓𝑑 + 𝑓𝑠 = 𝑓𝑒. The solid and grain 176 

phase should appear in the volume once nucleation has occurred. Nucleation is assumed to occur 177 

instantaneously once local constitutional undercooling is greater than nucleation undercooling 178 

Δ𝑇 > Δ𝑇𝑛𝑢𝑐𝑙, or if the local grain number density n drops below 1 m−3[16]
. The latter condition is 179 

used to avoid null grain number density that leads to significant numerical errors. During the 180 

growth stage, the primary dendrite tip velocity 𝑣𝑡𝑖𝑝 calculated by the LGK model
[11]

 is multiplied 181 

by a shape factor ϕM to obtain the envelope growth velocity 𝑣𝑒𝑛𝑣. In this work, the value for 182 

ϕM is given as 0.683
[22]

 assuming an octahedral grain envelope shape, although its exact value 183 

needs to be measured based on experimental results. Dendritic envelope surface area concentration 184 

𝑆𝑒
𝑀 is evaluated based on a spherical envelope shape, as in most works

[6,14,16,25]
. Solidification of 185 

the interdendritic liquid is governed by solute diffusion in the interdendritic liquid region. 186 

Diffusion length inside the interdendritic liquid is assumed to be half of the distance between the 187 

secondary dendrite arms (given in Table IV), whereas solid back diffusion is ignored. Regarding 188 

the macroscopic multiphase flow, it is assumed that the interdendritic liquid and the solid dendrite 189 

share the same velocity field, i.e. the solid phase moves together with some amount of the liquid 190 

around it. In the conservation equations, all densities are constant and equal to the reference 191 

density, that is 𝜌𝑙 = 𝜌𝑠 = 𝜌𝑒 = 𝜌𝑑 = 𝜌𝑟𝑒𝑓. Similar to Založnik and Combeau,
[16]

 to model the 192 

sedimentation phenomenon, in the buoyancy term, a constant difference between the solid phase 193 

density and a reference density is introduced. The Boussinesq approximation accounts for solutal 194 

and thermal convection in the liquid phase. While the grain growth model and macroscopic 195 
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conservation equations are similar to those described elsewhere,
[22]

 we propose a new combination 196 

of parameters to model the diffusion length between the inter- and extradendrtic liquid. Further, a 197 

Happel model is used for implementation of the drag force, and a new grain packing algorithm is 198 

proposed. The reasons for these choices and their crucial effect on the evolution of the 199 

solidification processes are explained in detail below. Conservation equations, source terms, and 200 

some auxiliary expressions, are summarized in Table III, while the main physical parameters are 201 

provided in Table IV.  202 

A. Diffusion length model 203 

Determination of diffusion length, especially the diffusion length around the envelope in the 204 

extradendritic liquid 𝑙𝑙, drastically affects numerical results as it links phase transition with the 205 

enrichment of the extradendritic liquid. According to Eq. [21] and Figure 1, if 𝑙𝑙 decreases, the 206 

solute flux through the envelope intensifies, and the concentration difference between the inter- 207 

and extradendritic liquid decreases if the average concentration is conserved within the volume 208 

corresponding to the final grain size. Consequently, a smaller solutal undercooling ahead of the 209 

dendrite tip leads to a smaller dendrite growth rate (Eq. [34]). This means that the solid fraction 210 

within grain phase 𝑓𝑠
𝑒 increases and could promote the sedimentation or floatation of equiaxed 211 

grains. Different methods, proposed for calculation of 𝑙𝑙, are discussed above in the introduction, 212 

and provided in Table I. All of them emphasize several factors, namely dendrite tip velocity, 213 

current and final diameter of the grain (or envelope), and relative velocity between the grain and 214 

the liquid phases. In the present work, the diffusion length proposed by Ni et al.
[17]

 is adapted for 215 

the three-phase model, and, following the work of Appolaire et al.
[12]

, we limit its maximum value 216 

by the length given in Eq. [1], replacing 𝑣𝑡𝑖𝑝 by 𝑣𝑒𝑛𝑣 since a non-spherical envelope shape is 217 

considered. 218 

𝑙𝑙 = min [
𝑑𝑒

2
(

1

1 − (1 − 𝑓𝑙)
1

3

+
𝑆𝑐

1

3𝑅𝑒𝑎

3𝑓𝑙
)

−1

,  
𝐷𝑙

𝑣𝑒𝑛𝑣
] [35] 

where 𝑆𝑐 = 𝜇𝑙/(𝜌𝐷𝑙) is the Schmidt number, 𝑅𝑒 = |�⃗� 𝑙 − �⃗� 𝑒|(𝜌𝑓𝑙𝑑𝑒)/𝜇𝑙 is a local Reynolds 219 

number calculated with the envelope diameter 𝑑𝑒, and 𝑎 = (2𝑅𝑒0.28 + 4.65)/3(𝑅𝑒0.28 + 4.65).  220 

In the first term inside the max operator in Eq. [35], the fraction 1/(1 − (1 − 𝑓𝑙)
1/3) accounts 221 

for the effect of solute interaction, while the term 𝑆𝑐1/3𝑅𝑒𝑎/(3𝑓𝑙) describes the effect of 222 

convection around the equiaxed grain envelope. In order to quantitatively illustrate the 223 
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contribution of each individual physical phenomenon (accounted for in the Eq. [35]) and the 224 

influence of the diffusion length model on phase evolution, a numerical study was conducted for a 225 

zero-dimension solidifying system in which temperature is assumed to be uniform in the 226 

calculation domain and governed by the following equation:
[14]

 𝑐𝑝�̇� = L(𝑑𝑓𝑠)/𝑑𝑡 − 𝑐𝑝𝑚(𝑑𝑐𝑙
∗)/227 

𝑑𝑡. In this case 𝑐𝑝 is capacity, L is latent heat, 𝑚 is the slope of liquidus in the phase diagram, 228 

and �̇� = 1K/𝑠 is the imposed cooling rate. Calculations are carried out for the Sn-5wt%Pb alloy, 229 

the same as that investigated in section III, the properties of which are given in Table IV. The total 230 

concentration of the solute in the calculation is conserved. 231 

Four different diffusion length models are compared: the one given by Eq. [35] and three others 232 

given by Eqs. [36] through [38]: 233 

𝑙𝑙 =
𝐷𝑙

𝑣𝑒𝑛𝑣
 [36] 

𝑙𝑙 = min [
𝑑𝑒

2
,  

𝐷𝑙

𝑣𝑒𝑛𝑣
] [37] 

𝑙𝑙 = min [
𝑑𝑒

2
(

1

1 − (1 − 𝑓𝑙)
1

3

)

−1

,  
𝐷𝑙

𝑣𝑒𝑛𝑣
] [38] 

In case 1, we use a diffusion length that is determined by envelope growth velocity (Eq. [36]). 234 

In case 2, based on Eq. [37], the model assumes that, at the initial growth stage, the thickness of 235 

the diffusion boundary layer around the envelope is comparable with the grain’s radius. In case 3 236 

(Eq. [38]), the solute interaction is taken into account, and thus diffusion length can decrease at the 237 

later solidification stage. It should be noted that these phenomena were already taken into 238 

account in the models proposed by Martorano et al.
[26]

 and Ciobanas et al.
[5]

 However, their 239 

models are not considered here because they did not deal with convection. Finally, in case 4, 240 

where we use Eq. [35], the convection around envelope is included in the model in addition to the 241 

previously described effects. In order to use Eq. [35], some additional parameters are required. 242 

Grain number density is given a value of 10
9
/m

3
 to determine final grain size. Velocity difference 243 

|�⃗� 𝑙 − �⃗� 𝑒| is imposed to be 0.1 mm/s, assuming a weak liquid flow around the grains. Results of 244 

simulations are presented in Figure 3.  245 
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 246 

Fig. 3— Solidification in a zero dimension uniformly solidifying system obtained with different 247 

models (Eqs. [35] through [38]) for diffusion length 𝑙𝑙: (a) variation of diffusion length 𝑙𝑙 in time, 248 

(b) evolution of the solid and grain fractions and (c) temperature evolution. 249 

 250 

At the early stage (𝑡 < 0.6 s) of grain growth, grain size is small while the value of 𝐷𝑙/𝑣𝑒𝑛𝑣 is 251 

high. Hence, in the expression of Eqs. [35], [37] and [38], the first term in the bracket prevails, 252 

and case 1 differs from the 3 other cases: see the insert in Figure 3(a). Meanwhile, the effect of 253 

convection and solute interaction is negligible. A second growth stage can be identified during a 254 

time period from 0.6 s to 2.9 s, when 𝑣𝑒𝑛𝑣 increases rapidly, and the second expression in Eqs. 255 

[35], [37] and [38] becomes smaller. Consequently, the value of the diffusion length for all 4 cases 256 

is calculated with the same expression, and evolution of phase fractions (Figure 3(b)) and 257 
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temperature (Figure 3(c)) in all four cases is almost equivalent. After 2.9 s, the four cases show 258 

obvious differences. For case 1 and case 2, diffusion length increases in a similar way until 259 

approximately 29 s since 𝑣𝑒𝑛𝑣 decreases. In case 3 and case 4, solutal interaction and convective 260 

effect become important. Therefore, although in both Eqs. [35] and [38], the first term in the 261 

brackets is chosen, the diffusion length calculated with Eq. [35] is smaller due to convection, that 262 

also affects the evolution of the grain fraction (Figure 3(b)). It is interesting to note that the 263 

diffusion length evolution observed by Torabi Rad et al.
[27]

 experienced similar 3 stages as in cases 264 

2 through 4, although that simulation was made for another alloy system and under a different 265 

cooling condition. A remarkable difference in envelope growth is observed between case 1 and 266 

case 4 after 45s of solidification. In the former, the envelopes of neighboring grains impinge 267 

(𝑓𝑒 ≈ 1), and further solidification occurs in the interdendritic liquid, yet the grain fraction in case 268 

4 is only 0.48. Such a difference can greatly influence the solidification process and 269 

macrosegregation pattern. Regarding the macroscale model, the effect of convective flow on 270 

equiaxed solidification is even more complex since the average solute concentration for a given 271 

grain may also change due to solute or grain transportation at the macroscale. This effect is shown 272 

in section IV. 273 

 274 

B. Momentum exchange coefficient 275 

Based on a direct comparison of the non-dimensional momentum exchange coefficients   276 

𝐾𝑙𝑒𝑑𝑒
2/𝜇𝑙 calculated with the Happel model

[23]
 and the Carman-Kozeny model

[20]
 (Figure 4(a)), 277 

the difference between them could be thought to be minor. Yet, a simple demonstration can be 278 

made with the settling velocity 𝑢𝑒 of grains falling in a stationary liquid. This can be calculated 279 

from the equilibrium between the gravitational force and the friction from the liquid as 𝑢𝑒 =280 

∆𝜌g/𝐾le. We estimated this velocity for different grain fractions using the grain number density 281 

𝑛 = 109m−3 (for calculation of the grain diameter 𝑑𝑒) and the density difference ∆𝜌 =282 

100 kg m3⁄ . Figure 4 (b) presents the results obtained with the two models, while the velocity 283 

calculated with the classical Stokes’ drag force is also included for comparison. For a large grain 284 

fraction region, i.e. 𝑓𝑒 > 0.4, the Happel model and Kozeny-Carman model predict similar 285 

settling velocity, which approaches zero as the amount of liquid decreases. However, for grain 286 

fractions approaching zero, the settling velocity calculated with the Happel model also moves to 287 
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zero, similarly to the case with the Stokes’ law, while use of the Kozeny-Carman equation gives a 288 

velocity value moving to infinity. One can conclude that the Happel model provides a good 289 

approximation both for the free-particle regime, also including very small nuclei, and the packed 290 

bed regime. It should be noted that the model used by Wang et al. 
[13]

 (Table II) is reduced to the 291 

Happel model if the partition of the inter- and extradendritic liquid phases is not considered. 292 

293 

Fig. 4—Comparison of (a) dimensionless momentum exchange coefficient between l- and e- 294 

phases and (b) settling velocity between different models. 295 

 296 

C. Grain packing method 297 

During solidification, the free-floating equiaxed grains impinge before being packed in a rigid 298 

structure similar to columnar grains. In numerical models, this transition is treated with a packing 299 

fraction limit, which can be associated either with grain fraction 𝑓𝑝
𝑒 or with solid fraction 𝑓𝑝

𝑠， 300 

depending on the phases whose relative motion is considered. Generally, it is assumed that for a 301 

freely moving equiaxed grain, whose volume fraction increases to the packing fraction limit, its 302 

velocity should drop to zero. It is widely accepted that the packing fraction limit for the grain 303 

phase is 𝑓𝑝
𝑒 = 0.637 

[4,22,28]
 , which is an approximation of the closest packing fraction of 304 

randomly arranged monodisperse spheres. For solid fraction, the limit is lower and accepted to be 305 

in the range 𝑓𝑝
s = 0.1~0.5,

[24,29,30]
. A more complex morphology of the solid dendrites makes 306 

them easier to form a packed structure.
[31]

 A widely used packing condition is that 𝑓𝑒 is higher 307 

than 𝑓𝑝
𝑒. However, even if 𝑓𝑒 ≥ 𝑓𝑝

𝑒, grains cannot be made rigid when they are in the middle of a 308 

non-rigid domain, as a group of them could still sediment or float up or be dragged. Thus, in order 309 

to avoid unphysical system behavior, the second packing condition is introduced to the model, 310 
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which assumes that the grains to be packed should have a rigid neighbor upon which to be 311 

attached. A grain packing status marker 𝑖𝑝 is adopted to identify whether or not the grains in a 312 

calculation cell should be packed. During initialization, a zero value is assigned to 𝑖𝑝 in each 313 

calculation cell. If the cell of interest is adjacent to the wall or has at least one packed neighboring 314 

cell, its 𝑖𝑝 value is changed to 1. For the cell marked with 𝑖𝑝 = 1, once 𝑓𝑒 ≥ 𝑓𝑝
𝑒 is satisfied, the 315 

grains get packed and the marker 𝑖𝑝 is set to 2, which means that the grain phase motion must be 316 

stopped. This procedure is repeated at each time integration step.  317 

 318 

D. Implementation of the solution algorithm 319 

To reduce simulation time, the processes occurring at macroscopic and microscopic scales are 320 

modeled with different time step sizes, as shown in Figure 5.  321 

For each intensive medium property Ψ, representing phase fraction, solute concentration, 322 

temperature or grain number density, a balance equation can generally be written as: (𝑑(𝜌Ψ))/323 

𝑑𝜏 + ∇(𝜌�⃗� Ψ) = ∇(𝜆Ψ∇Ψ) + 𝑆Ψ, where the convection term ∇(𝜌�⃗� Ψ) and the diffusion term 324 

∇(𝜆Ψ∇Ψ) represent macroscale transport phenomena. The source term 𝑆Ψ is mainly induced by 325 

microscale evolution, including the nucleation and exchange of mass, energy and solute between 326 

phases. A double time step method is based on an assumption that microscopic exchange only has 327 

a slight influence on macroscopic transportation. A larger time step size Δ𝑡, used for calculation 328 

of macroscopic transportation, is divided into N sub-steps Δ𝜏 = Δ𝑡/𝑁 used for time integration 329 

of the microscopic exchange rate. 330 

Microscopic exchange is calculated locally by omitting the macroscale transport terms giving 331 

(𝑑(𝜌Ψ))/𝑑𝜏 = 𝑆Ψ. Each variable is initialized as Ψ0, which is the transport solution from the last 332 

time step. The value at sub-step i is calculated with the first-order time integration scheme using 333 

data from the previous sub-step i-1: 𝜌Ψ𝑖 = 𝜌Ψ𝑖−1 + 𝑆Ψ,𝑖−1Δ𝜏. In each sub-step, at first an amount 334 

of nuclei (𝑁ΦΔ𝜏)/𝑁 is added, then the rate of phase transition is determined, after that, the solute 335 

concentration and enthalpy content are calculated for each phase. Finally, the values of 336 

∑ 𝑆Ψ,𝑖
𝑁
𝑖=1 = 𝜌(Ψ𝑁 − Ψ0)/Δt are recorded and then used as source terms for solving macroscopic 337 

transport equations, including multiphase flow field and transport of energy and solute 338 

concentration. These macroscopic transport equations are solved by ANSYS FLUENT® software. 339 

In current research, we use the time step size Δ𝑡 of 0.005s and the number of sub-steps 𝑁 of 20. 340 
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 341 

Fig. 5—Solution algorithm scheme. 342 

 343 

III. Description of the simulated case 344 

The numerical model described above is applied to solidification of a binary alloy, which occurs 345 

in a quasi-two-dimensional thin parallelepiped cavity with dimensions 100mm width ×346 

60mm height. Initially, the melt inside the cavity is kept at a uniform temperature slightly above its 347 

liquidus temperature. One of the lateral faces of the cavity is then cooled down while other faces are 348 
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kept adiabatic (Figure 6). This solidification process mimics an experiment performed for the first 349 

time by Hebditch and Hunt
[32]

 for three binary alloys, one of which was Sn-5wt%Pb, to study the 350 

effect of buoyancy convection on macrosegregation. Since then the experiment has been modeled 351 

many times using models for columnar solidification
[33,34]

 as well as models that included motion of 352 

the equiaxed grain phase
[35,36]

. In our simulation, the initial temperature of the melt is 499.15K, 353 

with a small superheat of about 0.43K above the liquidus temperature of the alloy. The outside 354 

temperature and heat transfer coefficient at the cooling face are 298.15K and 300W m−2s−1, 355 

respectively. All thermophysical parameters and material properties are listed in Table IV, most of 356 

which are taken from the work
[36]

.  357 

 358 

Fig. 6—Illustration for the solidification problem under consideration. 359 

 360 

IV. Results and discussion 361 

For convenience, the simulation performed with diffusion length given by Eq. [35] and 362 

presented in this section IV.A is referred to hereafter as case A. To demonstrate the crucial effect of 363 

diffusion length on the resulting solidification pattern, a simulation presented in section IV.B and 364 

referred to as case B, is performed with the diffusion length given by Eq. [36]. Other internal 365 

parameters, material properties, and external conditions for cases A and B are identical. 366 

A. Results of case A 367 

At the beginning of the solidification process, the liquid next to the cooling side flows 368 

downwards due to the thermal and solutal buoyancy effects. Nucleation occurs once local 369 

undercooling is greater than nucleation undercooling. According to material properties (see Table 370 

IV), the solute-poor grains have higher mass density than liquid. Therefore, subjected to drag force 371 

and gravity, they are further transported by the fluid flow, sediment, and accumulate at the cavity 372 

bottom. In solidification, the partition coefficient for Pb is less than one, meaning that the solid 373 

initially forms at a depleted composition relative to the nominal one, and the solute is rejected into 374 



 

 17  

the liquid phase. Therefore, a thin negative segregation layer forms at the bottom, while a liquid 375 

layer enriched with Pb is situated a few millimeters above. As solidification proceeds, these 376 

segregation phenomena become more pronounced. 377 

 378 

Fig. 7—Various fields at different solidification times in case A: (a.1, b.1 and c.1) temperature and 379 

grain number density (𝑛 in m−3), (a.2, b.2 and c.2) grain phase fraction (𝑓𝑒) and velocity (�⃗� 𝑒), the 380 

black line shows the 𝑓𝑒 = 0.637 level, (a.3, b.3 and c.3) averaged solute concentration (𝑐mix in 381 

wt. %Pb) and liquid phase velocity (�⃗� 𝑙), and (a.4, b.4 and c.4) solid phase fraction. 382 
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As described in section II-C, when the grain phase faction 𝑓𝑒 increases above the packing 383 

fraction limit 𝑓𝑝
𝑒, a packed region appears, which is shown below by the black line in Figure 7(a.2, 384 

b.2 and c.2). At 10s, only a thin layer of packed grains is formed at the bottom. When grains arrive 385 

at the right wall, they are dragged upwards by the liquid and tend to sediment at the same time, 386 

thus resulting in their slight backwards flow followed by their dispersion in the bulk liquid. The 387 

packed grain layer gradually piles up from the bottom of the cavity to the top. Some grains reach 388 

the packing fraction limit before arriving at the right wall, which explains the formation of a gentle 389 

slope towards the east (Figure 7(b.2 and c.2)). The upward liquid flow through the packed bed 390 

depletes its solute concentration and enriches the liquid layer above the bed (Figure 7(a.3 and b.3)). 391 

The downward liquid flow in the packed porous zone brings the solute down, forming a small 392 

enriched pool at the bottom of the cavity (Figure 7(b.3)). 393 

At 250 seconds of solidification, almost the entire cavity is occupied by packed grains, yet the 394 

extradendritic liquid still circulates between them. Due to the large flow resistance in the packed 395 

region, liquid flow in this area is weak, as shown in Figure 7(c.3), and maximum liquid flow 396 

velocity in the packed region is only 6.5 × 10−4m/s. However, this weak liquid flow can still 397 

influence solute distribution if sufficient time is provided. As can be seen further in Figure 8, due 398 

to buoyancy force and residual fluid flow, the enriched liquid descends and is replaced by the 399 

liquid from upstream. Continued enrichment at the bottom leads to strong positive segregation 400 

over the entire bottom. The overall result is that a region with semicircular shape forms near the 401 

cooling face, corresponding to a negative segregated region at the same place, while positive 402 

segregation forms in the bottom righthand region (Figure 7(c.3) and Figure 8). 403 

Similar to the result from another equiaxed solidification model
[37,38]

 and the columnar 404 

solidification model
[33,34,39]

, some segregation channels form near the cooling side. These channels 405 

are determined by thermosolutal buoyancy and the local fluctuations in permeability of the packed 406 

zone. Cells with higher solute content will have a lower liquidus temperature, and therefore, a 407 

lower solid fraction for a given temperature. Therefore, envelope growth can be accelerated at one 408 

location, or suppressed at another location depending on the flow field and solute concentration 409 

distribution. Fluctuation of envelope growth will influence the permeability term in the 410 

momentum equation, and then further affect the flow field. This mechanism generates a positive 411 

feedback loop, allowing channels to continue to grow. In Figure 8, average solute concentration 412 
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distribution is overlaid with the vectors for velocity in the extradendritic liquid and isolines of the 413 

solid fraction for 𝑓𝑠 = 0.5 and 𝑓𝑠 = 0.9. Areas with lower composition correspond to the 414 

protrusions of the solid into the bulk fluid flow during the earlier solidification stage. Liquid flow 415 

is most intense near the isoline 𝑓𝑠 = 0.5 from the lefthand side, i.e. in the zone 𝑓𝑠 > 0.5. It is 416 

observed that a new channel appears on the existing channel from t=400s to t=550s (Figure 8). 417 

After that, channel formation stops but macrosegregation continue to evolve (compare Figure 8(b) 418 

and Figure 12). 419 

 420 

 421 

Fig. 8—Evolution of macrosegregation with most grains being packed: solute distribution is 422 

shown with isolines of the solid fraction and vectors for flow velocity in l-phase (case A). 423 

 424 

B. Results of case B 425 

 Similar to case A, at the early stage of solidification of case B, the equiaxed grains appear and 426 

grow near the cooling side before sedimenting to the bottom, causing negative segregation (Figure 427 

9(a.3, b.3 and c.3)). The equiaxed grains pile up to form a packed region near the bottom. 428 

Diffusion length in case B always increases as envelope growth velocity decreases, meaning that 429 

the diffuse flux from the interdendritic liquid to the extradendritic liquid decreases with time and 430 

that bulk liquid enrichment is much less intense compared to the previous case. A weak 431 

enrichment leads to a higher constitutional undercooling, thus the envelope growth rate of grains 432 

remains high even when they get packed. Consequently, the extradendritic liquid between the 433 

grains rapidly disappears (Figure 9(b.2 and c.2)), and its convective velocity approaches zero 434 

(Figure 9(c.3) and Figure 10). A slightly enriched layer of the extradendritic liquid still remains on 435 

the top of packed grain region, because the buoyancy term related to solute concentration is small 436 

and the permeability of the packed grain region rapidly decreases. Although there is still 437 

interdendritic liquid inside the grain phase, the current model assumes that it has the velocity of  438 
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 439 

Fig. 9—Various fields at different solidification times in case B: (a.1, b.1 and c.1) temperature and 440 

grain number density (𝑛 in m−3), (a.2, b.2 and c.2) grain phase fraction (𝑓𝑒) and velocity (�⃗� 𝑒), the 441 

black line shows the 𝑓𝑒 = 0.637 level, (a.3, b.3 and c.3) averaged solute concentration (𝑐mix in 442 

wt. %Pb) and liquid phase velocity (�⃗� 𝑙), and (a.4, b.4 and c.4) solid phase fraction. 443 

 444 

the grain phase, yet, the latter is already packed, i.e. immovable. Therefore, after 250s, solute 445 

distribution barely changes, as can be seen in Figure 10. Although solidification proceeds in a 446 
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horizontal direction from the cooling side to the adiabatic side, slightly enriched liquid is then 447 

captured at the top by the packed grains whose fraction is not far from 1. Finally, an upward 448 

pointing concentration gradient forms in the sample (Figure 12(b)). For the same solidification 449 

case, a segregation pattern similar to that in case B was also obtained with a two-phase model. 
[36]

 450 

 451 

 452 

Fig. 10—Evolution of macrosegregation with most grains being packed: solute distribution is 453 

shown with isolines of the solid fraction and vectors for flow velocity in l-phase (case B). 454 

 455 

C. Effect of the diffusion length model on solidification results 456 

During the early stage of solidification, case B shows similar phenomena to case A, yet at 75 s, 457 

the two cases already present differences in grain growth and macrosegregation that become more 458 

pronounced with time. 459 

A less intense enrichment of the extradendritic liquid and a higher grain growth velocity in case 460 

B lead to a faster increase in the height of the packed bed despite in this case a slower grain 461 

sedimentation velocity (compare Figures 7(b) and 8(b)). The packed bed grows fast at the 462 

beginning before slowing down due to the solidification process. In Figure 11, a height of the 463 

packed bed estimated from the results obtained by Založnik et al.
[36]

 with a two-phase model is 464 

also presented for comparison. The conclusion can be drawn that present three-phase models with 465 

the packing grain limit of 0.637 predict faster growth of the packed bed than the two-phase model 466 

with the packing limit of 0.3 for the solid fraction.  467 

Regarding segregation, the formation of channels is observed in case A but not in case B. 468 

Similar to a columnar solidification,
[33,34,39]

 the channels are initiated near the cooling side and 469 

directed downwards following the fluid flow, which circumflexes the grains already packed at the 470 

lefthand wall, making the channels convex upward. For case B, the l-phase is quickly exhausted, 471 

meaning that the extradendritic liquid flow becomes too weak to affect solute distribution and to 472 
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form channels. A comparison of Figure 8 and Figure 10 shows that solid growth in case B is 473 

slower than in case A due to the faster diffusion of the solute from the solidifying dendrite to the 474 

extradendritic liquid. This is conversely to the zero-dimension solidification case which was 475 

considered in section II because the rejected solute is not conserved within a grain but is 476 

redistributed in the bulk liquid. Finally, in case A, positive enrichment forms at the bottom 477 

righthand part of the cavity, as shown in the macrosegregation map (Figure 12(a)), while in case B, 478 

a discontinuous positive segregation chain is presented at the top (Figure 12(b)). The segregation 479 

degree in case B is much smaller, from 4.8% to 5.8%, than that in case A, from 1.9% to 13.4% 480 

(Figure 12).  481 

It should be noted that the segregation pattern in case A is close to the original experimental 482 

result (except channels),
[32]

 although mainly columnar grain structure was found in the experiment. 483 

This can be explained by the fact that in the present simulation, the dendrite equiaxed structure 484 

grows quickly before being packed into a bed that occupies the entire cavity. During further 485 

solidification, the packed grains cannot move anymore, and thus behave like a columnar dendrite 486 

structure. 487 

 488 

Fig. 11—Comparison of packed grain bed evolution. 489 
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 490 

Fig. 12—Segregation map for case A (a) and case B (b) at 1000s. 491 

V. Conclusions 492 

A modernized three-phase solidification model was proposed and applied for simulation of 493 

equiaxed dendritic solidification accounting for grain transport under the buoyancy flow. In the 494 

model, use of the Happel approximation for the momentum exchange coefficient between the two 495 

phases allows us to account for grain transport for the full grain fraction range. Furthermore, an 496 

additional criterion proposed for the treatment of the grain packing phenomenon allows us to take 497 

into account properly those grains whose fraction exceeds a theoretical packing limit but which 498 

were transported in the middle of the bulk liquid and, consequently, should not be blocked. 499 

However, the main novelty of the model is a new equation for calculation of diffusion length. The 500 

proposed diffusion length equation combines the factors affecting diffusion length in the 501 

extradendritic liquid, including a convective flow around the grains. The drastic effect of the 502 

adopted model is demonstrated with two simulations of the solidification of a binary alloy 503 

Sn-5wt%Pb. The only difference between them is in the calculation of diffusion length: case A 504 

uses a proposed equation, while case B uses a diffusion length purely dependent on envelope 505 

growth velocity. The numerical results show that the case including the proposed equation for 506 

diffusion length predicts a slower growth of the packed grain bed at the bottom of the cavity, 507 

formation of channels near the cooling side, and a final segregation pattern with an enriched layer 508 

at the bottom. The overall final segregation pattern is similar to the results obtained with the 509 

columnar model used earlier as well as with the experimental one. 510 

  511 
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NOMENCLATURE 

𝑐𝑖 
solute concentration in i- phase 

(wt.%) 
𝑆𝑒

𝐽
 

diffusion surface concentration of the 

grain phase (m−1) 

𝑐𝑚𝑖𝑥 mix solute concentration (wt.%) t time (s) 

𝑐𝑒𝑢𝑡 eutectic concentration (wt.%) 𝑇 temperature (K) 

𝑐𝑙
∗, 𝑐𝑠

∗ 
equilibrium concentration at f-s or 

d-s interface (wt.%) 
𝑇𝑒𝑢𝑡 eutectic temperature (K) 

𝑐𝑒𝑛𝑣 concentration at l-d interface (wt.%) 𝑇0 initial temperature (K) 

𝑐𝑝
𝑖  specific heat for i-phase (J kg−1K−1) Δ𝑇 constitutional undercooling (K) 

𝑐0 initial concentration (wt.%) Δ𝑇𝑛𝑢𝑐𝑙 nucleation temperature (K) 

𝑑𝑒 , 𝑑𝑠  grain diameter (m) �⃗� 𝑖 velocity vector of i- phase (m s−1) 

𝐷𝑙 
diffusion coefficient in liquid 

(m2s−1) 
�⃗⃗� 𝑖𝑗

𝐷 
momentum transfer rate from i- phase 

to j- phase (kg m−2s−2) 

𝑓i volume fraction of i- phase (1) 𝑣𝑒𝑛𝑣 envelope growth velocity (m s-1) 

𝑓𝑝
𝑒 , 𝑓𝑝

𝑠 packing limit fraction (1) 𝑣𝑑𝑠 d-s interface growth velocity (m s-1) 

𝑓𝑠
𝑒 solid fraction within grains (1) Greek Symbols 

𝐹 𝐵𝑖 
buoyancy force of i- phase 

(kg m−2s−2) 
𝛽𝑇 thermal expansion coefficient (K−1) 

ℎ𝑖 enthalpy of of i- phase (J kg-1) 𝛽𝑐 solutal expansion coefficient (1) 

𝐻∗ 
interfacial heat transfer coefficient 

(W m−3K−1) 
ΦM 

shape factor of dendritic envelope 

growth (1) 

𝐽𝑖𝑗 
species transfer rate from i- phase to 

j- phase (m s-1) 
ΦJ sphericity of dendritic envelope (1) 

𝑘𝑖 
thermal conductivity for i-phase 

(W m−1K−1) 
Γ gibbs thomson coefficient (m K) 

𝑘 solute partition coefficient (1) 𝜆2 secondary arm spacing (m) 

𝐾𝑖𝑗 
liquid-equiaxed drag coefficient 

(kg m−3s−1) 
𝜇𝑖 viscosity of i- phase (kg m−1s−1) 

𝑙𝑖 diffusion length of i- phase (m) 𝜌𝑖 density of i- phase (kg m−3) 

L latent heat (J kg-1) 𝜌𝑟𝑒𝑓 reference density (kg m−3) 

m 
slope of liquidus in phase diagram 

(K) 
𝜌𝑠

𝑏 density of solid phase for buoyancy 

𝑀Φ 
mass transfer rate from nucleation 

(kg m−3s−1) 
Ψ𝑖 a intensive medium property (-) 

𝑀𝑖𝑗 
mass transfer rate from i- phase to 

j- phase (kg m−3s−1) 
Subscripts 

𝑛𝑚𝑎𝑥 
maximum equiaxed grain density 

(m-3) 
d interdendritic liquid phase 
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n grain number density (m-3) e: d+s exquiaxed grain phase 

𝑁Φ nuclei production rate (m-3s−1) f: l+d liquid phase 

Re Reynolds number (1) l extradendritic liquid phase 

Sh Sherwood number (1) s interdendritic solid phase 

𝑆𝑒
𝑀 

surface concentration of the 

equivalent sphere (m−1) 
  

Note: 523 

The symbols related to averaging procedures are omitted in the paper, i.e. a field property 524 

averaged over its proper phase ⟨Ψ𝑖⟩
𝑖 is replaced with Ψ𝑖 for simplicity. 525 
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Table I. Diffusion length ahead of the dendrite tip in equiaxed solidification models 612 

Reference 
Phases 

type of grain 
Diffusion length 𝒍𝒍 or 𝒍𝒇 

Rappaz and Thevoz 
[14]

 

𝑙, 𝑑, 𝑠 

dendritic 
𝑙𝑙  =

𝐷𝑙

𝑣𝑡𝑖𝑝
 (No flow) 

Ni and 

Beckermann
[17]

 

𝑓, 𝑠  

globular 
𝑙𝑓 =

𝑑𝑠

2
(

1

1 − (1 − 𝑓𝑓)
1

3

+
𝑆𝑐

1

3𝑅𝑒𝑎

3𝑓𝑓
)

−1

 

Wang and 

Beckermann
[13]

 

𝑙, 𝑑, 𝑠  

dendritic 

𝑙𝑙  =
𝑑𝑒

2 + 0.865 (
𝐶ε

𝑓𝑙
)
1/3

(
𝑓𝑙|�⃗⃗� 𝑙−�⃗⃗� 𝑒|

𝐷𝑙
)
1/3

 

with 𝐶ε = 𝐶ε(𝑓𝑙) 

Appolaire and 

Combeau 
[12]

 

𝑙, 𝑑, 𝑠 

dendritic (single 

crystal in infinite 

medium) 

𝑙𝑙 = min (
𝑑𝑒

𝑆ℎ
,

𝐷𝑙

𝑣𝑡𝑖𝑝
) where 

Sh = 2 + 0.6Sc1/3𝑅𝑒1/2 

Wu and Ludwig
[22]

 
𝑙, 𝑑, 𝑠 

dendritic 
𝑙𝑙  = {

𝑑𝑒

2
     𝑔𝑙𝑜𝑏𝑢𝑙𝑎𝑟 𝑔𝑟𝑜𝑤𝑡ℎ

𝐷𝑙

𝑣𝑒𝑛𝑣
     𝑑𝑒𝑛𝑑𝑟𝑖𝑡𝑖𝑐 𝑔𝑟𝑜𝑤𝑡ℎ

 

 613 
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Table II. Coefficient in the equation for the momentum exchange, Eq. [2] 615 

Reference 

Phases, union of 

phases,  

type of grain 
Coefficients for Eq. [2] 

Wu and 

Ludwig
[22]

 

𝑙, 𝑒 = (𝑑 ∪ 𝑠) 

dendritic 
𝐾𝑙𝑒  = 𝐹𝑘(𝑓𝑙 , 𝑑𝑒)

𝜇𝑙

𝐾
= {

180𝜇𝑙𝑓𝑒
2

𝑓𝑙𝑑𝑒
2      𝑓𝑒 < 𝑓𝑠𝑐

𝜇𝑙𝑓𝑙
2

𝐾
     𝑓𝑒 > 𝑓𝑠𝑐

 

Ni and 

Beckermann
[17]

 

𝑓, 𝑠 

globular 

𝐹𝐶𝐷 =
3

4

𝑓𝑠

𝑑𝑠
  ,  𝐶𝐷 =

48𝐶𝑘𝑒(1−𝑓𝑓)

𝑅𝑒
+ 𝐶𝑖𝑒 

𝑅𝑒 =
𝜌𝑓𝑓𝑑𝑠

𝜇𝑓
|�⃗� 𝑓 − �⃗� 𝑠| 

𝐶𝑘𝑒 = 0.5 and  Cie = 7/3 for 𝑓𝑓 ≤ 0.5 

𝐶𝑘𝑒(𝑓𝑓, 𝑅𝑒), 𝐶𝑖𝑒(𝑓𝑓, 𝑅𝑒) for 𝑓𝑓 > 0.5 

Wang and 

Beckermann
[13]

 

𝑙, 𝑑, 𝑠 

dendritic 

𝐾𝑓𝑠 = 4𝑓𝑓
2𝛽2 𝜇𝑙

𝑑𝑒
2       where  

   𝛽 =
𝛽𝑑

[(1−𝑓𝑙)
𝑛+(𝛽𝑑/𝛽𝑙)

2𝑛]1/2𝑛
 

Apollaire and 

Combeau
[12]

 

𝑙, 𝑑, 𝑠 

dendritic 

(single crystal in 

infinite medium) 

𝐹𝐶𝐷 =
𝜌𝑓𝜋𝑑2

8
, 𝐶𝐷 =

 𝐶𝐷
′

1.2376log (Φ 0.1556⁄ )
   where 

𝐶𝐷
′ (𝑅𝑒),  (

d

√𝐾
), Φ sphericity, K from Kozeny-Carman 

Leriche and 

Combeau
[4]

 

𝑓 = (𝑙 ∪ 𝑑), 𝑠 

dendritic 

Slurry region: 𝐹𝐶𝐷 =
3𝜌

4

𝑓𝑒

𝑑𝑒
  𝐶𝐷 =

48𝐶𝑘𝑒(1−𝑓𝑙)

𝑅𝑒
+ 𝐶𝑖𝑒 

𝐶𝑘𝑒 = 0.5 and  Cie = 7/3 for 𝑓𝑒 > 0.5 

𝐶𝑘𝑒(𝑓𝑙 , 𝑅𝑒), 𝐶𝑖𝑒(𝑓𝑙 , 𝑅𝑒) for 𝑓𝑒 ≤ 0.5 

Packed region: 𝐾 =
λ2
2

20𝜋2

𝑓𝑓
3

(1−𝑓𝑓)
2 
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Table III. Conservation equations, source terms, and auxiliary expressions 616 

1. Conservation equations 

Mass 𝜕(𝑓𝑙𝜌𝑙)

𝜕𝑡
+ ∇(𝑓𝑙𝜌𝑙�⃗� 𝑙) = 𝑀𝑒𝑙 − 𝑀Φ [3] 

𝜕(𝑓𝑒𝜌𝑒)

𝜕𝑡
+ ∇(𝑓𝑒𝜌𝑒�⃗� 𝑒) = 𝑀𝑙𝑒 + 𝑀Φ [4] 

𝜕(𝑓𝑒𝑓𝑠
𝑒𝜌𝑠)

𝜕𝑡
+ ∇(𝑓𝑒𝑓𝑠

𝑒𝜌𝑠�⃗� 𝑒) = 𝑀𝑑𝑠 + 𝑀Φ [5] 

Momentum 𝜕(𝑓𝑙𝜌𝑙�⃗� 𝑙)

𝜕𝑡
+ ∇(𝑓𝑙𝜌𝑙�⃗� 𝑙�⃗� 𝑙) = −𝑓𝑙∇𝑝 + ∇[𝜇𝑙𝑓𝑙(∇�⃗� 𝑙 + (∇�⃗� 𝑙)

T)] + �⃗� 𝑙𝑀𝑒𝑙 + 𝐹 𝐵𝑙 + �⃗⃗� 𝑒𝑙
𝐷  [6] 

𝜕(𝑓𝑒𝜌𝑒�⃗� 𝑒)

𝜕𝑡
+ ∇(𝑓𝑒𝜌𝑒�⃗� 𝑒�⃗� 𝑒) = −𝑓𝑒∇𝑝 + ∇[𝜇𝑒𝑓𝑒(∇�⃗� 𝑒 + (∇�⃗� 𝑒)

T)] + �⃗� 𝑙𝑀𝑙𝑒 + 𝐹 𝐵𝑒 + �⃗⃗� 𝑙𝑒
𝐷  [7] 

Energy 𝜕(𝑓𝑙𝜌𝑙ℎ𝑙)

𝜕𝑡
+ ∇(𝑓𝑙𝜌𝑙�⃗� 𝑙ℎ𝑙) = ∇(𝑘𝑙𝑓𝑙∇𝑇) + 𝐿𝑀𝑑𝑠𝑓𝑙 + 𝑀𝑒𝑙ℎ𝑙 + 𝑄𝑒𝑙 [8] 

𝜕(𝑓𝑒𝜌𝑒ℎ𝑒)

𝜕𝑡
+ ∇(𝑓𝑒𝜌𝑒�⃗� 𝑒ℎ𝑒) = ∇(𝑘𝑒𝑓𝑒∇𝑇) + 𝐿𝑀𝑑𝑠𝑓𝑒 + 𝑀𝑙𝑒ℎ𝑙 + 𝑄𝑙𝑒 [9] 

 where ℎ𝑙 = ∫ 𝑐𝑝
𝑙 𝑑𝑇 + ℎ𝑙

𝑟𝑒𝑓𝑇𝑙

𝑇𝑟𝑒𝑓
, ℎ𝑒 = ∫ 𝑐𝑝

𝑒𝑑𝑇 + ℎ𝑒
𝑟𝑒𝑓𝑇𝑒

𝑇𝑟𝑒𝑓
   

Solute 
𝜕(𝑓𝑙𝜌𝑙𝑐𝑙)

𝜕𝑡
+ ∇(𝑓𝑙𝜌𝑙�⃗� 𝑙𝑐𝑙) = ∇(𝐷𝑙𝑓𝑙∇𝑐𝑙) + 𝐽𝑒𝑙 [10] 

𝜕(𝑓𝑒𝜌𝑒𝑐𝑒)

𝜕𝑡
+ ∇(𝑓𝑒𝜌𝑒�⃗� 𝑒𝑐𝑒) = 𝐽𝑙𝑒 [11] 

𝜕(𝑓𝑠𝜌𝑠𝑐𝑠)

𝜕𝑡
+ ∇(𝑓𝑠𝜌𝑠�⃗� 𝑒𝑐𝑠) = 𝐽𝑑𝑠 [12] 

Grain number density ∂

∂t
𝑛 + ∇(�⃗� 𝑒𝑛) = 𝑁Φ [13] 

2. Source terms 

Mass 𝑀𝑙𝑒 = −𝑀𝑒𝑙 = 𝜌𝑙 ∙ 𝑆𝑒
𝑀 ∙ 𝑣𝑒𝑛𝑣 [14] 

𝑀𝑑𝑠 = 𝑓𝑒 ∙ 𝜌𝑠 ∙
2 ∙ 𝑓𝑑

𝑒

𝜆2

∙ 𝑣𝑑𝑠 [15] 

𝑀Φ = 𝑁Φ𝜌𝑙 ∙
1

6
π𝑑0

3 [16] 

Momentum 
𝐹 𝐵𝑙 = 𝑓𝑙𝜌𝑙𝑔 [𝛽𝑇(𝑇𝑟𝑒𝑓 − 𝑇𝑙) + 𝛽𝑐(𝑐𝑟𝑒𝑓 − 𝑐𝑙)] [17] 

𝐹 𝐵𝑒 = 𝑓𝑑𝜌𝑑𝑔 [𝛽𝑇(𝑇𝑟𝑒𝑓 − 𝑇𝑒) + 𝛽𝑐(𝑐𝑟𝑒𝑓 − 𝑐𝑑)] + 𝑓𝑠(𝜌𝑠
𝑏 − 𝜌𝑟𝑒𝑓)𝑔  [18] 

�⃗⃗� 𝑙𝑒
𝐷 = −�⃗⃗� 𝑒𝑙

𝐷 = 𝐾𝑙𝑒(�⃗� 𝑙 − �⃗� 𝑒) = 4𝑓𝑙
2𝛽2

𝜇𝑙

𝑑𝑒
2
(�⃗� 𝑙 − �⃗� 𝑒) [19] 

Energy 
𝑄𝑙𝑒 = −𝑄𝑒𝑙 = 𝐻∗(𝑇𝑙 − 𝑇𝑒) [20] 

 
where 𝐻∗ = 1 × 109 𝑊 𝑚−3𝐾−1 (𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑒)  

Solute 𝐽𝑙𝑒 = −𝐽𝑒𝑙 = −𝜌𝑙 ∙ 𝑆𝑒
𝐽 ∙

𝐷𝑙 ∙ (𝑐�̅�𝑛𝑣 − 𝑐𝑙)

𝑙𝑙
+ 𝑀𝑙𝑒 ∙ 𝑐�̅�𝑛𝑣 + 𝑀Φ ∙ 𝑐𝑠

∗ [21] 

𝐽𝑑𝑠 = 𝑐𝑠
∗ ∙ (𝑀𝑑𝑠 + 𝑀Φ) [22] 

Grain number density 
𝑁Φ = {

𝑓𝑙(𝑛𝑚𝑎𝑥 − 𝑛)/Δ𝑡, Δ𝑇 > Δ𝑇𝑛𝑢𝑐𝑙 𝑜𝑟 𝑛 < 1
0, 𝑒𝑙𝑠𝑒

 [23] 

3. Auxiliary expressions 

𝑐𝑙
∗ =

𝑇𝑙 − 𝑇0

𝑚
 [24] 𝑐�̅�𝑛𝑣 =

𝑙𝑑𝑐𝑙 + 𝑙𝑙𝑐𝑑

𝑙𝑑 + 𝑙𝑙
 [25] 

𝑐s
∗ = 𝑘 ∙ 𝑐𝑙

∗ [26] 𝑐𝑚𝑖𝑥 =
𝑓𝑙𝜌𝑙𝑐𝑙 + 𝑓𝑒𝜌𝑒𝑐𝑒

𝑓𝑙𝜌𝑙 + 𝑓𝑒𝜌𝑒

 [27] 

𝑐𝑑 =
𝑓𝑒 ∙ 𝑐𝑒 − 𝑓𝑠 ∙ 𝑐𝑠

𝑓𝑑
 [28] 𝑆𝑒

𝑀 = 𝑓𝑙 ∙ (36𝜋 ∙ 𝑛)1/3 ∙ 𝑓𝑒
2/3

 [29] 

𝑆𝑒
𝐽 = (36𝜋 ∙ 𝑛)1/3 ∙ 𝑓𝑒

2/3
/ΦJ [30] 𝑙𝑑 =

𝑓𝑑𝜆2

2𝑓𝑒
 [31] 

𝑙𝑙 see Eq. [35] 𝛽 = {
9

2
𝑓𝑒

2 +
4

3
𝑓𝑒

5

3

2 − 3𝑓𝑒

1

3 + 3𝑓𝑒

5

3 − 2𝑓𝑒
2

}

1/2

 [32] 

𝑣𝑒𝑛𝑣 = ΦM

𝐷𝑙 ∙ 𝑚𝑙 ∙ (𝜅 − 1) ∙ 𝑐𝑙
∗

𝜋2 ∙ Γ
∙ [

(𝑐𝑙
∗ − 𝑐𝑙) 

𝑐𝑙
∗(1 − 𝑘)

]

2

 [33] 𝑣𝑑𝑠 =
𝐷𝑙

𝑙𝑑
∙
𝑐𝑙

∗ − 𝑐𝑑

𝑐𝑙
∗ − 𝑐𝑠

∗
 [34] 
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Table IV. Phase diagram data and Material properties 619 

 Symbol Units Value Ref. 

Phase diagram     

Melting temperature of pure Sn 𝑇𝑆𝑛 K 505.15  

Eutectic temperature 𝑇𝑒𝑢𝑡 K 456.15  

Partition coefficient 𝑘 1 0.0656 [36] 

Initial solute concentration(Pb) 𝑐0 wt.% 5.0  

Liquidus slope 𝑚 K -128.6 [36] 

Material properties     

Reference mass density 𝜌𝑟𝑒𝑓 kg m−3 7000 [36] 

Density of solid for buoyancy force 𝜌𝑠
𝑏 kg m−3 7143 [36] 

Reference temperature for density 𝑇𝑟𝑒𝑓 K 499.15  

Liquid solutal expansion coefficient 𝛽𝑐 wt.%−1 5.3×10-3 [36] 

Liquid thermal expansion coefficient 𝛽𝑇 K−1 6.0×10-5 [36] 

Reference solute concentration for 

density 

𝑐𝑟𝑒𝑓 wt.% 5.0  

Specific heat 𝑐𝑝
𝑙 , 𝑐𝑝

𝑒 J kg−1K−1 260 [36] 

Thermal conductivity 𝑘𝑙 , 𝑘𝑒 W m−1K−1 55 [36] 

Latent heat 𝐿 J kg−1 61000 [36] 

Diffusion coefficient for liquid 𝐷𝑙 m2s−1 1×10-8 [36] 

Dynamic viscosity 𝜇𝑙 , 𝜇𝑒 kg m−1s−1 0.001 [36] 

Volume heat transfer coefficient 𝐻∗ W m−3K−1 1×109 [21] 

Gibbs –Thomson coefficient Γ m K 2×10-7 [40] 

Maximum grain number density 𝑛𝑚𝑎𝑥 m-3 1×109 [36] 

Initial grain diameter 𝑑0 m 1×10-6  

Secondary arm spacing λ2 m 9×10-5  

Shape factor for dendrite growth ΦM 1 0.683 [22] 

Sphericity ΦJ 1 0.283 [22] 

Packing limit fraction 𝑓𝑝
𝑒 1 0.637 [22] 
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