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We study the magnetic short range order (MSRO) in Fe1−xCrx (0 � x � 0.15) where an inversion of atomic
short range order (ASRO) occurs at xC = 0.11(1). Our combination of neutron diffuse scattering and bulk
magnetization measurements offers a comprehensive description of these local orders at a microscopic level.
In the dilute alloys (x < 0.04), the Cr atoms bear a large moment μCr = −1.0(1) μB, antiparallel to the Fe
ones (μFe). They fully repel their Cr first and second neighbors, and perturb the surrounding Fe moments. With
increasing x, near neighbor Cr-Cr pairs start to appear and the Cr moment magnitude decreases, while μFe shows
a rounded maximum for x1 = 0.06(1) < xC . Above xC , ASRO turns to local Cr segregation, thereby increasing
magnetic frustration. First-principles calculations reproduce the observed moment variations but overestimate
the magnitude of the Cr moment. In order to reconcile theory with experiment quantitatively, we propose that
the magnetic moments start canting locally, already above x1. This picture actually anticipates the spin glasslike
behavior of Cr-rich alloys. The whole study points out the subtle interplay of MSRO and ASRO, yielding an
increasing frustration as x increases, due to competing Fe-Cr and Cr-Cr interactions and Cr clustering tendency.

DOI: 10.1103/PhysRevB.100.224406

I. INTRODUCTION

Fe1−xCrx alloys of concentration x between 0.02 and 0.2
are the main constituents of industrial ferritic steels, highly
resistant to radiation damages and considered as leading
candidates for use in future fusion reactors [1,2], since they
minimize the effects of swelling, void formation, hardening,
and atomic segregation induced by high energy neutron irra-
diation. In this concentration range, an inversion of atomic
short range order (ASRO) occurs at xC = 0.11(1). Namely
the Cr atoms repel each other below xC , whereas they attract
each other above xC . For x = xC the atomic distribution is
close to random. The mixing enthalpy changes sign [3–5]
around xC . This unique case in nature influences both the
stability of the solid solutions and their resistance to irra-
diation. It was initially observed by neutron diffuse scatter-
ing and residual resistivity [6,7], then investigated by Möss-
bauer spectroscopy [8] and x-ray absorption fine structure
(EXAFS) [9].

The origin of this surprising inversion comes from the
peculiar band structure of FeCr ferromagnets, which controls
both the atomic distribution and the microscopic magnetism.
In metallic alloys it is known for a long time that the in-
teractions between atoms, which govern their statistical dis-
tribution, can be written in terms of electronic pair poten-
tials [10–12], although the total cohesive energy cannot [13].
In FeCr alloys, pioneering band structure calculations [14]
performed in the coherent potential approximation (CPA)
predicted the ASRO inversion before its experimental obser-
vation, and outlined the major role played by magnetism in
this process. The physical picture derived from this approach

is the following. Whereas pure Fe is a weak ferromagnet (the
majority spin band is not completely full), pure Cr is a spin
density wave antiferromagnet. Inserting Cr atoms in the Fe
matrix lowers the local Cr density of state of the majority
spin band at the Fermi level, due to the formation of a virtual
bound state [15–17]. As a result, the Cr impurity couples
antiferromagnetically to the Fe matrix with a strong magnetic
moment, and the Cr atoms repel each other to screen the local
magnetic perturbation. The pair potential between Cr near
neighbors strongly varies with the filling of the d band. With
an increase of the Cr concentration, it changes sign due the
shift of the Fermi level with respect to the bound state, so that
the Cr atoms with lower moments then tend to segregate.

Since the beginning of the century, due to the increas-
ing interest in FeCr based steels for nuclear reactors, new
calculations of the electronic band structure have been per-
formed, using modern approaches and powerful computers.
Atomistic simulations [18,19], first-principles theories [4,20–
27], and tight-binding models [28–30] have been intensively
developed. They investigated the changes in the Fermi sur-
face topology, phase diagram, and cohesive properties (lattice
constant, bulk modulus, enthalpy of formation) in great detail.
They also calculated the chemical pair potentials [31] in
excellent agreement with experiments, derived the effective
magnetic interactions [26], and studied the effect of pres-
sure [32]. Many approaches point out the crucial role of mag-
netic short range order (MSRO) in the cohesive and elastic
properties [33], as well on the ASRO, diffusion coefficients,
or decomposition kinetics [34] of Fe1−xCrx alloys.

Strikingly, with regards to this huge theoretical work, no
direct measurement of the MSRO has been performed since
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the 1970s. We focus here on the study of MSRO in Fe1−xCrx

alloys (0 � x � 0.15) by neutron diffuse scattering, which
yields direct information about magnetic moments and pertur-
bations in binary alloys [35,36]. Namely, by combining bulk
magnetization, polarized and unpolarized neutrons data, we
obtain the average moments on Fe and Cr sites in absolute
scale with their sign, and measure quantitatively how much a
Cr moment modifies its neighbor moments in a dilute alloy.
For this study we used samples previously measured [6,7]
where the thermodynamic and ASRO state is well known.
Knowing ASRO accurately, we deduce the MSRO from the
nuclear-magnetic interference cross section of polarized neu-
trons [37,38]. It is directly related to the algebraic difference
between Fe and Cr magnetic moments, and its modulations
with the wave-vector transfer yield the magnetic moment dis-
tribution. Thanks to the polarized neutrons, increased neutron
flux, and optimized experimental setup, we strongly improve
the accuracy of this determination with respect to previous
results [16,39–43]. We also fill the gap between these data,
obtained either in dilute alloys (x ∼ 0.01–0.02) [16,39–41] or
in concentrated ones (x � 0.15) [42,43].

We compare quantitatively the local Fe and Cr mo-
ments and the magnetic perturbations with existing theo-
ries [4,14,25,44–46]. We also performed new first-principles
calculations of the moments and perturbations taking into
account the true ASRO of the samples. In Fe1−xCrx alloys,
ASRO and MSRO are intrinsically correlated and interact in
a subtle way as x increases. The concentration range studied
here (0 � x � 0.15) where the ASRO inversion occurs is a
nice playground to investigate such effects. It spans from the
dilute case where the Cr induced changes of the band structure
are crucial to the concentrated case where frustration plays a
major role.

Magnetic frustration comes from the competition of Cr-Fe
and Cr-Cr near neighbor interactions which start to coex-
ist above the limit of full Cr-Cr repulsion (xR = 0.04), and
strongly increase above xC when Cr atoms tend to segregate.
The striking consequence of this frustration is a canting of the
Cr moments, which starts to be observed between xR and xC ,
around x1 = 0.06(1). Taking this canting into account allows
us to reconcile neutron data and first-principles calculations.
Such canting is a natural precursor of the spin glass phases ob-
served in Cr-rich alloys (x ∼ 0.8). The whole study provides
a comprehensive picture of the ASRO and MSRO interplay in
Fe1−xCrx alloys.

II. EXPERIMENTS

A. Sample synthesis and experimental details

Polycrystalline samples were synthesized by CECM-
Vitry, Cristaltech Grenoble, Gero-Neuhausen, and Cerac-
Milwaukee, with concentrations in the range 0 � x � 0.15.
Bulk cylinders of 30-mm length and 9-mm diameter were
carved from the synthesized materials for the neutron exper-
iments. The samples homogeneity and the Cr concentrations
were checked by chemical analysis. In the Fe-Cr system, the
phase diagram shows a miscibility gap [47,48] so that with
increasing x, the solid solution starts to decompose into two
body centered cubic (bcc) phases, enriched in Fe and Cr,
respectively. The solubility limit of Cr in Fe is estimated to

x = 0.11 at 793 K and x = 0.07 at 703 K. Although such
decomposition may occur here in principle, its kinetics is
much slower than the ASRO kinetics. The latter was precisely
determined by measuring the residual resistivity [6,49,50],
yielding the suitable heat treatment [7].

After an homogenization at 800 ◦C, the samples were
heated in a quartz tube at 520 ◦C, a temperature where ASRO
at equilibrium is immediately reached. Then the temperature
T was gradually decreased down to 430 ◦C. The samples
were kept at 430 ◦C for 10 h and quenched into water, so
that the ASRO measured afterwards corresponds to thermal
equilibrium at 430 ◦C. In such a condition, precipitation does
not occur and the solid solution remains homogeneous in all
samples. For the highest concentration x = 0.15 close to the
miscibility gap, ASRO at 430 ◦C evolves with the annealing
time. This evolution is a precursor of segregation, expected in
thermally aged concentrated samples at timescales exceeding
104 h [51]. To check its influence on the magnetic order, we
measured two alloys with x = 0.15, one annealed at 430 ◦C
during 10 h (as for all other samples) and one annealed during
84 h before quenching.

Neutron measurements were performed on the G6.1
diffractometer of the Orphée reactor in Saclay, equipped with
a multidetector and a focusing graphite monochromator, with
an incident neutron wavelength of 4.73 Å.

The range of the scattering vector (0.1 � K � 2.5 Å−1)
avoids any parasitic contribution from the Bragg scattering.
The measurements were performed at low temperature (8 K)
using a cryogenerator, which suppressed almost completely
the contributions from magnetic or lattice excitations to the
diffuse scattering, considered as purely elastic in the follow-
ing. A vertical magnetic field of 1.5 T provided by an electro-
magnet saturated the sample in the direction perpendicular to
the scattering plane (K ⊥ H). The bulk sample cylinders were
directly screwed to the cold head, without a sample holder,
and oriented with their axis along the magnetic field. This
geometry minimizes the demagnetization field. In the heat
treated bulk samples, there is no preferential orientation of the
grains when the magnetic field is applied. An electromagnet
and cryogenerator were placed inside a vacuum chamber
which strongly decreased the environmental background. To
determine the neutron cross sections in absolute scale, the
intensities were corrected for background, absorption [52,53],
and multiple scattering [54], and calibrated by measuring
vanadium and cadmium standards carved with the same shape
and volume as the samples, as well as the empty equipment.
Due to the large incident neutron wavelength, no Bragg
peaks are seen from the sample which simplifies the cor-
rections. These corrections are detailed in the Supplemental
Material [55].

Unpolarized neutron measurements performed in the sat-
urating field were combined with measurements in zero
magnetic field to separate the nuclear and magnetic cross
sections [56,57]. Polarized neutron measurements were per-
formed with the saturating field and the same experimental
conditions, with the incident neutron polarization along the
magnetic field. We used either a Cu2MnAl Heussler alloy or
a FeCo supermirror to polarize the incident neutron beam.
Reversal of the neutron spin polarization was achieved by a
Mezei-type flipper. The incident polarization (P = 0.98) and
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the flipping efficiency (e = 0.99) were taken into account to
determine the interference nuclear-magnetic cross sections.

Polished spheres of about 2 mg were made out of the
neutron samples to measure the magnetization. Their static
magnetization was measured at 5 K up to a field H = 6 T us-
ing a superconducting quantum interference device (SQUID)
magnetometer and corrected for demagnetization effects. The
magnetization of a pure iron sample was measured for cali-
bration.

B. Atomic and magnetic short range order as measured
by neutron diffuse scattering

The general expression of the neutron cross section [57]
includes nuclear and magnetic scattering. A nuclear-magnetic
interference term adds when the incident neutron beam is
polarized. Here we only consider elastic scattering, without
change of the neutron energy. The nuclear scattering by inde-
pendent nuclei of scattering length bi involves an incoherent

(K-independent) term proportional to b2 − b
2
, reflecting the

distribution of isotopes and nuclear moments. In a random bi-
nary alloy, an elastic nuclear diffuse (Laue) scattering, coming
from substitution disorder, adds to the incoherent scattering.
ASRO gives rise to modulations of the average Laue contrast,
�b = bCr − bFe for a FeCr alloy, where bCr = 0.3635(7) ×
10−12 cm and bFe = 0.945(2) × 10−12 cm are the coherent
scattering lengths of Cr and Fe atoms, respectively.

The magnetic scattering results from the neutron interac-
tion with unpaired electrons. In a binary ferromagnetic (FM)
alloy with a given ASRO, it arises from the distribution of
magnetic moments, namely here from different Cr and Fe
moments (μCr and μFe, respectively), which depend on their
local environment. The MSRO parameters yield modulations
of the average magnetic contrast (�μ = μCr − μFe). Owing
to selection rules, only the moment components being per-
pendicular to K contribute to the magnetic scattering. In a
FM alloy, this feature can be used to separate the nuclear and
magnetic cross sections, by using different orientations of the
magnetic field.

Under a magnetic saturating field H perpendicular to the
scattering vector K, the diffuse scattering of polarized neu-
trons from a FM alloy is the sum of three contributions:

dσ

d�
=

(
dσ

d�

)
N

+
(

dσ

d�

)
M

+ ε

(
dσ

d�

)
NM

, (1)

where the subscripts N , M, and NM refer to the the nuclear,
magnetic, and interference nuclear-magnetic cross sections,
respectively [56,57]. These terms are, respectively, propor-
tional to the Fourier transforms of the atomic correlations
between neighbor sites, spin correlations between neighbor
moments, and site-moment correlations [38]. The neutron
polarization ε is either parallel (ε = 1) or antiparallel (ε =
−1) to the magnetic field. The interference term is extracted
by measuring cross sections for the two neutron spin states
and taking their difference.

For unpolarized neutrons (ε = 0), the interference term
cancels and the nuclear and magnetic cross sections can be ex-
tracted by measuring the cross sections in two configurations,
namely in zero field when magnetic domains are randomly

oriented: (
dσ

d�

)
H=0

=
(

dσ
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)
N

+ 2

3

(
dσ

d�

)
M

, (2)

and under a saturating field H aligning the domains in the
direction perpendicular to the scattering vector K:

(
dσ

d�

)
H⊥K

=
(

dσ

d�

)
N

+
(

dσ

d�

)
M

. (3)

Following the model of Cowley-Warren [58], the nuclear
cross section is expressed as

(
dσ

d�

)
N

=
(

dσ

d�

)
inc

+ x(1 − x)(bCr − bFe)2 S(K), (4)

where the first term is the incoherent nuclear scattering cross
section, defined as(

dσ

d�

)
inc

= 1

4π

[
(1 − x)σ Fe

inc + xσ Cr
inc

]
, (5)

with σ Fe
inc = 0.400 barn and σ Cr

inc = 1.83 barn. The second term
of Eq. (4) is the Laue scattering, modulated by the ASRO
function S(K).

S(K) is expressed in terms of the ASRO parameters αi. For
a binary alloy A1−xBx, they are defined as

αAB
i = 1 −

(
nA

i

cA zi

)
. (6)

In Eq. (6), nA
i is the number of A atoms on the ith neighbor

shell of a B atom placed at the origin, cA = 1 − x is the
concentration of A atoms, and zi is the coordination number of
the ith shell. Noticing that αAB

i = αBA
i , the ASRO parameters

are simply quoted αi in the following. A positive (negative) αi

value corresponds to an attractive (repulsive) order between
the central atom and atoms of the same type in ith shell.
The values αi = 0 and αi = −x/(1 − x) correspond to ran-
dom distribution and full atomic repulsion in the ith shell,
respectively. When averaged for a polycrystalline sample over
all K orientations, the ASRO function S(K ) writes

S(K ) = 1 +
∑

i

zi αi
sin KRi

KRi
, (7)

where Ri is the radius of the ith shell.
If the magnetic moments are collinear, the magnetic mo-

ment distribution reduces to a one-dimensional case. In such a
case, an expression of the magnetic cross section was derived
by Marshall [35,57] and Gautier [36] assuming that (i) the
magnetic perturbations add linearly, (ii) the two constituents
have the same isotropic magnetic form factor F (K ), and (iii)
the ASRO can be treated as a perturbation to the case of
a random alloy. The nuclear-magnetic interference term was
calculated by Medina and Cable [37,38] under the same as-
sumptions. The magnetic and nuclear-magnetic cross sections
expressed in mbarn sr−1 at−1 write

(
dσ

d�

)
M

=
(

γ e2

2mec2

)2

x(1 − x) S(K) F (K )2 T (K) (8)
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and(
dσ

d�

)
NM

=
(

γ e2

mec2

)
x(1 − x)(bCr − bFe)S(K) F (K ) M(K),

(9)

where γ is the neutron gyromagnetic ratio and γ e2

2mec2 =
0.2695 × 10−12 cm μ−1

B .
The MSRO function M(K) writes

M(K) = μCr − μFe + (1 − x) G(K) + x H (K) + W (K),

(10)

where G(K) [H (K)] is the Fourier transform of the perturba-
tion g(R) [h(R)] produced by a Cr moment at a vector R of a
Fe (Cr) moment. W (K) is a corrective term due to ASRO. If
the perturbations add linearly, the correlation functions verify
the relation

T (K) = M(K)2. (11)

For a polycrystalline sample, simplified expressions of the
magnetic cross sections can be obtained by replacing in
Eqs. (8)–(11), the ASRO and MSRO functions by their spher-
ical averages:

M(K ) = μCr − μFe + w0 +
∑

i

zi φi
sin KRi

KRi
. (12)

The MSRO parameters φi combine the perturbations gi =
g(Ri ) induced by a Cr moment on its neighboring Fe moments
and the perturbations hi = h(Ri ) on its neighboring Cr mo-
ments as

φi = (1 − x) gi + x hi + wi, (13)

where the corrective terms wi can be expressed as

wi = (1 − 2x) αi (hi − gi ). (14)

The average magnetization μ of the sample writes

μ = (1 − x) μFe + x μCr. (15)

The term w0 = ∑
i ziwi in Eq. (12) is a small correction to

the moment difference [36]. Notice that μCr, μFe, and the
magnetic perturbations depend on concentration and amount
of ASRO. At very low x values, we can identify the φi

parameters with the perturbations gi of the Fe moments. In the
simple case of a random alloy [S(K ) = 1] without magnetic
perturbations (φi = 0,∀i), the MSRO function M(K ) reduces
to the algebraic difference �μ = μCr − μFe and the magnetic
cross section varies like the squared magnetic form factor
F (K )2. Any departure from this variation is a direct evidence
of ASRO or MSRO.

The average MSRO function 〈M(K )〉 measures the mag-
netic contrast �μ, analogous to the Laue contrast �b. �μ is
obtained whatever the microscopic description of the ASRO
and MSRO, under the only assumption of a collinear medium.
Although collinearity is widely observed in Fe-based alloys, a
careful analysis of the data and close comparison with theory
suggest that it does not hold for FeCr alloys, even at low
Cr content. This led us to propose a correction to the above

models, as discussed in Sec. IV B and the Supplemental
Material [55]. We show that spin canting induces a small but
measurable contribution to the incoherent neutron cross sec-
tion, which is indeed observed experimentally and represents
a key result of our study.

C. Neutron results

The nuclear, magnetic, and nuclear-magnetic cross sec-
tions are shown for selected samples in Fig. 1. They all show
strong modulations with K . The inversion of ASRO is clearly
seen on the nuclear cross section: below xC the intensity shows
a broad maximum with K and decreases in the low K range
due to atomic repulsion between neighbor Cr pairs, whereas
above xC it increases monotonously at low K values, showing
that the Cr atoms tend to segregate, although the studied alloys
never host actual clusters.

To analyze the magnetic terms, we treat the ASRO and
MSRO in the same way, by restricting the number of SRO
parameters to the five first neighbor shells and grouping them
for close concentric shells [7]. This procedure is imposed by
the limited K range of measurement and justified for a bcc
alloy where the shells 1 and 2 (R/a = 0.866 and 1, where a
is the lattice constant) and 4 and 5 (R/a = 1.66 and 1.73), are
close to each other.

We first fit the nuclear cross section to determine ASRO
parameters entering in the function S(K ), as in Ref. [7].
The averaged ASRO parameter corresponding to the grouped
(i, j) shell of coordination zi + z j and radius Ri j = (ziRi +
z jR j )/(zi + z j ) is defined as αi j = (ziαi + z jα j )/(zi + z j ),
namely α12 = (8α1 + 6α2)/14 and α45 = (24α4 + 8α5)/32.

In a second step, we fix the ASRO parameters to deter-
mine the magnetic functions M(K ) and T (K ) using Eqs. (8)
and (9). The magnetic form factor F (K ) is taken as the
form factor of pure iron and approximated by the formula
F (K ) = exp(−0.061K2) which is valid in the experimental
K range [59]. As shown in Fig. 2(a), M(K ) shows strong
modulations due to the MSRO parameters, but Eq. (11) which
relates M(K ) and T (K ) obtained from different experimental
configurations is well obeyed within the experimental accu-
racy [Fig. 2(b)]. This means that although being strong, the
magnetic disturbances induced by a Cr moment on its Fe and
Cr neighbors add linearly, being mostly limited to the first five
neighbor shells.

The MSRO parameters averaged over the 1 and 2 and 4
and 5 shells are defined as φ12 = (8φ1 + 6φ2)/14 and φ45 =
(24φ4 + 8φ5)/32, as for the ASRO parameters. They were
mostly determined from the polarized neutron data and the
function M(K ) [using Eq. (12)] since the accuracy is much
higher. By limiting the parameters to five neighbors, we obtain
a good fit of M(K ) for all concentrations. The fitted MSRO
parameters �μ, φ12, φ3, and φ45 are plotted as a function of
Cr concentration x in Fig. 3. The error bars include both the
fit error bar and the dispersion of results when the number of
shells included in the fit is varied between 5 and 8. �μ and
φ12 are determined with the best accuracy and stability.

The average moments on the Cr and Fe sites were de-
termined by combining the neutron results (yielding �μ =
μCr − μFe) to the magnetization data [Eq. (15)]. We took
an error bar of about 1% for the absolute calibration of the
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FIG. 1. Neutron diffuse cross section of Fe1−xCrx alloys. (a) Nu-
clear cross section (corrected for incoherent scattering). (b) Magnetic
cross section. The curves for x = 0.078 and 0.118 are shifted by
10 mbarns sr−1 at−1 for clarity. (c) Nuclear-magnetic cross section
deduced from polarized neutron scattering. Colors and symbols are
the same for the three panels. Solid lines are fits of Eqs. (8)–(11) to
the data, involving ASRO and MSRO parameters up to the fifth shell
(see text). Dashed lines show the variation expected in the absence
of ASRO or MSRO.

magnetization. Our magnetization data compare well with
those of Aldred [60], performed on samples quenched from
825 ◦C. A small effect of the ASRO on the magnetization is
observed (see the Supplemental Material [55] for details).

FIG. 2. (a) Magnetic function M(K ) for selected Fe1−xCrx sam-
ples. For clarity, the curves are shifted by 0.8 μB (1.2 and 1.6 μB)
for x = 0.058 (0.078 and 0.118). Solid lines are fits up to φ45.
Large empty triangles are extrapolations at K = 0 deduced from
bulk magnetization. (b) Comparison between M(K ) and T (K )0.5 for
x = 0.038. Thick red lines are calculation with φi = gi, made by
Drittler [46] for x ∼ 0.

For x = 0.15, where the ASRO strongly varies with the
heat treatment, we also observe a small effect of the ASRO
on the magnetization. The ASRO increases with decreasing
the annealing temperature or increasing the annealing time,
as shown by the strong increase of the nuclear cross section
at low K values [Fig. 4(a)]. This tendency can be monitored
by the value S(0) of the fitted ASRO function S(K ) for
K = 0. Concomitantly, the magnetic cross section increases
at low K [Fig. 4(b)], the magnetization shows a small increase
[Fig. 4(c)], and the magnitude of the Cr moment decreases
from 0.8 to 0.2 μB [Fig. 4(d)].

As expected from the ASRO inversion, chosen concentra-
tion range, and heat treatment, we do not observe segregation
in any of the studied alloys. For 0.2 < x < 0.4, such segrega-
tion can be detected by neutron small angle scattering [61,62],
atom probe tomography [51], and its kinetics simulated by
atomistic Monte Carlo [63] and dynamic [64] simulations. In
the nuclear cross section, it would appear as an intensity peak
in the range 0.1 � K � 0.4 Å−1 related to the typical distance
between precipitates [65]. Such signal is indeed absent from
our neutron patterns. For x = 0.15, a sample on the border of
the miscibility gap, the evolution of the ASRO with annealing
time is a precursor of segregation. True segregation may occur
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FIG. 3. MSRO parameters in Fe1−xCrx alloys versus x. (a) �μ = μCr − μFe and perturbations (b) φ12, (c) φ3, and (d) φ45 induced by a Cr
moment on its five first neighbor shells. The experimental determinations (black dots) are compared to first-principles calculations (open green
dots). The calculated perturbations g12, g3, and g45 on the Fe neighbors are also plotted (magenta squares). Arrows indicate the first-principles
predictions of Drittler et al. [46] in the dilute impurity limit.

in such samples at much longer thermal aging times, or if Cr
precipitation is accelerated under irradiation [66–68].

In all our samples we only observe fluctuations of con-
centrations at the atomic scale. However, the Cr moment is
strongly sensitive to its local environment, an effect which
is well reproduced by first-principles calculations, as shown
below.

III. FIRST-PRINCIPLES CALCULATIONS

First-principle calculations were performed to calculate the
magnetic moment distribution (Fe and Cr moments, MSRO
parameters) in simulated alloys having the same atomic
distribution as the studied alloys, namely the same ASRO
parameters. They thus provide a direct comparison between
experiment and theory (Sec. IV).

A. Density functional theory (DFT) method

We used the density functional theory (DFT) with the
projector augmented wave (PAW) method [69,70] as imple-
mented in the VASP (Vienna ab initio simulation package)
code [71–73]. Calculations were performed using either the
generalized gradient approximation (GGA) for the exchange-
correlation functional in the Perdew-Burke-Ernzerhof (PBE)
form [74], or the local density approximation (LDA). LDA
calculations were performed adopting the same GGA opti-
mized lattice parameters (2.830 to 2.836 Å from the smallest
to the largest Cr concentration). We recall that GGA predicts
correctly the ground state of Fe, being the FM bcc phase,
while LDA does not. All the calculations are spin polarized

and within the collinear magnetism approximation. 3d and
4s electrons of Fe and Cr atoms were considered as valence
electrons. The plane-wave basis cutoff was set to 400 eV.
The convergence cutoff for the electronic self-consistency
loop was set to �E = 10−6 eV. Atomic magnetic moments
are obtained by a charge and spin projection onto the PAW
spheres [72,73] as defined by the adopted PAW potentials.
The corresponding radius for Fe and Cr atoms are 1.30 and
1.32 Å, respectively. We have estimated the dependence of
the local moments on the chosen criterion. The change of Fe
(Cr) moment is at most 1% (4%) if using either the present
criterion or a 10% variation of the sphere radius with respect
to the half interatomic distance. Fe and Cr moments can also
be sensitive to the lattice constant. The lattice constant of bcc
Fe1−xCrx alloys at RT varies from 2.865 (x = 0) to 2.873 Å
(x = 0.15) [75]. We have verified that the Fe (Cr) moments
increase up to 2% (9%) when the lattice constant increases
from the GGA value at zero temperature (2.83 Å) to the
experimental value of iron (2.86 Å).

The calculations show that the local moments on Fe and
Cr sites strongly depend on their local environment. This is
shown in the Supplemental Material [55] where the Fe (Cr)
moments are plotted versus the number of their Cr neighbors
in the first two shells. Both Fe and Cr moments decrease in
absolute value when Cr atoms are located in their first two
neighbor shells.

Calculations were performed to simulate dilute Fe1−xCrx

alloys with as close as possible ASRO as the experimental
samples, using supercells of 5 × 5 × 5 times the lattice pa-
rameter of the cubic unit cell (a0), containing 250 bcc atom
sites each. All the atomic positions, the volume, and the
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FIG. 4. Influence of the ASRO on the Cr moment and bulk magnetization of Fe1−xCrx alloys with x = 0.15. ASRO can be monitored by the
heat treatment. Nuclear (a) and magnetic (b) cross sections measured for three samples with different heat treatments: quenched from 825 ◦C
(from Aldred et al [43], blue squares), annealed at 430 ◦C for 10 h as for the whole series of samples (sample S1, red bullets), annealed at 430 ◦C
for 84 h (sample S2, green diamonds). Solid lines are fits with 8 ASRO parameters in (a) and 5 MSRO parameters in (b). (c) Magnetization
versus the internal magnetic field B at 5 K for S1, S2, and an iron sample. (d) Influence of the clustering tendency on the Cr moment: μCr is
plotted versus the value S(0) of the ASRO function S(K ) at K = 0, as determined from the fits in (a).

shape of the supercells are fully optimized. The maximum
residual force and stress are, respectively, 0.02 eV/A and
1.0 kbar. The k-point grids used in our calculations were
chosen to achieve a k-sampling equivalent to a bcc cubic unit
cell with a 15 × 15 × 15 grid, following the Monkhorst-Pack
scheme [76]. The Methfessel-Paxton broadening scheme with
0.1 eV width was applied [77]. We checked that the magnetic
configurations are well converged with respect to the choice
of k-point grids and the cutoff conditions.

B. Generation of atomic configurations
with a given chemical SRO

In order to construct supercells with ASRO parameters
close to those of the studied samples, we generated, for
each studied Cr concentration, 100 000 atomic configurations
with Fe and Cr atoms randomly distributed in the 250-site
supercells and calculated the average SRO parameters αAB

i
and the standard deviation of SRO parameters σ (αAB

i ) in each
case. Usually, many generated systems have the same set of
SROs, with αAB

i close to the given experimental value. Among
those, the system with the smallest deviation σ (αAB

i ) was
chosen. For the two lowest Cr concentrations (2.8% and 4%
Cr), we have considered three supercells for each case, in
order to improve the statistics of the properties of our inter-
est, in particular the local magnetic moment on each atom.
Table I gives a comparison of SRO parameters between the
calculation on supercells and the experiments. For each alloy
concentration, average Fe and Cr moments are obtained for a

comparison with experimental data. The standard deviation of
the calculated moments is around 0.03 μB for each case.

C. Results

The gi, hi, and wi parameters were calculated for each
concentration (see the Supplemental Material [55] for details).
Using Eqs. (13) and (14), one deduces the perturbations φi.
In Fig. 5 the magnetic perturbations g12, h12, w12, and φ12

averaged on the first two shells are shown versus x. The

TABLE I. ASRO parameters α12 and α3 deduced from exper-
iments (neutron data) and DFT simulations. The three samples
with x ∼ 0.15 have received different heat treatments; x = 0.1523:
annealed at 430 ◦C during 10 h and quenched; x = 0.1506: annealed
at 430 ◦C during 3.5 days and quenched; x = 0.15: quenched from
825 ◦C.

Experiment Simulation

x α12 α3 x α12 α3

0.028 −0.032(2) −0.012(7) 0.028 −0.0288 −0.0043
0.038 −0.028(2) −0.012(6) 0.04 −0.0268 −0.0069
0.059 −0.028(3) −0.014(14) 0.06 −0.0233 0.0071
0.078 −0.015(3) −0.019(16) 0.08 −0.0171 −0.0054
0.118 0.010(3) 0.021(13) 0.12 0.0097 0.0152
0.1523 0.063(4) 0.010(35) 0.152 0.0602 0.0070
0.1506 0.067(14) 0.003(6) 0.152 0.0646 0.0070
0.15 0.025(3) −0.042(6) 0.152 0.0247 −0.0086
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FIG. 5. Fe1−xCrx alloys. Magnetic perturbations calculated by
DFT versus x, averaged for the first two neighbor shells: g12 (blue
triangles), h12 (green diamonds), w12 (red bullets), and φ12 (black
squares). The error bars on h12 are large because of the small number
of Cr atoms. At x = 0.028, due to the absence of first and second
neighbor Cr-Cr pairs, h12 could not be calculated. In the figure, h12

has been divided by 10. The total perturbation G(0) divided by 20 is
also plotted (magenta lozenges).

perturbation h12 on Cr atoms is about ten times larger than
the perturbation g12 on the Fe atoms. The correction w12 due
to ASRO is small. The weighted perturbation φ12 is negative,
but decreases in amplitude for the highest concentrations due
to the effect of h12. The total perturbation G(0) = ∑

i zigi,
induced by a Cr moment on its Fe neighbors up to the fifth
shell, changes sign and becomes negative for x ∼ 0.06.

The summarizing Fig. 6 reports the concentration depen-
dence of the Cr and Fe moments, and of the average magne-
tization. Figures 6(b) and 6(c) include the calculations of the
previous section, as well as previous calculations and exper-
imental data. The calculated perturbations φi are also readily

compared to the experimental MSRO parameters (Fig. 3). The
whole results are discussed in the next section.

IV. DISCUSSION

By combining polarized and unpolarized neutrons, we have
experimentally determined the average moments on Fe and
Cr sites, taking ASRO and MSRO into account. Polarized
neutrons data yield the magnetic contrast �μ with its sign,
therefore determine the sign of the Cr moment unambigu-
ously. μCr is negative, namely antiparallel to the μFe, and
locally perturbs its neighbors up to the fifth neighbor shell.

When comparing the experimental Cr and Fe moments
with their calculated counterparts, one could first of all won-
der about the meaning of the local moment produced in
each case. In the neutron scattering experiments, μCr and
μFe are deduced from an integration of the unpaired electron
density over the Wigner-Seitz (WS) cell of the atoms, or
equivalently the first Brillouin zone in reciprocal space. In the
DFT calculation, the WS cell is replaced by a sphere having
the appropriate number of electrons. This could introduce a
small difference between the two quantities (typically 0.1 μB)
due to the presence of a small negative electron density on
the border of the WS cell. As discussed below, such effect
cannot explain the large difference (up to a factor 2) between
experiment and theory.

In the following, we discuss the experimental results (mo-
ments and perturbations) in comparison with the calculated
values obtained in Sec. III and in the literature. We con-
sider the dilute impurity limit and the concentrated alloys
successively. We suggest that Cr moment cant when the Cr
concentration exceeds a critical concentration (x1 ∼ 0.06),
below the concentration of inversion [xC = 0.11(1)]. Taking
this canting into account, one can reconcile experiment and
theory in a large extend.

FIG. 6. Fe1−xCrx alloys. Variation of the magnetic moments μCr and μFe and average magnetization μ with the Cr concentration x, in
comparison with previous results and calculations. (b) and (c) Zooms of (a). Experiment: Present data: polarized neutrons (red open lozenges),
unpolarized neutrons (green stars), magnetization (full black squares). Data from Shull [39] (open triangles) and Aldred [43] (open squares).
The error bars on μFe (typically 0.05 μB for our data and 0.10 μB for previous results) are not shown for clarity. Calculations: TB from
Hennion [14] (dashed green lines); Sacchetti [45] (solid turquoise blue lines); LDA-KKR from Drittler [46] (dark blue arrows); GGA from
Klaver[4] (shaded regions); EMTO-LDA from Ruban [25] (purple triangles); GGA, this work (magenta bullets); LDA, this work (orange
squares); solid lines in (b) and (c) are guides for the eye.
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A. Dilute impurity limit

In the dilute impurity limit (x < 0.01), our neutron data
extrapolate to a negative moment μCr = −1.0(1) μB antipar-
allel to that of the Fe matrix. This large negative moment is
induced by the creation of a virtual bound state in the majority
spin band. As shown in Fig. 6, all calculations predict the
correct sign, but they systematically overestimate the mag-
nitude |μCr|. Moreover, the predicted μCr strongly depends
on the theoretical methods and approximations employed,
particularly on the exchange-correlation functional. In the
dilute limit, our LDA-predicted moment (μCr = −1.3 μB) is
closer to experiment than our GGA-predicted one (−1.9 μB),
which situates quite far from the experimental data. Previ-
ous GGA calculations [4,29] yield μCr between −1.5 and
−1.8 μB. Drittler et al. [46], using the Korringa-Kohn-
Rostocker LDA-KKR approach, obtained μCr = −1.3 μB as
in our LDA results. More recently, Ruban et al. [25] per-
formed LDA calculations by means of the exact-muffin-tin-
orbital (EMTO) method in the coherent potential approxi-
mation (CPA). They adopted a lattice parameter of 2.87 Å
and obtained μCr = −1.4 μB. Besides these first-principles
calculations, Hennion [14] predicted quite reasonably the
Cr moments using a tight-binding (TB) approach, whereas
Sacchetti et al. [44,45] reported a too weak μCr(x) variation.

The values of μFe predicted for the Fe matrix are much
closer to the experimental one, with small shifts [Fig. 6(c)]. To
make a quantitative comparison, we recall here that the neu-
tron experiments measure both spin and orbital contributions,
whereas in all DFT calculations the orbital magnetic moment
is neglected. The Fe orbital moment can be estimated to about
0.06 to 0.08 μB from experiment [78] and theory [79]. So
the experimental value of 2.23 μB corresponds to a spin Fe
moment of about 2.16 μB. Our GGA and LDA results (2.20
and 2.10 μB, respectively) sit on each side of this spin value,
and close approximations are obtained using EMTO-LDA
(2.26 μB) [25] and LDA-KKR (2.15 μB) [46].

In the dilute limit, the contributions of the perturbations
hi to M(K ) can be neglected [Eq. (13)] and the MSRO
parameters φi reflect the perturbations gi on the Fe neigh-
bors of a Cr impurity. As found experimentally from the
fitted φi parameters, a Cr atom decreases the moments of
its first/second Fe neighbors by about 5% and it increases
the moments of the fourth/fifth Fe neighbors by about the
same amount (Fig. 3). As a general result, the perturba-
tion parameters φi calculated by GGA or LDA up to the
fifth shell well agree with the experimental ones. They have
the right amplitude and the correct sign, besides φ3 where
the experimental value shows a large error bar. The shape of
the calculated [46] magnetic function M(K ) also compares
well with the experimental one for the dilute alloys x = 0.02
and 0.04 [see Figs. 2(a) and 2(b)].

B. Increasing Cr content: Influence of the Cr
environment and local spin canting

When x increases in the range 0 < x � 0.15, |μCr| strongly
decreases, whereas μFe shows a rounded maximum below xC

[Figs. 6(b) and 6(c)]. The decrease of |μCr| is linear in the
studied series [Fig. 6(b)].

As shown in the Supplemental Material [55], this decrease
is directly connected with the number of Cr neighbors, which
can be tuned by the concentration or by a proper heat treat-
ment. For x = 0.15, |μCr| decreases when Cr clustering is
enhanced, either by decreasing the annealing temperature or
by increasing the annealing time [Fig. 4(d)].

The huge influence of its environment on a Cr moment
was already pointed out in previous calculations [4,27]. It is
shown by the shaded region in Fig. 6(a), overlapping different
atomic distributions where dispersed Cr atoms have moment
magnitudes larger than clustered ones. More precisely, our
calculations performed with the same ASRO as in the studied
samples yield a strong dependence μCr(x) as in the experi-
ment, but the calculated |μCr| is systematically larger than
the experimental one [Fig. 6(b)]. For x = 0.15, calculation
and experiments performed for several heat treatments exhibit
the same systematic tendency [55], but the calculated |μCr| is
about twice larger than the measured one.

To resolve this discrepancy we consider a new possibility,
namely a canting of the Cr moments. This canting could
naturally arise from the influence of Dzyaloshinskii-Moryia
interactions, as well as from frustrated local configurations,
but it was not considered in the experimental or theoretical
descriptions discussed so far. The first-principles calculations
assume collinear moments, and their evaluation of |μCr| cor-
responds to the average moment length M. Conversely, in
the diffuse scattering experiment, Eqs. (1)–(4) assume a FM
collinear alloy, so that only the longitudinal MZ component
(along the magnetic field or along the domain magnetization
in zero field) is involved in the expressions of the mag-
netic cross section. The analysis performed within the linear
Marshall’s model [35,36] also assumes collinear moments.

We evaluate the influence of a spin canting as follows. As
shown in the Supplemental Material [55], locally canted Cr
moments M, with transverse spin components MT (defined so
as M2

T = M2 − M2
Z ) randomly distributed in space, yield an

extra contribution of magnetic origin to the incoherent cross
section defined in Eqs. (4) and (5). This contribution writes

(
dσ

d�

)M

inc

= x

(
γ e2

2mec2

)2

M2
T . (16)

The fact that the incoherent cross section measured experi-
mentally is slightly larger than the calculated one, and that this
difference increases with x [Fig. 7(a)], justifies the attribution
of this deviation to a spin canting. In the simplest case, we
assume that only the Cr moments are canted [Fig. 7(b)] and
we deduce their canting angle θ directly from this deviation
[inset Fig. 7(b)]. A more realistic scenario involves also a
canting of the Fe moments neighbors of the Cr ones, but then
the Cr and Fe canting angles cannot be determined separately.
As an example, we show in Fig. 5 of Ref. [55] the moments
deduced by assuming equal Cr and Fe contributions to the
incoherent magnetic cross section. The Cr canting angle is
reduced, whereas the Fe canting angle remains below 8 deg.
In any case, by introducing a spin canting, |μCr| agrees much
better with all first-principles calculations. In the dilute limit
however, the canting, hardly detected in the incoherent cross
section, cannot explain deviations between experiment and
theories.
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(a)

(b)

FIG. 7. Fe1−xCrx alloys. (a) Variation of the incoherent cross
section with concentration x. The difference (red squares) between
the fitted (black lozenges) and calculated (blue bullets) cross sections
is attributed to a magnetic incoherent cross section σ M

inc arising from
a random canting of the Cr/Fe moments. (b) Cr moment calculated
versus x assuming Cr canting only, with longitudinal MZ (blue) and
transverse MT moment components. The Cr moment magnitude M
(black lozenges) given by M2 = M2

Z + M2
T is compared with the

first-principles calculations: EMTO-LDA from Ruban [25] (purple
line), LDA (orange line), and GGA (magenta line) this work. The
canting angle θ is plotted in the inset. Thick solid lines are guides to
the eye.

Together with the spin canting, μFe shows a maximum
around x1 = 0.06. This maximum is reproduced by the first-
principles calculations, which yield the local perturbations on
Fe and Cr sites separately and help clarifying this behavior.
For x < xR = 0.04, the Cr atoms fully repel each other in the
first two neighbor shells: the ASRO parameters have their
maximum negative value: α12 ∼ −x/(1 − x). These dilute
alloys are not frustrated since all magnetic interactions are
satisfied. The Fe moment increases because of the dominant
contribution of its fourth and fifth Cr neighbors. Due to the
large z45 = 32 (as compared with z12 = 14 and z3 = 12),
the perturbation G(0) = dμFe/dx is positive at low x values.
As shown in Fig. 5 and in the Supplemental Material [55],
G(0) changes sign for x1 ∼ 0.06, in good agreement with the
maximum of μFe.

The spin canting and maximum of μFe at x1 are linked with
a maximum of the Curie temperature [64,67]. All features

reflect the onset of magnetic frustration induced by the com-
petition of FM Fe-Fe, AFM Cr-Cr, and Cr-Fe near neighbor
interactions. The concentration x = 0.0625 corresponds to the
ordered heterostructure Fe15Cr1, where Cr atoms take the
corner sites of a cubic superstructure constructed of 2 × 2 × 2
unit cells. In such case, Cr-Cr pairs are avoided up to the
fifth neighbors, and all magnetic interactions are satisfied
simultaneously. The resulting AFM structure is collinear and
stabilized by a minimum of the spin down density of state at
the Fermi energy [68]. In our quenched alloys, near neighbor
Cr-Cr pairs start to appear in the first two shells between xR

and x1, although in a lower amount than in the random case.
Competing Cr-Fe and Cr-Cr magnetic interactions induce
frustration, spin canting, and a decrease of the MZ components
of the magnetic moments. Above xC most local configurations
are frustrated, due the high Cr content and Cr clustering ten-
dency. μCr becomes quite small and μFe strongly decreases.
For x = 0.15, a similar scenario explains how μCr decreases
with increasing Cr clustering [55].

C. Towards the Cr-rich phase: Reentrant spin glasses
and Cr antiferromagnetism

The spin canting observed here is precursor of stronger
frustration effects observed in the Cr-rich bcc solid solu-
tions (x � 0.7). It is predicted by first-principles calcula-
tions [80] in interfaces [81] or in nanoclusters of concentrated
alloys [82]. In bulk materials, canted phases are observed
around x ∼ 0.8. The competition of AFM Cr-Cr and Cr-Fe
interactions coexisting with FM Fe-Fe interactions leads to
a very original (T, x) magnetic phase diagram [83], show-
ing two reentrant spin glass (RSG) phases with either F or
AF dominant character, and one classical spin glass (SG)
phase in between. Such frustrated phases have been widely
studied in metallic alloys (for a review see Ref. [84]). As
a general feature, the magnetic moments cant to minimize
the magnetic energy, which shows a macroscopic degeneracy.
The RSG phases are mixed phases where SRO transverse
spin components coexist with LRO longitudinal components.
Under applied field, vortexlike defects where the transverse
components rotate over finite length scales (1–10 nm) have
been observed in FM-RSG systems [85–87], likely nucleated
by the strongest AF pairs. They were recently characterized
in a NiMn single crystal by combining small angle neutron
scattering with MC simulations [88]. The Fe1−xCrx system
provides an interesting opportunity to investigate such topo-
logical defects. They should be observed for 0.7 � x � 0.81,
then disappear in the narrow SG phase (0.81 � x � 0.84)
where the average magnetic interaction vanishes. In the mir-
rorlike AFM-RSG phase (0.84 � x � 0.9), solitonlike defects
could be nucleated in the AFM medium by FM Fe-Fe pairs.
Here they would compete with the spin-density waves of the
modulated AF order of Cr, stabilized for 0.84 � x � 1.

Finally, we notice that transverse spin components flip the
neutron spins [89], whereas the incoherent scattering due to
isotopic disorder and the longitudinal magnetic scattering an-
alyzed in Marshall’s formalism do not. So it may be possible
to isolate the transverse spin contribution by analyzing the
polarization of the scattered neutron beam.
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V. CONCLUSION

Our neutron diffuse scattering experiments combined with
first-principles calculations show a strong interplay of atomic
and magnetic short range orders in Fe1−xCrx bcc alloys (x �
0.15). This yields subtle effects as Cr concentration increases,
which can be described at a microscopic level. The Cr and
Fe magnetic moments strongly depend on the local atomic
configurations. For x � xC = 0.11, band ferromagnetism fa-
vors heterocoordination. Cr atoms repel their Cr neighbors to
keep the large negative moment induced by a virtual bound
state. Full repulsion is achieved only for x < xR = 0.04, then
Cr-Cr near neighbor pairs start to appear yielding magnetic
frustration. |μCr| decreases and μFe shows a maximum at x1 ∼
0.06. Above x1, moments strongly cant due to the competi-
tion of near neighbor interactions. Increasing concentration
further above xC , Cr atoms locally segregate, enhancing the
magnetic frustration. The canting observed in the Fe-rich bcc
phase anticipates stronger frustration effects in the Cr-rich bcc
phase (0.7 � x � 0.9) where reentrant spin glass phases are
stabilized and vortexlike defects expected, prior to the onset
of Cr band antiferromagnetism.

The method developed in this paper can be used to in-
vestigate short range orders in other ferromagnetic alloys,

and extended to dilute alloys with antiferromagnetic or spin
glasslike local environments. Precursor effects of segregation
can be also studied in bulk alloys at the borderline of a
miscibility gap or under irradiation. One could for instance
characterize the evolution of chemical order with thermal age-
ing or under irradiation quantitatively, and study the impact on
the magnetic order at the scale of interatomic distances.

The interplay of magnetic and nuclear short range orders
in Fe1−xCrx alloys results in quasirandom solid solutions for
concentrations close to xc. The stability of the microstructure
under thermal ageing or irradiation is used in steels develop-
ments, such as the reduced activation ferritic/martensitic steel
Eurofer’97, prominent material for fusion devices.
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Université Paris-Saclay, F-91191 Gif-sur-Yvette France
(Dated: November 6, 2019)

In this supplemental material, we give details about the experimental corrections in the neutron
scattering experiment (section I), the magnetization measurements (section II), the environmental
effects in first-principles calculations (section III), and the expression of the neutron magnetic cross
section in the case of a spin canting (section IV).

I. NEUTRON SCATTERING CROSS SECTION : EXPERIMENTAL CORRECTIONS

To determine the neutron cross sections in absolute scale, the raw intensities were corrected for background and
calibrated by measuring Vanadium (V), which is a strong incoherent scatterer and cadmium (Cd), which is a strong
absorber, as well as the empty equipment (E). The V and Cd standards were carved with the same shape and volume
as the samples to minimize the corrections. All intensities are recorded for the same number of incident neutrons.
The intensity Ncor corrected from background is deduced from the raw intensity N by the expression:

Ncor = N −NCd −A(0) [NE −NCd] (1)

where NCd and NE are the raw intensities scattered by the Cd standard and the empty equipment respectively. A(0)
is the transmission, namely the absorption factor A(θ) at zero scattering angle. The absorption factor of a cylindrical
sample of radius R and height h (R ≪ h) is calculated by the expression1,2:

A(θ) = exp
[

−
(

a1 + b1sin
2θ
)

µR+
(

a2 + b2sin
2θ
)

(µR)
2
]

(2)

where a1, b1, a2, b2 are numerical constants, 2θ is the scattering angle, and µ = n.σT is the mass absorption coefficient,
product of the density n and total cross section σT . The same corrections apply to the measured sample (S) and to
the V standard.
The neutron cross section of the sample is then calculated in absolute scale by the expression:

(

dσ

dΩ

)

=
σV
inc

4π

nV AV (θ)
(

1− δ
′

S

)

nSAS(θ)
(

1− δ
′

V

)

NS
cor

NV
cor

(3)

where σV
inc=5.07 barn is the incoherent scattering cross section of vanadium. nS and nV are the S and V densities,

taking into account that S and V have the same volume in the neutron beam. AS and AV are the absorption
coefficients. The multiple scattering coefficients δ

′

are calculated following ref.3, knowing the quantities µR and R/h.
The large incident neutron wavelength (λ= 4.75Å) ensures the absence of any Bragg peak and therefore of double

Bragg diffraction. Moreover, since all samples and standards are measured at low temperature (8K), the contribution
of inelastic scattering is negligible for all scattering angles. This was checked by performing an energy analysis of
some neutron patterns.
These corrections and calibrations have been performed for all samples in all configurations of the magnetic field and

neutron polarization. Combining the cross sections measured in different configurations yields the nuclear, magnetic
and nuclear-magnetic interference cross sections, as described in Sec. II.B of the main text.

II. MAGNETIZATION MEASUREMENTS

To measure the bulk magnetization, small spheres of about 2 mg were cut in the samples used for diffuse scattering
measurements. The error bar on the mass was estimated to 0.01 mg. The magnetization was measured using a SQUID
magnetometer at 5K under an external magnetic field up to 6 T. The curves were corrected from the demagnetizing
field and the saturated part extrapolated linearly to zero to get the average moment µ̄. An iron sample of the same
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FIG. 1: Fe1−xCrx alloys. Average moment µ̄ versus concentration x measured on pieces of the samples measured by neutron
scattering (brown circles), and reported by Aldred4 on samples quenched from 825 ◦C (black squares).
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FIG. 2: Fe1−xCrx alloys. Influence of the average moment value µ(x) on the determination of the Fe moment µFe. (a)
Magnetization (circles) measured using SQUID (this work) on ASRO samples measured by neutrons and µFe deduced. (b)
Average moment (squares) measured by Aldred4 on quenched samples and µFe deduced. To determine µFe, the quantity
∆µ = µCr − µFe determined from neutron diffuse scattering in ASRO samples is used in both cases. Polarized neutrons
(lozenges); unpolarized neutrons (stars). Whatever µ(x) is used, a maximum of µFe(x) is observed with an increase of 2-3%
for x < 0.1. Lines are guides to the eye.

size and purity was measured for normalization. Measurements and calibrations were performed several times to
check the reproducibility and estimate the error bar on the magnetization in absolute units, which is of the order of
1%, including the error on the sample position.
Fig. 1 compares the magnetization in our samples (annealed down to 430 ◦C and quenched) those of Aldred4

(quenched from 825 ◦C). Our samples show atomic short range order (ASRO), where the ASRO parameter α12 on
the first two shells surrounding a Cr atom is close to its maximum negative value α12 ∼ −x/(1 − x) for x ≤ 0.04.
On the other hand, the atomic distribution in the samples measured by Aldred is closer to random (see Tab. I of the
main text). The figure suggests a small but systematic effect of the ASRO on the average moment, this effect being
more pronounced at low concentration. Namely, below xc our data points situate above those of Aldred, suggesting
that µFe increases with increasing the amount of ASRO, and that this enhancement counteracts the influence of the
negative moment µCr.
The concentration dependencies of the average magnetic moments µFe(x) and µCr(x) can be deduced by combining
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neutrons data, which measure ∆µ = µCr − µFe, and magnetization data, which measure µ = xµCr + (1− x)µFe.
In Fig. 2, we show µFe(x) obtained by combining our neutron data with the magnetization data measured on

the same samples (a) and magnetization measured on quasi random alloys4(b). µFe shows a maximum versus x in
both cases, at a concentration slightly below xc = 0.10. This maximum is more pronounced in case (a). It is well
reproduced by first-principles calculations performed on samples with same ASRO state, as shown in the main text.
µCr is the same in both cases.

III. ENVIRONMENTAL EFFECTS IN FIRST-PRINCIPLES CALCULATIONS

The DFT simulations on these samples provide the position, atomic nature X(m), and moment µ(m) of each atom
m. To obtain the magnetic perturbations due to Cr neighbors, the first step was, for each atom m, to determine
ni(m), the number of Cr atoms in its ith neighbor shell. Periodic conditions have been applied to the box when the
neighbors of m were out of the initial box. Due to the size of the box, the upper limit for i was i = 9 (so that the zi
neighbors of a given atoms are all different). In a second step, for each i and each x, we plotted µ(m) as a function of
ni(m) for all m atoms with X(m) = Fe (resp. X(m) = Cr). The calculated parameters gi and hi are the slopes of the
linear fits of these plots, performed for each concentration. The MSRO parameters φi combine the perturbations gi
induced by a Cr moment on its neighboring Fe moments at the ith shell and the perturbations hi on its neighboring
Cr moments8,9 (see Eq. 13 of the main text). Examples of such plots are shown in Fig. 3 for the sample Fe0.85Cr0.15
annealed at 430 ◦C for 84 h, which shows many types of configurations.
In Marshall’s model8, keeping the first order terms of the concentration dependence and neglecting the effect of

ASRO, one can write:

dµFe

dx
= G(0) =

∑

i

zigi (4)

dµCr

dx
= H(0) =

∑

i

zihi. (5)

and

dµ

dx
= µCr − µFe +

∑

i

ziφi. (6)

In Fig. 4, the sums G(0) and H(0) deduced from the gi and hi parameters calculated above are plotted versus x,
showing that Eqs. 4 and 5 are verified. G(0) is positive at low concentration and changes sign around x = 0.05, in
agreement with the variation of µFe which shows a maximum at about the same concentration (Fig. 6c of the main
text). Similarly H(0) is positive and constant within the error bars, in agreement with the linear increase of µCr (Fig.
6b of the main text). The calculated slopes are in good agreement with the experimental ones. Eq.6 is also verified
within the statistical accuracy.

IV. MAGNETIC DIFFUSE SCATTERING DUE TO SPIN CANTING

As discussed in the main text, a local canting of the magnetic moments could explain the observed excess of inco-
herent scattering (see Fig. 7 therein). In this context, canting reflects the existence of moment component MT in the
(x, y)-plane, perpendicular to the z-direction which is that of the spontaneous domain magnetization (in zero applied
field) or of the magnetization induced by an applied magnetic field (MZ). In both cases, we expect the moments
orientations to remain uncorrelated in the (x, y)-plane, leading to a random distribution of MT. In what follows, we
show that the contribution of MT to the measured scattering cross sections can be actually derived from the case of
a paramagnetic sample in a magnetic field. This analogy is natural since a paramagnet will then be appreciably po-
larized at low temperature (i.e., showing a finite 〈M2

Z〉), while remaining globally disordered (i.e., with a random MT ).

A. Differential magnetic scattering cross section of a paramagnet under an applied magnetic field

Following Ref. 7 and using the definition M = g µB S (where S is the spin operator), the general expression for the
differential magnetic scattering cross section of a paramagnet reads



4

1.9

2.0

2.1

2.2

2.3

2.4

2.5

0 1 2 3 4 5 6 7
-2.0

-1.5

-1.0

-0.5

0.0

0.5

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Slope = -0.0475 ± 0.0017 mB/atom

m F
e (
m B

)

a

Slope = -0.0652 ± 0.0046 mB/atom

c

Slope = -0.0652 ± 0.0036 mB/atom

b

Slope = 0.300 ± 0.036 mB/atom

d

m C
r (
m B

)

number of Cr in 1 st/2nd shell

Slope = 0.433 ± 0.034 mB/atom

e

number of Cr in 1 st shell

Slope = 0.12 ± 0.11 mB/atom

f

number of Cr in 2 nd shell

FIG. 3: Fe1−xCrx sample with x=0.1506, annealed at 430 ◦C for 84 h. Magnetic moment dependence with the number of
Cr in the first two neighbor shells deduced from DFT. (a,b,c) Fe moments; (d,e,f) Cr moments. Atomic configuration having
ASRO parameters close to the experimental one have been considered (Tab. I of the main text). The ASRO for this sample
corresponds to the maximum segregation. Black circles: individual magnetic moments. The red circles are averages for a given
number of Cr neighbors, and their surface is proportional to the number of atoms obtained. The red line is a linear fit of the
average moment dependence with the number of Cr neighbors.
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(

dσ

dΩ

)

M

=

(

γe2

2mec2

)2

F (K)2

×
∑

α,β







(δαβ − κακβ)
∑

i,j

exp [iK · (i− j)] 〈Mα
i M

β
j 〉







, (7)

where
(

γe2

2mec2

)2

= 72.59 mbarn·µ−2
B , K = (Kx,Ky,Kz) is the momentum transfer, F (K) the magnetic form factor

and κα = Kα/ |K|. The thermal averages 〈· · · 〉 in Eq. 7 are defined as

〈Mα
i M

β
j 〉 =

∣

∣

∣

∣

∣

〈Mα
i 〉〈M

β
j 〉 for i 6= j

δαβ 〈(M
α
i )

2〉 for i = j
. (8)

Applying a magnetic field along the z-direction breaks the overall symmetry, which yields

〈Mx
i M

y
j 〉 = 〈Mx

i M
z
j 〉 = 〈My

i M
z
j 〉 = 0

〈Mx
i M

x
j 〉 = 〈My

i M
y
j 〉 = δij 〈(M

x
i )

2〉

〈Mz
i M

z
j 〉 = 〈Mz

i 〉
2 + δij

[

〈(Mz)2〉 − 〈Mz〉2
]

, (9)

such that

∑

α,β

(δαβ − κακβ) 〈M
α
i M

β
j 〉 =

(

1 + κ2
z

)

〈Mx
i M

x
j 〉+

(

1− κ2
z

)

〈Mz
i M

z
j 〉 . (10)

Using Eqs. 8-10, we finally get

∑

α,β







(δαβ − κακβ)
∑

i,j

exp [iK · (i− j)] 〈Mα
i M

β
j 〉







=

(

1− κ2
z

)

〈Mz〉2

∣

∣

∣

∣

∣

∑

i

exp (iK · i)

∣

∣

∣

∣

∣

2

+
(

1− κ2
z

)

[

〈(Mz)
2
〉 − 〈Mz〉2

]

+
(

1 + κ2
z

)

〈(Mx
i )

2
〉 , (11)

where Mz ≡ MZ . The first term in Eq. 11 corresponds to the magnetic coherent scattering (giving rise to
Bragg peaks, e.g.). The second term is the diffuse scattering due to longitudinal magnetization (modulated by the
atomic (ASRO) and magnetic (MSRO) short-range orders in the model of Marshall8). The third term originates in
the transverse moment components and emulates the case of locally canted magnetic moments. We evaluate this
contribution in the following and discuss its relevance to the comparison between the experimental and numerical
results presented in the main text.

B. Diffuse scattering due to locally canted magnetic moments

For a Fe1−xCrx alloy, we first assume that only the Cr moments are canted. Their transverse component contribute
to the differential magnetic scattering cross section as

(

dσ

dΩ

)T

M

=

(

γe2

2mec2

)2

F (K)2 × x
(

1 + κ2
z

) M2
T

2
, (12)

using 〈(Mx)2〉 = M2
T /2 as a result of averaging within the (x, y)-plane. Considering the usual experimental

configuration where the scattering vector is perpendicular to the applied field (i.e., κz = 0), Eq. 12 reduces to
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(

dσ

dΩ

)T

M

∣

∣

∣

∣

∣

H⊥K

=

(

γe2

2mec2

)2

F (K)2 ×
xM2

T

2
. (13)

In turn, the zero-field case is derived by averaging out Eq. 12 over all possible orientations of the z-axis (i.e.,
〈κ2

z〉 = 1/3), yielding

(

dσ

dΩ

)T

M

∣

∣

∣

∣

∣

H=0

=

(

γe2

2mec2

)2

F (K)2 ×
2 xM2

T

3
. (14)

Neglecting the weak K-dependence of the magnetic form factor1 (i.e., setting F (K) = 1), one can define

(

dσ

dΩ

)T

inc

= x

(

γe2

2mec2

)2

M2
T . (15)

Then the differential scattering cross sections defined in Eqs. 2-3 of main text become

(

dσ

dΩ

)

H=0

=

(

dσ

dΩ

)

N

+

(

dσ

dΩ

)

ASRO

+
2

3

(

dσ

dΩ

)

MSRO

+
2

3

(

dσ

dΩ

)T

inc

, (16)

in zero-field and

(

dσ

dΩ

)

H⊥K

=

(

dσ

dΩ

)

N

+

(

dσ

dΩ

)

ASRO

+

(

dσ

dΩ

)

MSRO

+
1

2

(

dσ

dΩ

)T

inc

, (17)

under a field applied along the z-direction, where the subscript N refers to the usual nuclear incoherent scattering,
due to isotopic and nuclear moment disorder. Interestingly, the contribution from MSRO can be eliminated through
a linear combination of Eqs. 16 and 17

3

(

dσ

dΩ

)

H=0

− 2

(

dσ

dΩ

)

H⊥K

=

(

dσ

dΩ

)

N

+

(

dσ

dΩ

)

ASRO

+

(

dσ

dΩ

)

T

, (18)

Thus, a calibration of the measured cross sections in absolute units allows determining MT from Eq. 15, since the
nuclear incoherent term and the Laue scattering (constant contribution to the ASRO) can be calculated accurately
using tabulated scattering lengths (see Eqs. 4-7 of main text). Introducing the canting angle θ = arctan (MT /MZ) of
the Cr moments, one can reconcile the measured and calculated incoherent cross sections. We find that θ must vary
from 37◦ for x = 0.02 up to 71◦ for x = 0.15, as shown in Fig. 7 of main text.

We note that the above discussion neglects a possible canting of the Fe moments and only yields an upper estimate
for θ. In practice, the magnetic coupling between Cr moments and their Fe 1st and 2nd neighbors should lead to a
local canting of the latter. This implies a modification of Eq. 15, which takes the following form

(

dσ

dΩ

)T

inc

=

(

γe2

2mec2

)2

x ·
{

(

MCr
T

)2
+ y

(

MFe
T

)2
}

=

(

γe2

2mec2

)2

x ·
{

(

MCr
Z tan θ

)2
+ y

(

MFe
Z tan θFe

)2
}

, (19)

1 An approximation which is justified owing to the explored momentum transfer range, limited to small K.
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where the concentration y varies from y = 14 (1 − x) (1− α12) at low Cr content (see Eq. 6 of main text) to
y = (1 − x)/x for x > xC . Eq. 19 illustrates the fact that the contribution of the canted Fe moments will trade
off with the one of the Cr moments. In Fig. 5, we show the variations of the canted Cr and Fe moments obtained
by assuming equal contributions of Fe and Cr moments to the magnetic incoherent cross section. At x = 0.15, a
canting angle θFe = 7◦ (corresponding to MFe

T = 0.28µB/Fe and MFe
Z = 2.22µB/Fe) yields a differential incoherent

magnetic cross section of ≈ 5 mbarn.sr−1, which accounts for about one half of the difference between the measured
and calculated values. As a result, θ decreases from 71◦ (if only the Cr moments are canted) to 50◦ for θFe = 7◦. Of
course, we note that there exists an infinity of combinations satisfying Eq. 19. However, since we are dealing with
Fe1−xCrx alloys with x ≪ 1, θFe will always be much smaller than θ.
Strikingly, a similar scenario of spin canting can account for the evolution of µCr with annealing, as studied in this

work for the x = 0.15 case (see Fig. 4d of main text). As shown in Fig. 6a, the difference between the calculated
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and experimental differential cross sections increases linearly with the clustering tendency, monitored by the ASRO
function S(0) = S(K = 0) = 1 +

∑

i zi αi (see Eq. 7 of main text). In fact, it is natural to assume an increase of θ
with Cr clustering, owing to an increased magnetic frustration. This leads to a better agreement between the µCr

determined experimentally and the ones calculated by DFT (GGA), a shown in Fig. 5 and 6.

C. Limits of validity of the model

The expressions of the neutron cross sections derived in the main text (sections IIB) are valid for a collinear
ferromagnetic alloy such as Fe1−xCrx, but the case of an AF impurity state with respect to the average matrix is
indeed covered and reflected by the negative sign of the average impurity moment. The main assumption of the model
is that magnetic perturbations add linearly, which is true when local environments do not interact. This is the case
of the studied alloys (x ≤ 0.15) when one considers the near neighbor shells. The second assumption is that atomic
short range order (ASRO) is a perturbation to the case of a random alloy.
The extension from colinear to canted states made here (summarized in section IVB of the main text) also assumes a

linear additivity of the perturbations and weak ASRO. Namely, it mostly applies to dilute alloys. Canted or spin-glass
local environments around an impurity state are also covered, in the simplest case where the impurity and its neighbor
matrix moments are randomly canted. The random canting gives rise to a transverse magnetic cross section which is
analogous to that of a paramagnetic sample. It behaves as an additional contribution to incoherent scattering if one
neglects the K-dependence of the magnetic form factor, which yields a 10 -15% decrease of the magnetic scattering
in the studied K-range for 3d alloys. A further extension to non-random canting could be easily developed, yielding
modulations of this transverse cross section with the scattering vector. It is not considered in the present work, since
this effect was not observed within the experimental accuracy.
For concentrated binary solid solutions, the models described above for collinear and canted local environments

remain valid at zero order, when one considers only the average cross section or its K-dependence of the magnetic cross
sections with the magnetic form factor. In such case the most important quantities, namely the average moments of
the two constituents, can still be obtained quantitatively. This is an important advantage of neutron diffuse scattering
with respect to other techniques.
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