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present-day carbon cycle and its climate-driven variabil-

ity. It is also a necessary step to build confidence in

terrestrial ecosystems models’ response to the warming

and drying stresses expected in the future over many con-

tinents, and particularly in the tropics. Here we present an

in-depth analysis of the response of the terrestrial carbon

cycle to the 2015/2016 El Niño that imposed extreme

warming and dry conditions in the tropics and other sen-

sitive regions. First, we provide a synthesis of the spatio-

temporal evolution of anomalies in net land–atmosphere

CO2 fluxes estimated by two in situ measurements based

on atmospheric inversions and 16 land-surface models

(LSMs) from TRENDYv6. Simulated changes in ecosystem

productivity, decomposition rates and fire emissions are

also investigated. Inversions and LSMs generally agree

on the decrease and subsequent recovery of the land

sink in response to the onset, peak and demise of El

Niño conditions and point to the decreased strength of

the land carbon sink: by 0.4–0.7 PgC yr21 (inversions)

and by 1.0 PgC yr21 (LSMs) during 2015/2016. LSM

simulations indicate that a decrease in productivity,

rather than increase in respiration, dominated the net

biome productivity anomalies in response to ENSO

throughout the tropics, mainly associated with prolonged

drought conditions.

This article is part of a discussion meeting issue ‘The

impact of the 2015/2016 El Niño on the terrestrial tropical

carbon cycle: patterns, mechanisms and implications’.
1. Introduction
The global terrestrial CO2 sink has increased steadily in the past

decades but presents high year-to-year variations that, in turn,

dominate inter-annual variability (IAV) in the atmospheric

CO2 growth rate [1]. As the atmospheric CO2 growth rate is

highly correlated with tropical temperature [2], IAV in the land

sink has been mainly attributed to tropical forests [2], but

semi-arid ecosystems appear to be increasingly important [3–5].

The El Niño/Southern Oscillation (ENSO) is an

atmosphere–ocean variability pattern that drives temperature

and rainfall variations in the tropics, with teleconnections that

extend worldwide [6]. El Niño events strongly reduce the

global land sink by up to 2PgC [7], leading to high atmospheric

CO2 growth rates [1]. El Niño events promote drought con-

ditions in the Amazon forest, leading to increased tree

mortality and reduced carbon storage [8,9] and widespread

fires, particularly in southeast Asia [10]. ENSO impacts extend

beyond the tropics, controlling IAV in sub-tropical ecosystem

productivity [11], especially water-limited ecosystems in the

Southern Hemisphere [3,4,12]. Most Coupled Model Intercom-

parison Project Phase 5 (CMIP5) models projected a two-fold

increase in the frequency of extreme El Niño events in the

future decades [13], associated with intensification of ENSO-

related anomalies in the carbon cycle [14]. However, nonlinear

ENSO dynamics found in observations and one model might

imply suppressed extreme El Niño events under warming [15].

Additionally, ENSO affects key regions and processes that

are sources of uncertainty in future carbon cycle projections

[3,16]. It is still unclear if temperature [2] or water-availability

[3,9,11] drive ecosystems’ response to ENSO, and how gross pri-

mary productivity (GPP) and terrestrial ecosystem respiration
(TER) contribute to IAV. Analysis of model ensembles suggests

that because water availability enhances both GPP and TER, its

effects are cancelled out, and only the temperature signal

emerges [2,5]. Jung et al. [5] also showed that water availability

is the primary driver of carbon fluxes at the local scale, but

anomalies tend to compensate spatially, so temperature

emerges as a stronger driver with increasing spatial aggregation.

More generally, IAV in the carbon cycle is still not well under-

stood, and neither data-driven models [17] nor Earth-System

Models [18] capture its amplitude. In the 2017 Global Carbon

Budget [1], land–atmosphere CO2 fluxes from land-surface

models (LSMs, bottom-up) forced with observed climate and

land-use change (LUC) show good agreement with estimates

from atmospheric transport model inversions (top-down) for

global totals but differ at regional or zonal scale [1]. The 2015/

2016 El Niño is especially interesting, as 2015 registered record

atmospheric CO2 growth rate in spite of widespread record-

breaking greening and stabilization of fossil-fuel emissions

[1,19]. The 2015/2016 El Niño therefore provides a good study

case to understand the response of ecosystems to warm and dry

extremes potentially concurrent with global vegetation greening.

The strong El Niño event started around May 2015 and

persisted until mid-2016, being the strongest event since the

1950s [20]. Record-breaking temperatures and drought were

registered in the Amazon from October 2015 onwards. The

drought extent in the Amazon was comparable to 1997/

1998 but the extreme temperatures led to an exacerbation of

dryness, with extreme drought conditions affecting double

the extent of 1997/1998 [20].

According to LeQuéré et al. [1], the atmospheric CO2

growth rate in 2015 and 2016 was 1.6 and 1.5 PgC yr21

higher than during the 2011–2016 period, respectively, yet

CO2 emissions from fossil fuel and LUC combined were

only 0.2–0.4 PgC yr21 above the previous 5-year mean.

Ocean uptake was estimated to be slightly larger

(0.2 PgC yr21) in 2015/2016 than the 2010–2014 average.

Table 1 shows the residual sink needed to close the global

carbon budget: the terrestrial CO2 uptake had to be reduced

by 1.4 PgC yr21 in 2015 and by 1.5 PgC yr21 in 2016. In the

same period, but using the year of 2011 as a reference, Liu

et al. [21] reported much higher losses of CO2 over the pan-

tropical regions in 2015 alone (2.5 PgC). Contrary to the

1997/1998 event, the anomaly in the land sink during

2015/2016 does not appear to be associated with major fire

emissions. Although the development of El Niño coincided

with enhanced fire activity in Southeast Asia, fire emissions

in the region were reported to be only half of the emissions

during the previous El Niño in 1997/1998, following rainfall

return in November 2015 [22]. GFED4.1s [23] reports fire

emissions 0.3 PgC yr21 higher than the previous 5 years in

2015, but lower by 0.1 PgC yr21 in 2016 (table 1).

Here we quantify the response of the terrestrial carbon

cycle to El Niño in 2015/2016 using multiple data-based

and modelled datasets. We track the evolution of anomalies

in the net land–atmosphere CO2 flux during the develop-

ment and decline of the 2015/2016 El Niño estimated by

two atmospheric transport model CO2 inversions [24,25]

and compare them with the net terrestrial CO2 uptake and

its component fluxes (gross primary productivity (GPP),

total ecosystem respiration (TER), fire) simulated by 16

LSMs in the latest TRENDY intercomparison project (v6,

table 2) [1,42]. We evaluate the consistency and robustness

of carbon spatio-temporal dynamics between top-down and

http://rstb.royalsocietypublishing.org/


Table 1. Global carbon budget during 2015, 2016 from the latest Global Carbon Project global carbon budget estimates (GCB2017v1.2, [1]). Annual atmospheric
CO2 growth rate (GATM), fossil fuel and LUC emissions (EFF and ELUC, respectively) and the total sinks partitioned into ocean and land fluxes. The numbers in
brackets indicate the corresponding anomaly relative to the previous 5-year period. The land sink is estimated here as the residual from the global carbon
budget (i.e. EFF þ ELUC2 GATM2 O). Fire emission anomalies from GFED4.1s (1997 – 2016) are shown for comparison with the values in the terrestrial sink.

C budget
(PgC yr21) GATM EFF ELUC

sinks
(ocean 1 land) ocean land

fire
emissions

2010 – 2014 4.6 9.6 1.4 6.3 2.4 4.0 2.0

2015 6.2 (þ1.6) 9.8 (þ0.2) 1.5 (þ0.1) 4.1 (21.2) 2.6 (þ0.2) 2.6 (21.4) 2.3 (þ0.3)

2016 6.1 (þ1.5) 9.9 (þ0.3) 1.3 (20.1) 5.3 (21.0) 2.6 (þ0.2) 2.4 (21.6) 1.9 (20.1)

Table 2. LSMs used in this study. From the 16 LSMs used here, 14
contributed to the latest global carbon budget (GCB2017v1.2, [1]). All
models followed the protocol of TRENDYv6 and are therefore included here.

model GCB2017v1.2

monthly
fire
emissions reference

CABLE Y N [26]

CLASS-CTEM Y Y [27]

CLM4.5(BGC) Y Y [28]

DLEM Y N [29]

ISAM Y N [30]

JSBACH Y Y [31]

JULES Y N [32]

LPJ Y annual [33]

LPX-Bern Y Y [34]

OCN Y N [35]

ORCHIDEE Y N [36]

ORCHIDEE-

MICT

Y Y [37]

SDGVM Y annual [38]

SURFEX N Y [39]

VEGAS N N [40]

VISIT Y Y [41]
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bottom-up approaches and compare the results from LSMs

with anomalies with satellite-based datasets.
2. Material and methods
(a) Atmospheric CO2 inversion fluxes
Here we use three observation-based datasets of net land–

atmosphere surface fluxes: the Copernicus Atmosphere Monitoring

Service (CAMS) atmospheric inversion (henceforth simply ‘inver-

sion’) version 16r1 [24,43], and the Jena CarboScope inversion

(update of [25,44] compare with Rödenbeck et al. [45]) versions

s76_v4.1 and s04_v4.1 (CarboScope76 and CarboScope04 hence-

forth). The inversions provide terrestrial (and oceanic) surface CO2

fluxes, CAMS weekly fluxes at 1.98latitude � 3.758longitude resol-

ution, and CarboScope daily fluxes at 48latitude � 58longitude

resolution. CAMS 16r1 uses 119 atmospheric stations over the differ-

ent time frames for which they provide data, starting in 1979.

CarboScope76 (CarboScope04) uses 10 (59) stations continuously
available throughout 1976–2016 (2004–2016). All inversions are reg-

ularized by a priori information. CAMS uses climatological natural

fluxes and time-varying ocean, wildfire and fossil-fuel fluxes with

error correlation lengths of 4 weeks and 500 km (1000 km) over

land (ocean) [46]. CarboScope uses a zero land prior, and a priori
correlations of about 1600 km in longitude direction, 800 km in lati-

tude direction and about 3 weeks. The inversions further differ in the

transport model used, and other characteristics. Thus, they provide a

range of uncertainty for observation-based top-down CO2 flux esti-

mates [19]. We focus on the 38-year period from 1979 until 2016

and calculate monthly anomalies of net land–atmosphere fluxes

by subtracting the mean seasonal cycle and the monthly long-term

trend (using a simple linear fit). We aggregate the inversion results

over large regions (global terrestrial surface and tropical band

between 238S and 238N), as flux estimates from inversions carry

smaller relative uncertainties on the larger spatial scale [47].
(b) Land-surface models
LSMs simulate the key energy, hydrological and carbon cycle

processes in ecosystems, allowing insights on the mechanisms

controlling anomalies in land–atmosphere CO2 fluxes and their

drivers. The TRENDY intercomparison project coordinated his-

torical LSM simulations and compiled outputs of CO2 fluxes

among other variables [42]. We use 16 LSMs from the latest

TRENDYv6 simulations [1] (table 2), which provide monthly

CO2 fluxes during 1860–2016. In TRENDYv6 S3 simulations,

models are forced by historical data of (i) atmospheric CO2 con-

centrations, (ii) climate observations from CRU-NCEP v8 [48,49]

and (iii) human-induced land-cover changes and management

from the HYDE [50,51] and the Land-Use Harmonization

LUH2 v2 h [52] datasets (extended to 2016 as described in [1]).

We analyse monthly values of net biome productivity (NBP),

GPP, total ecosystem respiration (TER) and fire emissions simu-

lated by the models (only 7 models) and annual leaf-area index

(LAI, 12 models). NBP corresponds to the simulated net atmos-

phere–land flux (positive sign for a CO2 sink) and is

comparable to top-down estimates of net land–atmosphere

CO2 fluxes, although the latter include lateral C fluxes (the

land–ocean transport of C in freshwater and coastal areas and

C fluxes due to trade/import export) [1,53] not simulated by

the models. However, we focus on flux anomalies that should

not be substantially affected by lateral fluxes because they are

assumed to vary little between years. To produce a spatially con-

sistent ensemble, model outputs were remapped to a common

regular 18 � 18 grid. The model data were selected for the

38-year long period 1979–2016, common to inversions.
(c) Satellite-based data
We compare anomalies from inversions and LSMs with two

remote-sensing datasets that provide proxies for ecosystem

activity and a satellite-based GPP product.

http://rstb.royalsocietypublishing.org/
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Figure 1. Time-series of detrended annual NBPanom for the globe (a) and tropical regions (b), estimated as the residual sink by GCB2017 (black, globe only), CAMS
v16r1 (blue), CarboScope76 (light magenta) and CarboScope04 (magenta) atmospheric inversions and TRENDYv6 models (green, thicker line indicates the multi-
model ensemble mean (MMEM)). NBPanom is defined as the net atmosphere-to-land CO2 flux: positive anomalies indicate stronger-than-average CO2 sinks or lower-
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LAI is defined as the one-sided green leaf area per unit

ground area in broadleaf canopies and as one-half of the green

needle surface area in needleleaf canopies, which depicts the

greenness of vegetation. We used Collection 6 Terra and Aqua

MODIS LAI products (MOD15A2H and MYD15A2H) [54,55].

The original datasets were available as 8-day composites in

500 m sinusoidal projection. We checked the quality flags

(clouds, aerosols, etc.) to get high-quality LAI as described by

Samanta et al. [56]. The original data were re-projected onto a

1/128 � 1/128 grid by averaging the high-quality LAI. After

that, the two LAI datasets were combined to bi-monthly time-

steps by taking the mean of LAI values in each 8-day composite,

weighted by the number of days that each 8-day composite

locates in the specific half-month window. Finally, the annual

average LAI and its anomaly relative to the record period

(2000–2016) were calculated for each pixel. Anomalies in LAI

reflect changes in the canopy leaf density and can therefore

track plant stress response to drought.

Cheng et al. [57] used ground-based and remotely sensed

land and atmospheric observations, combined with water use

efficiency (WUE) model and evapotranspiration data from

global land evaporation Amsterdam model (GLEAM), to calcu-

late global annual GPP between 2000 and 2016 at 0.5 � 0.58
resolution. The WUE model was developed by upscaling leaf

WUE directly and considers the controls of vapour pressure def-

icit and physiological functioning on WUE. The model has been

derived independently from GPP and evapotranspiration data,

and therefore, can be used to evaluate simulated GPP.

Vegetation optical depth (VOD) is an estimate of the veg-

etation extinction effects on microwave radiation and increases

with increasing vegetation density, being therefore a good

proxy of biomass [58]. Brandt et al. [59] have shown that the

new L-band soil moisture and ocean salinity (SMOS) VOD (L-

VOD) retrieved from the SMOS-IC algorithm (Version V105

[60]) relates almost linearly to biomass and is thus relevant to
monitor carbon stocks at continental scales. In this algorithm,

no auxiliary data (either from atmospheric models or remote sen-

sing optical observations) are used, except for surface

temperature data from European Centre for Medium-Range

Weather Forecasts (see [58,60] for more details). As L-VOD

shows a strong relationship with aboveground biomass stocks,

the time-derivative of L-VOD can be directly related to variations

in biomass, and thus comparable with the aboveground

component of NBP.
3. Results
(a) Global and tropical net biome productivity

anomalies
Figure 1 compares annual global and tropical NBP from

inversions and LSMs after removing the mean seasonal-

cycle and linear trend during 1979–2016. Anomalies are

indicated in subscript and positive values indicate enhanced

atmosphere-to-land CO2 flux. We further compare the global

NBP anomalies from inversions and LSMs with the

anomalies of the residual land-sink from GCP2017.

The three datasets show consistent variability patterns

over the 37-year period, but GCB2017 estimates stronger

residual sink anomalies in certain years, e.g. 1991 (positive)

or 1997 (negative). Although individual LSMs do not necess-

arily capture the main variability patterns of NBP reported by

inversions, the multi-model ensemble mean (MMEM) is gen-

erally close to inversion values both globally and in the

tropics. The exception in 1991/1992 is likely to be due to

the response of the ecosystems to the variations in net

direct and diffuse fraction of short-wave radiation following

http://rstb.royalsocietypublishing.org/
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Mt. Pinatubo eruption [1,61], the latter not included in the

TRENDY forcing.

Inversions and LSMs agree well in global NBPanom during

the two El Niño events in the 1980s (anomalies of ca. 21 to

22 PgC yr21). In 1982, anomalies from inversions and

LSMs are very close to the GCB2017 estimate, while in 1987

both approaches underestimate the negative anomaly

(especially CarboScope76). In 1997/1998, inversions differ

by up to 0.5 PgC yr21 (1998), and some LSMs indicate a

global sink anomaly, rather than a source anomaly. The

MMEM average anomalies in 2015/2016 (21.0 yr21) are

close to the GCB2017 residual sink anomalies

(21.1 PgC yr21), while inversions point to weaker anomalies

(20.7 PgC yr21 for CAMS, 20.4 PgC yr21 for CarboScope76,

20.5 PgC yr21 for CarboScope04). In the tropical band, LSMs

agree better with inversions (CAMS and CarboScope04) for

most ENSO events than at global scale, but estimate larger

negative anomalies than inversions in 1983 and 2016. Carbo-

Scope76 shows too low variability and therefore we use

CarboScope04 for the analysis of the 2015/2016 event.
(b) Spatial net biome productivity anomalies in 2015/
2016

The two inversions differ not only in aggregated global and

tropical NBPanom during in 2015/2016 (figure 1) but also in

the spatial distribution of NBPanom during both years

(figure 2). CAMS produces a typical source anomaly in

most of the tropics and Southern Hemisphere but a sink

anomaly over the Amazon in both years, although the low

density of the surface observations might not be sufficient

to isolate the Amazon from the larger scale (figure 2a,b). In

2015, CarboScope04 reports negative NBPanom evenly distrib-

uted over the tropics (excepting the Sahel), intensified in 2016

in Africa and Southeast Asia (figure 2c,d ). The MMEM points

to negative NBPanom in the tropics, particularly in the

Amazon and eastern Brazil, southern Africa and Australia

(figure 2e,f ). Generally, inversions and LSMs agree on a tran-

sition from weak to strong negative NBPanom in southern

Africa between 2015 and 2016 (figure 2; electronic sup-

plementary material, figures S1 and S2). In the Amazon,
the evolution of NBPanom during 2015/2016 differs widely

between LSMs, with some reporting negative anomalies

(relative source) in both years (e.g. CLM4.5, VEGAS), others

an anomalous source in 2015 followed by an anomalous

sink in 2016 (e.g. ISAM, ORCHIDEE) or the inverse

(JSBACH). Large differences in simulated NBP in 2015/

2016 are also observed in central and southern Africa.
(c) Seasonal evolution of NBP anomalies in 2015/2016
Strong El Niño conditions started around May 2015, earlier

than typical El Niño events, and ceased before the end of

2016. We analyse whether LSMs are able to capture the sea-

sonal terrestrial sink response to the evolution of El Niño,

compared to the two atmospheric inversions (figure 3a–c).

We follow the approach by Yue et al. [19] and analyse con-

secutive trimesters over the 2 years. During January–March

and April–June 2015 (Q1, Q2), inversions and the MMEM

report close-to-average global and tropical sinks (anomalies

below 0.2 PgC/season, negative for CAMS and LSMs, and

positive for CarboScope04), consistent with pre-El Niño con-

ditions. LSMs and inversions agree on the general decrease of

the global and tropical C-sinks during the onset, peak and

demise of El Niño from July–September 2015 (Q3) to

April–June 2016 (Q6), but show differences in the exact

timing and magnitude of anomalies.

Globally, CarboScope04 reports NBPanom of 20.2 to

20.6PgC/season from Q3 until Q6, and CAMS reports

large negative NBPanom of 20.9 and 20.8 PgC/season in

Q4 and Q5. Both inversions agree on the strong contribution

of the tropics to the global NBP anomalies, 67% and 105% for

CAMS (the value over 100% indicating a compensating effect

from the extra-tropics) and 42–89% for CarboScope04.

During the El Niño event (i.e. from Q3 to Q5, figure 3),

CAMS and CarboScope04 report global integrated NBPanom

of 21.6 PgC and 21.2PgC (93% and 58% in the tropics,

respectively), while MMEM estimates global NBPanom of

21.8PgC (of which 83% in the tropics). Global C-sink

anomalies during Q4–Q5 from LSMs are within the range

of the two inversions with 20.7 PgC/season, but with a sub-

stantially more negative anomaly in Q3 (20.4 PgC/season).

These differences are mainly due to the larger negative
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anomalies at the onset of El Niño (in Q3) by LSMs compared

to inversions.

Focusing on the tropics, LSMs show an earlier decrease

in NBPanom than inversions, with negative NBPanom already

in Q3. After Q3, LSMs and inversions show a remarkable

agreement, with a peak negative NBPanom occurring in

January–March 2016 (Q5) then recovering and returning to

neutral conditions by Q6 and Q7. In terms of magnitude,

MMEM anomalies (20.7 PgC/season and 20.8 PgC/season

in Q4 and Q5, respectively) are between the two inversions,

which report a decrease of NBP by 0.4–0.95 PgC/season in

Q4 and by 0.6–0.8 PgC/season in Q5.

The overestimation of global NBPanom in Q3 is mainly

explained by the tropics, potentially due to too high fire emis-

sions simulated by LSMs during the onset of the El Niño

event. Fire emission anomalies from those models simulating

fire (reported by only 7 out of 16 LSMs) (electronic sup-

plementary material, figure S3) are indeed, on average,

0.2 PgC yr21 and 0.3 PgC yr21 higher than the annual

anomalies of GFED4.1s in 2015 and 2016, respectively. This

overestimation probably occurs in Q3 and Q4, when

models report very high fire emissions, and consequently,

stronger negative NBPanom (20.7 PgC/season for models

with fire, compared to 20.4 PgC/season for other models
in Q3). In Q4, anomalies in the tropics from LSMs are

closer to the lower value of CAMS.
(d) Driving processes
For further insight into the processes driving the land sink

response to El Niño, we analyse the seasonal evolution of

GPPanom and TERanom simulated by the LSMs (figure 3d–f )

during 2015/2016. Electronic supplementary material,

figure S4 additionally shows spatial GPPanom estimated by

the MMEM from Q1 to Q8. LSMs indicate an increase in

GPP during the first half of 2015 mainly in the extra tropics

(consistent with the record greening that year [19,62]). Only

a few regions in southern Africa and the Sahel and in Austra-

lia registered negative GPPanom already in Q1 and Q2

(electronic supplementary material, figure S3). The MMEM

shows negative global GPPanom during the abrupt onset of

El Niño (Q3), but also large spread, while negative GPPanom

and spread in the tropics are still relatively small for Q3. Most

LSMs estimate a strong negative global and tropical GPPanom

during the peak of El Niño (Q4 and Q5), mostly over the

Amazon and eastern Brazil, as well as extra-tropical southern

Africa and Australian regions (electronic supplementary

material, figure S4). LSMs simulate weak negative GPPanom
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in India and Southeast Asia. The sharp recovery in Q6 and

Q7 is seen in global GPP, but not yet in the tropics, as GPP

in northern South-America, southern Africa, northern Aus-

tralia and Southeast Asia remains below average. The

MMEM indicates positive global TERanom (causing a greater

source or lower sink) during both years and in particular

near the end of the El Niño event (Q6 and Q7). However,

in the tropics, TER decreases in phase with GPP (but with

smaller magnitude) during the entire El Niño event, drop-

ping in Q4 and Q5 and recovering in Q6 and Q7. During

the peak of El Niño, MMEM shows strong negative or close

to neutral TERanom over most of the tropics (electronic sup-

plementary material, figure S5), except for central Africa

(where above-average GPP is simulated). The spatio-

temporal evolution of simulated TERanom appears, thus, to

be mainly dominated by changes in GPP.

The spatio-temporal evolution of simulated GPPanom

mentioned above followed the progressive drying as

El Niño developed (evaluated using a multi-scalar drought

index at 6-month time-scale; electronic supplementary

material, figure S6). The peak of El Niño in Q4 and Q5

corresponded to increasing intensity and spatial extent of

drought conditions, affecting almost all tropical regions in

South America, Asia and Australia and persisting until

Q6 or even Q7 (South America and Australia). Even

though in South America the peak of drought coincided

with widespread negative GPPanom, the largest decreases in

productivity are observed in typically dry regions, while

humid areas (central Amazon) show smaller anomalies in

productivity and recover faster (with positive anomalies

in Q7). In Africa, the dipole of wet conditions in central
tropics versus strong dryness in the south largely matches

that of GPPanom.
(e) Comparison with satellite-based data
We evaluate whether simulated anomalies in vegetation

status and productivity are consistent with LAI from

MODIS and GPP derived from satellite data using a water-

use efficiency model (GPP-WUE), shown in figure 4. We

further evaluate changes in vegetation-optical depth as a

proxy for changes in aboveground biomass. LSMs estimate

widespread negative LAI anomalies in most of the tropics

in both years, consistent with MODIS LAI. LSMs simulate

positive LAIanom for the humid forests in Africa, where

MODIS LAIanom shows more heterogeneity. Both MODIS

and simulated LAI report an amplification of negative

anomalies in 2016, also extending to parts of the Amazon.

The regions with strongest LAI decrease roughly coincide

with those regions where below-average anomalies are found

in both WUE-derived and simulated GPP: dry forests in tro-

pical South America, the southern section of Africa and the

Sahel, continental Southeast Asia and northern Australia.

The agreement between WUE-GPPanom and MMEM GPPanom

is better in 2015 than in 2016, though. In humid forests in

Africa, WUE-GPP shows generalized negative anomalies in

2016, while LSMs simulate positive GPPanom.

The L-VOD index used here is more sensitive to the whole

vegetation layer than other indices, which are more sensitive

to the upper part of the canopy [59]. Even though L-VOD

decrease (biomass reduction) is registered in the dry forests

and savannahs of South America as in LAI and GPP, positive
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L-VOD changes (i.e. biomass accumulation) are observed in

regions with negative LAI and WUE-GPPanom, e.g. India

and Southeast Asia in 2016. This might indicate areas where

vegetation is more resilient to the drought and appears to

be more consistent with LSM and inversion estimates

(figure 2). In the Amazon, on the other hand, L-VOD indicates

a mixed pattern of negative and positive changes during 2015

and positive during 2016, while LSMs present predominantly

negative GPPanom and NBPanom (figures 2 and 4).
.org
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4. Discussion
Our results show that the LSMs in TRENDYv6 can reproduce

IAV patterns of the global terrestrial C-sink very close to the

anomaly in the residual sink from GCB2017 and within the

spread of atmospheric transport model inversions. The two

inversions differ by up to 0.5 PgC yr21 in particular years,

especially in the tropics during El Niño events (e.g. 1997

and 2015). NBP from LSMs captures the general response

of the carbon cycle to El Niño globally and over the tropics,

but the agreement with inversions depends on the particular

event considered. In 2015/2016, LSMs and inversions consist-

ently estimate a decrease in terrestrial C uptake (2.0 PgC for

MMEM, 1.5 PgC in 2015/2016 for CAMS and 1.0 PgC for

CarboScope04), but smaller than the Global Carbon Budget

estimate (3PgC in the 2 years, table 1).

At the seasonal scale, the LSMs simulate peak decrease in

NBP in the late 2015 and early 2016 (Q3 to Q5), consistent

with anomalies reported by inversions (figure 3). These

results are also in line with observations of total column

CO2 from OCO-2 [63] that show an increase in tropical CO2

concentrations from August 2015 onwards, in response to

increased fire emissions and reduced terrestrial CO2 uptake.

LSMs point to the generalized decrease in tropical GPP at

the end of 2015 and persisting until mid-2016 contributing

the most to tropical NBPanom. The spatial patterns of LAIanom

and GPPanom in 2015/2016 estimated by the MMEM are in

good agreement with MODIS LAI and WUE-GPPanom,

adding confidence to the simulated results, but are partly in

contradiction to a recent study by Liu et al. [21]. Liu et al. con-

trast 2015 with 2011 (a La-Niña year associated with record

breaking land-sink [11]), while we report anomalies relative

to the 1979–2016. Nevertheless, their estimates of tropical

CO2 anomalies in 2015 are still high even if we use 2011 as

a reference to calculate inversion and LSM anomalies: 21.6

PgC yr21, 20.7 PgC yr21 and 21.9 PgC yr21 for CAMS, Car-

boScope04 and MMEM, respectively. That study pointed to

distinct continental-scale processes explaining anomalies in

CO2 fluxes: GPP decrease in tropical America, TER increase

in Africa and fire activity in Asia. Our results agree on the

dominant role of GPP decrease in South America during

El Niño. However, we find strong intra-continental hetero-

geneity, with strongest negative GPPanom in dry forests and

savannahs, consistent with previous studies showing the

dominant role of semi-arid ecosystems in controlling carbon

cycle sensitivity to ENSO [3,4]. Neither study does a perfect

attribution of TER: TER in [21] is calculated as a residual

term and might therefore be affected by errors in their NBP,

GPP and fire emission estimates; at the same time, LSMs do

not represent realistically the sensitivity of TER to precipi-

tation [64]. Contrary to [21], LSMs indicate that tropical

TER also decreased overall, probably because of the reduced
substrate of TER or inhibition of decomposition due to

drought. In Africa, the LSMs simulate a dipolar pattern

during the peak of El Niño for both GPPanom and TER,

with an increase in the 08–208S region but a decrease in

both variables further south. WUE-GPP shows similar results

for 2015, but points to generalized negative GPPanom in 2016.

The decrease in TER in regions with decreased GPP may indi-

cate a strong coupling of TER with biomass production in

LSMs, as spatio-temporal anomalies in GPP and TER are

mainly in phase, as noted previously [5].

The subset of LSMs that simulate fires shows a moderate

increase in emissions (global average of 0.2 GtC for the

2 years), but significantly lower than the Liu et al. [21] esti-

mate of fire emission increase of 0.4 GtC for South Asia

only. This difference may be due to the lack of peat fires in

LSMs but is hard to reconcile with the lower GFED4.1s esti-

mate of global fire emissions (electronic supplementary

material, figure S3). LSMs could show too little sensitivity

of TER and fires to climate variability, several models sharing

similar parametrizations to represent soil decomposition

response to temperature and water stress for example. Con-

versely, the Liu et al. [21] study uses sun-induced

chlorophyll fluorescence as an indirect measure of GPP and

carbon monoxide (CO) concentrations as a proxy for fires.

How these relationships or systematic errors in assimilated

total column CO2 retrievals vary between normal and

El Niño years is still unclear.

Even though below-average GPP was registered in the

Amazon (especially in 2016) in both LSM simulations and

WUE-GPP, the strongest decreases in GPP occur in the tropi-

cal dry forest and savannahs in South America, southern

Africa and northern Australia. This points to a predominant

role of water availability in the observed response to the

2015/2016 El Niño and is consistent with previous studies

[3,4,9,39,59]. Indeed, the spatio-temporal evolution of simu-

lated tropical GPP decrease during the onset and peak of

the 2015/2016 El Niño follows the progressive increase in

dryness (electronic supplementary material, figure S6).

Additionally, LSMs indicate that dry forests and semi-arid

biomes respond more strongly than humid ones to similar

drought conditions and also point to a faster recovery of

the humid Amazon forest in the second half of 2016 (elec-

tronic supplementary material, figure S4), when drought

conditions started to become more moderate (electronic

supplementary material, figure S6).

It is worth pointing out that the good agreement between

LSMs and inversions or satellite-based observations is

especially true for the MMEM, while individual models

may show substantially different regional response over the

course of the 2015/2016 event, although most individual

LSMs show anomalies consistent with the MMEM across

the tropics (electronic supplementary material, figure S7).

Since all models use the same climate and land-use forcing,

the differences in model responses arise because of the differ-

ent parametrizations of carbon cycle processes, resulting in

different model sensitivities to the increasingly warm and

dry conditions observed until the peak of El Niño. The

added value of using MMEM is recognized Earth system

modelling, and several examples exist of applications in

which combined information from several models is superior

to results from any single model [65]. In the climate commu-

nity, the diversity amongst models is considered a healthy

aspect and provides a basis for estimating uncertainty [66].
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5. Conclusion
We show that the LSM ensemble reproduces the spatial and

temporal impacts of the 2015/2016 El Niño on the terrestrial

C-sink within the inversions’ range. We find that the decrease

in the global terrestrial sink during El Niño in 2015/2016 can

be mainly explained by decreased tropical GPP, in response

to the ENSO-related drought in transitional to semi-arid

regions, with a secondary role of the increase in fires and eco-

system respiration. It is still unclear whether TER plays an

important role in controlling NBPanom during El Niño

events. Our results agree with recent work highlighting the

control of NBP by water availability [3,5]. However, this

agreement might be ENSO event-dependent, as we found

larger disagreement between inversions and LSMs in 1997/

1998 than in 2015/2016. Understanding how terrestrial bio-

geochemical processes contribute to the emergent response

of ecosystems to warming and drying during El Niño

events is crucial to comprehend the vulnerability of land eco-

systems to future changes in climate in the tropics and other

sensitive regions.
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