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A B S T R A C T

In this paper, we proposed a numerical model to study the kinetic properties and the spherulite microstructure of
a semi-crystalline polymer under isothermal crystallization, which further exhibits the potential in generating
the 2D spherulitic structure according to the observations obtained by experimental techniques. Two char-
acteristic parameters are introduced, namely, characteristic length Lc and characteristic time tc, which are de-
pendent on the growth rate, G and the nucleation rate, I. In addition, two non-dimensional parameters are
introduced to model the nucleation saturation: L L/d c and t t/ c , which is related to the thickness of nucleation
exclusion zone Ld, and the effective nucleation time t , respectively. In 2D modeling, the kinetics are confirmed
by Avrami fitting, and the effects of the four characteristic parameters on the Avrami parameter n and the
crystallization half-time t0.5 are presented. The regularity of how the spherulite density or the mean radius of
spherulites R change along with these parameters are also given, respectively. It shows that Lc is the prominent
parameter for the size of the spherulite, and tc controls t0.5 as long as there is no nucleation saturation ( =L 0d and
t ). Besides, the existence of the nucleation saturation increases the mean radius of spherulites, but de-
creases n from 3 to 2 in 2-D modeling. Finally, a relationship between crystallization kinetics and microstructures
is provided, giving a new perspective to estimate the nucleation rate.

1. Introduction

The mechanical behavior of semi-crystalline polymers is highly
dependent on their microstructure, particularly with regard to plasticity
or damage mechanisms (see, e.g. Refs. [1–4]). However, the existing
numerical frameworks allow to study independently the influence of
each microstructural parameter to enrich our understanding. Never-
theless, the validity of these numerical experiments is based jointly on
the relevance of the microstructural model and the constitutive laws.
For this reason, it is necessary to develop realistic microstructural
models.

The vision adopted in this paper is to generate the spherulitic mi-
crostructure of semi-crystalline polymers, based on the physical

processes of crystallization. It should be noted that the spherulitic mi-
crostructure we focused on only concerns the radius and the eccen-
tricity of spherulites regardless of the internal properties such as la-
mellar thickness, branching, etc. Crystallization and its kinetics are
controlled by two phenomena: nucleation and growth (see, e.g. Refs.
[5–9] for review). There are two main approaches to study the kinetics
of spherulite crystallization: one based on direct observation and the
other on differential scanning calorimetry (DSC). Direct observation by
optical microscopy allows to measure the growth rate of spherulites, G,
as well as the nucleation rate, I. This technique makes it possible to
follow the evolution of the number of spherulites and the residual area
fraction of molten polymer as a function of time, during an isothermal
crystallization (see Fig. 1). Nucleation begins slowly and, then, the
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number of spherulites increases linearly with a slope, I, called primary
nucleation rate. According to Okada and Hikosaka [10] the onset time,
τ, can be defined as the intersection of the extrapolated linear part with
the abscissa axis. Finally, the number of spherulites saturates to reach a
plateau, which is the final spherulite density. We can emphasize that
the nucleation saturates well before the molten polymer is completely
crystallized as Okui et al. have observed [11]. Note that the direct
observation is limited to 2D observations on thin films. The calorimetric
approach, which is easier to carry out, requires the use of Avrami-type
models to determine the parameters I and G. There are a large number
of studies combining DSC analyses and/or optical microscopy (see, e.g.
Refs. [12–22]). However, to the best of our knowledge, there is no study
comparing the results obtained from these two techniques, especially
for the estimation of nucleation rate, I. In addition, the phenomenon of
nucleation saturation is not generally taken into account in the Avrami-
type models. Okui et al. suggest two hypotheses to explain this sa-
turation [11]: the presence of nucleating agent or the existence of an
excluded nucleation zone [23].

There are numerous papers devoted to the modeling and the ana-
lysis of the crystallization kinetics [24–35], most of which are based on
the Avrami-type models [36–39] under isothermal condition, or on
Nakamura and Ozawa's equation for nonisothermal crystallization
[40–42]. Specifically, the modified factors related to mechanical
properties [24–27] have also included the effect of flow on the crys-
tallization. The influence of the temperature gradient [29] and the
confined volume [31–33,43–46] on the crystallization have also been
further discussed. The primary and secondary nucleation of polymer
crystals have been studied at the atomistic scale by molecular dynamics
or Monte-Carlo methods [47–59]. Kinetic models have been developed
for polymer to model thermal and athermal nucleation [60–63].
However, Avrami-type models, atomistic simulations, and kinetic
models of nucleation do not take the morphology evolution into ac-
count and cannot provide information about the final crystalline
structure.

Several computer methods have been proposed to predict the
crystallization kinetics and the morphology of semi-crystalline poly-
mers. These include the level set method [64], the front-tracking
method [65,66], the phase field method [67–75], the pixel coloring
method [30–32,76–84], the cellular automaton method [85–87], the
stochastic simulation [88], the Monte-Carlo method, and the ray-
tracking method [89–92]. Note that the prediction of spherulitic mi-
crostructure is crucial to understand the relationships between prop-
erties and the process as evidenced by the number of studies on the
topic (see, e.g. Refs. [89–105]).

The aim of this paper is to propose a numerical framework for
spherulitic microstructure generation, based on the results of direct
observations of crystallization, i.e. able to model growth and nucleation
as well as its saturation. At present, we focus on the 2D analyses

regardless of the secondary crystallization, and we only take into ac-
count the temperature effect and spherulitic structure with one crys-
talline phase. Here, the key concept is the concept of nucleation time
fields that allows us to model the sporadic nucleation of spherulites.
The nucleation time is a random time associated with each space point
of our model giving the moment when a stable crystalline seed appears.
An analysis of the influence of the model parameters on the isothermal
kinetics and the microstructure is conducted. The study originality is
based on the introduction of a characteristic length, Lc and a char-
acteristic time, tc. Indeed, these new parameters opens up new per-
spectives to describe the relationships between crystallization kinetics
and microstructure. In addition, we study the consequences of the two
hypotheses previously cited on kinetics and microstructure to explain
the nucleation saturation.

The paper is organized as followed: First, in Section 2, we describe
the isothermal crystallization model and numerical framework. In
Section 3, the simulation results on spherulitic microstructure and ki-
netics are presented in 3.1 and 3.2. A further discussion is given in
Section 4. The symbols used in this paper are listed in the Table 1.

2. Numerical modeling and methodology

In this section, we present the model and the associated numerical
framework, to simulate the nucleation and the growth of spherulites at
the mesoscale. The area of interest, called the Representative Volume
Element (RVE), is discretized into square cells with side length x and
center coordinate xk (see Fig. 2). The cells are characterized in terms of
discrete state variables, x( )k , such as =x( ) 0k for melt and = ix( )k
for cells inside the ith spherulite; and crystallite orientation, the polar
angle x( )k .

Fig. 1. Scheme of the evolution of the spherulite density versus time during
isothermal crystallization as well as the evolution of residual area fraction,
which is the ratio of the melt surface over the total surface.

Table 1
List of symbols.

Symbol Description

Geometry description
L Side length of the Representative Volume Element (RVE)

=S L0 2 RVE area
Input parameters
G Growth rate of spherulite
I Nucleation rate

=L G Ic
1
3

1
3

Characteristic length in 2D

=t G Ic
2
3

1
3

Characteristic time in 2D

Ld Thickness of nucleation excluded zone
t Effective nucleation time
τ Onset time
Microstructural symbols

x( )k Lamellar orientation inside the kth cell
S i( ) Area of the ith spherulite

=R S( / )i i( ) ( ) 0.5 Equivalent radius of the ith spherulite
R Mean spherulite radius

e i( ) Eccentricity of the ith spherulite
Kinetic symbols

t( ), Degree of crystallinity at time t and at the end
=t t( ) ( )/ Degree of transformed material

KAv, n Avrami's constant and Avrami's exponent
t0.5 Crystallization half-time
N t( ), N Number of spherulites at time t and at the end
Numeric paramaters
xk Center coordinate of kth cell

x Side length of cells
t Time step
x( )k State variable of kth cell

t x( )k0 Nucleation time of kth cell



2.1. Concept of nucleation time

We propose to model the spherulite nucleation for isothermal
crystallization with the concept of nucleation time, t x( )k0 . The nuclea-
tion time, t x( )k0 , is a random time associated with the kth cell of co-
ordinates xk. It defines the onset time of the first germ for kth cell. It is
randomly generated (see Fig. 3 (a)) at the beginning of each simulation
by the following expression:

= + =t tx x( ) ( ) , with rand(0,1),k k
max

0 0 (1)

where τ is the onset time and =t I x( )max
0

1 2 is the time where the
nucleation is certain inside the cell of surface x( )2 for a given nu-
cleation rate, I.

To model the nucleation saturation, two different ideas are studied
(see Fig. 3). Firstly, we propose to introduce an effective nucleation
time, <t t max

0 , which acts as a superior limit of the nucleation time
(see Fig. 3(a)), such as:

=
+

>
t

t
x

x x
x

( )
( ) if ( )

if ( )k
k

max
k max

k max
0

0

(2)

where <x0 ( ) 1k is a random field and = t t/max
max
0 .

Secondly, we also study an excluded nucleation zone around
spherulites [23], modeled by a length parameter Ld, which is the layer
thickness where the nucleation is inhibited (see Fig. 3(b)).

The effective nucleation time controls the spherulite number (cf.
Equation (13)), this concept could be used to model the effect of nu-
cleating agents. The existence of an excluded nucleation zone may be
due to thermo-mechanical or diffusional effects around the spherulite
that would promote growth over nucleation, such as the depletion zone
observed in thin films [8]. Note that it is possible to model the nu-
cleation using the activation frequency and the saturation by introdu-
cing the nucleus density [31,32,76,77].

2.2. Algorithm of growth and nucleation

The pixel coloring algorithm [31,32,76,77] is used to model the
spherulite growth. In this method, we take advantage of isotropic
growth of spherulites at the microscale for isothermal crystallization.
The transformation rule describing the phase change (see Fig. 4) is as
follows: if the molten cell xk, i.e. =x( ) 0k , is inside the ith circle, so the
cell is transformed into ith spherulite, = ix( )k . The ith circle, which
represents the shape of the spherulite if it is isolated from other
spherulites, is defined by its radius =R t G t t( ) ( )i i( )

0
( ) , where t i

0
( ) is the

nucleation time associated with the ith spherulite and x i
0
( ), its nucleation

point. Note that periodic boundary conditions (see Fig. 4) are applied to
avoid edge effects. The simulation algorithm is as follows:

1. Random generation of nucleation time t x( )k0 for all cells
2. Time loop for …t t t N t{0; ; 2 ; ; }

(a) Nucleation step: Creation of a new ith spherulite of center,
=x xi

k
( ) if <t x t( )k0 and the cell of xk is inside the melt area
where the nucleation is possible.

(b) Growth step: Loop over all ith spherulites
• Compute =R t G t t( ) ( )i i( )

0
( )

• Transform the molten cells inside the ith circle associated with
the ith spherulite

3. Post-processing

2.3. Post-processing

At the end of the simulation, all the cells have been assigned to one
spherulite. We obtain the final morphology of the spherulite micro-
structure. We compute two types of information, which are linked to
the microstructure and the kinetics. These data are then used to perform
our statistical analyses.

2.3.1. Microstructural analysis
The area S i( ) of the spherulite i can be obtained by collecting its

cells, from which we can directly calculate the equivalent radius of the
spherulite, such as:

=R S .i
i

( )
( )

(3)

The mean value, R is estimated from several simulations.
The growth direction of crystalline lamellae is assumed radial (see

Fig. 2). We define the lamella orientation, x( )k , as the angle between
the lamella growth direction given by the vector x x( )k

i i( )
0
( ) and the x-

axis for all xk
i( ) inside the ith spherulite.

Fig. 2. Representative volume element of the spherulite modeling, where x i
0
( ) is

the nucleation center of spherulite i and x( )k the lamella orientation at point
xk .

Fig. 3. Scheme of the two strategies to model the nucleation saturation: (a)
Introduction of effective nucleation time t ; (b) Introduction of the excluded
nucleation zone Ld [23].

Fig. 4. Schematic representation of the growth step used under periodic
boundary conditions.



2.3.2. Kinetic analysis
During the simulation, the number of spherulites, N t( ), and the

degree of transformed material, t( ) are stored at each step time. The
degree of transformed material is given by:

=t n t
n

( ) 1 ( )
t

0

(4)

where n t( )0 is the number of molten cells at time t and nt the total
number of cells in the simulation box. For isothermal cases, the degree
of transformed material is related to the degree of crystallinity, such as

=t t T( ) ( )/ ( ) where T( ) is the final degree of crystallinity at the
given temperature T.

The Avrami theory is applied to analyze the isothermal crystal-
lization kinetics by fitting the data with the following equation:

=t K t( ) 1 exp( ( ) )Av
n (5)

where Avrami's parameters are the exponent n and the Avrami's char-
acteristic time KAv. The exponent n are determined by linear regression
of Avrami's plot with t( ) in the range from 0.05 to 0.95. The Avrami's
characteristic time KAv is determined by measuring the crystallization

half-time =t K0.5
(ln 2)n

Av

1
.

2.4. Model parameters

There are four parameters that control the crystallization model
growth: the nucleation rate, I, the growth rate G, the effective nuclea-
tion time, t , and the thickness of nucleation exclusion zone, Ld. In our
study, we introduce two new parameters instead of G and I: a char-
acteristic length, Lc, and a characteristic time, tc (see Table 2), defined
by:

= =+
+L G

I
t G I, ( )c

d
c

d d

1
1 1

1
(6)

where =d 2 is the dimension of space. According to the isothermal
crystallization properties of various semi-crystalline polymers at dif-
ferent crystallization temperature [11], the characteristic length, Lc,
ranges from 10 to 102 μm and the characteristic time, tc, ranges from
10 3 to 105 s. As we will see in Section 3, the parameters Lc and tc control
the size of the microstructure and the kinetics, respectively. It will be
shown that the final average spherulite diameter is Lc

2 and that tc is the
time over which nuclei are formed without considering nucleation sa-
turation.

In addition to the parameters of the model, we have the parameters
related to the simulation: the size of the simulation box, L; the space
step, x and the time step, t . The space step is chosen at =x 1 μm
which is of the same order of magnitude as the resolution of an optical
microscope. The time step is chosen to guarantee the proper functioning
of the algorithm such as =t G x tmin( /3, /50)0.5 .

3. Simulation results

This section presents 2D simulation results of the morphology and
the kinetics of the spherulite growth. The influence of four parameters,
i.e. Lc, tc, L L/d c and t t/ c, are analyzed in details. We use the additional
parameters L L/d c and t t/ c because they control the effect of nucleation
saturation independently of the values of Lc and tc. Each simulation is

based on the square RVE of =L 500 μm, and ×500 500 cells with length
=x 1 μm are employed. Besides, the onset time is fixed as = 0 s.

3.1. Spherulitic morphology

The influence of the four parameters on the spherulitic morphology
is depicted in Fig. 5. In each row, three of the four parameters are fixed,
and the evolution of spherulitic microstructure along with the increase
of the remaining parameter can be observed. Fig. 6(a–d) represents the
spherulite size distribution at the final stage of crystallization in terms

Table 2
Model parameters.

Variable Description

Space =L G Ic 1/3 1/3 Characteristic length
variables Ld Thickness of excluded nucleation zone
Time =t G Ic 2/3 1/3 Characteristic time
variables t Effective nucleation time

Fig. 5. Examples of final spherulitic morphologies at various cases. The color
contrast is due to the lamellar orientation, θ, inside the spherulites. (All results
are presented using Paraview software [106]). (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the Web version
of this article.)

Fig. 6. Simulated spherulite size distributions in terms of spherulite radius. The
lines represent curve fits by the use of normal distribution. (a) =L 46.4c μm,

=L L/ 0d c , and =t t max
0 ; (b) =t 2150c s, =L L/ 0d c , and =t t max

0 ; (c) =t t max
0 ,

=L 21.5c μm, and = ×t 2.15 10c
3 s; (d) =L L/ 0d c , =L 21.5c μm, and

= ×t 2.15 10c
3 s.



of the spherulite radius for the various cases corresponding to
Fig. 5(a–d). The results are fitted by using a normal distribution. Fi-
nally, Fig. 7 gives the spherulite radius and its standard deviation versus
the four parameters.

Firstly, tc is increased from 100 s to 104 s by fixing =L 46.4c μm,
=L 0d , and =t t max

0 . The change of tc while keeping Lc as a constant is
obtained by adapting G and I according to Eq. (6). The value of Lc is
fixed at higher value to obtain larger spherulites which are easier to
observe and the other two parameters are fixed at =L 0d μm, and

=t t max
0 to avoid the influence of the nucleation saturation. The

spherulitic microstructures are shown in Fig. 5 (a), where it is obvious
that the size of spherulite does not change with tc. Fig. 6 (a) shows the
spherulite size distribution at the final stage of crystallization in terms
of the spherulite radius over the range of provided tc, indicating ap-
proximately the same average value and distribution. It can also be seen
in Fig. 7 (a) that the mean radius and the standard deviation keeps
constant at various tc, which further confirmed the independence of the
spherulite size with tc.

In order to study the influence of Lc, we set =t 2150c s, =L 0d μm,
and =t t max

0 (to avoid the influence of nucleation saturation), and we
increased Lc from 10 μm to 100 μm. The corresponding morphologies
are shown in Fig. 5 (b), demonstrating that the number of spherulites
decreases along with increasing Lc, while the size of the spherulites
raises. Fig. 6 (b) shows the spherulite size distribution at the final stage
of crystallization in terms of the spherulite radius over the range of
provided Lc. It can be observed that the final spherulite size shifts tre-
mendously to higher values from the condition of small Lc with a large
number of nuclei to the condition of large Lc with a small number of
nuclei. Furthermore, we summarized the radius of spherulites for the
four conditions. The results are plotted as a function of Lc in Fig. 7 (b),
where the mean radius and its standard deviation are presented. It is
very interesting to see the mean radius obey a linear increase along
with Lc with a tangent of 0.53, and the standard deviation grows si-
multaneously. As we expected, the characteristic length, Lc, is close to
the equivalent diameter of the spherulite. Therefore, we can find that
the mean spherulite radius, R , is roughly equal to L0.5 c.

The nucleation exclusion zone also has a tremendous effect on the

morphology in the numerical model, whose length is introduced by Ld.
Thus, we set =t t max

0 to neglect the effect of end time of nucleation,
=L 21.5c μm, and = ×t 2.15 10c

3 s, and the non-dimensional parameter
L L/d c ratio is increased from 0.46 to 3.25 with a step of 0.92 which is
associated with the length of nucleation exclusion zone Ld ranging from
10 μm to 70 μm with a step of 20 μm. Fig. 5 (c) presents the corre-
sponding morphologies at various L L/d c, where the increase of spher-
ulite size can be observed. Fig. 6 (c) gives the simulated spherulite size
distributions in terms of the spherulite radii over the range of in-
vestigated L L/d c values. The size of spherulites presents a gradual shift
to larger values from low L L/d c to high L L/d c ratio, resulting from the
decreasing number of nuclei. Moreover, the spherulite radii R are cal-
culated for the four cases respectively, and we plot R L/ c and its stan-
dard deviation as a function of L L/d c ratio, as shown in Fig. 7 (c). It is
shown that the mean value of R L/ c increases linearly along with the
L L/d c ratio, but the standard deviation remains unchanged. It should be
pointed out that the tangent of the curve is independent on Lc and tc.

Finally, the effect of effective nucleation time t on the morphology
in the numerical model is studied. We set =L L/ 0d c to neglect the effect
of the nucleation exclusion zone, =L 21.5c μm, and = ×t 2.15 10c

3 s,
and the non-dimensional parameter t t/ c ratio, which is associated with
the end time of nucleation, is increased from 0.12 to 0.96, produces the
corresponding final morphology as presented in Fig. 5 (d). Fig. 6 (d)
gives the simulated spherulite size distributions in terms of the spher-
ulite radii over the range of investigated t t/ c values, where the size of
spherulites presents a gradual shift to lower values from small t t/ c to
large t t/ c, resulting from the increasing number of nuclei. Then, the
R L/ c ratio and its standard deviation related to spherulite radius R are
plotted for the four cases respectively, showing a decrease in the
averaged value along with t t/ c. It should be pointed out that the tan-
gent of the curve is independent on Lc and tc. However, the standard
deviation of the spherulite size does not seem to be influenced by t t/ c.

3.2. Kinetic properties

Fig. 8 presents the Avrami analysis for the cases with various
combination of parameters, where the first column is the Avrami plot

Fig. 7. Mean spehrulite radius versus the parameters tc, Lc, L L/d c, and t t/ c . Standard deviation is indicated through erro bars.



and the second column indicates the Avrami parameter n and crystal-
lization half-time t0.5 versus the varying parameters, according to the
conditions set in Fig. 5. Each curve of the Avrami plot is obtained as an
average of 10 random samples. Moreover, the normalized spherulite
density, NL L/c

2 2, as a function of normalized time, t t/ c, is plotted in
Fig. 9 for the corresponding cases, where we can see the normalized
spherulite density increases until reaching a plateau. N denotes the
number of spherulites. Each curve is calculated by taking the average
value of 10 random samples, and the colored region represents the
interval of these samples.

Firstly, we set =L 46.4c μm, =L 0d μm, and =t t max*
0 , and increased

tc from 100 s to 104 s. The Avrami plots are shown on the left in Fig. 8
(a). The crystallization half-time, t0.5 and the Avrami exponent, n are
plotted as a function of tc for the four cases correspondingly on the

right. It can be seen that n is constant which is in good agreement with
the theoretical value =n 3 for the 2D uniform nucleation and growth,
and t0.5 increases linearly along with tc. Moreover, the spherulite density
as a function of crystallization time is plotted in Fig. 9 (a). Fixing Lc, we
can find that the nucleation rate decreases with increasing tc, but the
spherulite density finally reaches the same level.

Then, at fixed =t 2150c s, =L 0d μm, and =t t max*
0 , Lc was increased

from 10 μm to 100 μm. In Fig. 8 (b), it is noteworthy that n and t0.5
remain constant, showing that the crystallization rate is independent of
Lc. Fig. 9 (b) presents the spherulite density versus crystallization time
for the corresponding four cases, where the curves reach a plateau at
the same time.

The Avrami analysis on the kinetic characteristics under various
L L/d c ratio is given on the left in Fig. 8 (c) by fixing =t t max*

0 , =L 21.5c

Fig. 8. Kinetic analysis for the various cases. The first column denotes Avrami plots for the isothermal crystallization of the corresponding conditions, and the second
column presents Avrami parameters n and crystallization half-time t0.5 versus the varying parameters.



μm, and = ×t 2.15 10c
3 s. The corresponding Avrami exponent n and

crystallization half-time t0.5 as a function of L L/d c are shown on the right
in Fig. 8 (c). It can be seen that n decreases from 3.0 to 2.3 for the four
increasing L L/d c cases. The crystallization half-time t0.5 grows with in-
creasing L L/d c ratio, indicating a decrease in the kinetics. Besides, the
number of spherulites versus crystallization time is provided in Fig. 9
(c). It is obvious that the number of spherulites grows linearly at the
initial time with the same nucleation rate, and finally reaches a plateau,
which goes up with decreasing L L/d c. It indicates that the higher L L/d c
leads to less nuclei resulting from the large nucleation exclusion zone.

Finally, the Avrami analysis on the kinetic characteristics under
various t t/ c

* ratio is presented on the left in Fig. 8 (d) when =L L/ 0d c ,
=L 21.5c μm, and = ×t 2.15 10c

3 s. The corresponding Avrami exponent
n and crystallization half-time t0.5 as a function of t t/ c

* ratio are also
given. It can be seen that n increases from 2.1 to 3.0 for the four in-
creasing t t/ c

* cases. The crystallization half-time t0.5 falls with increasing
t t/ c

* ratio, indicating an acceleration in the kinetics. Besides, the
spherulite density versus crystallization time is provided in Fig. 9 (d),
which indicates that the higher t t/ c

* ratio leads to more nuclei due to
the larger nucleation time.

4. Further discussion

4.1. Parameter influence

4.1.1. Influence of the characteristic length Lc and the characteristic time tc
First of all, we note that the microstructure and the crystallization

rate depend jointly on the nucleation rate, I, and the growth rate, G.
More precisely, the average spherulite area (respectively the number of
spherulites, N) is proportional to the square of the characteristic length

=L G Ic
1/3 1/3 (respectively N L1/ c

2), whereas Lc has no effect on the
kinetics of crystallization. The characteristic time, =t G Ic

2/3 1/3, con-
versely, controls the kinetics and has no influence on the final mor-
phology. In the case where the nucleation saturation is not considered,
the normalized density of spherulites (NL L/c

2 2) versus the normalized
time (t t/ c) curve is universal whatever the values of I and G
(Fig. 9(a–b)). We obtain a master curve with an initial slope equal to 1,
which saturates for >t t1.4 c at 0.85. This means that the nucleation rate

in our simulation is indeed =I t L1/( )c c
2 and that the average maximum

number of spherulites inside a surface =S L0
2 is equal to S L0.85 / c0

2.
The two parameters, t and Ld, are useful to model the nucleation

saturation before the crystallization ends (see Fig. 9(c–d)). Both have an
influence on the kinetics and the microstructure.

4.1.2. Influence of the effective nucleation time, t

At first, we discuss the influence of the effective nucleation time, t .
For this discussion, it is useful to recall and transpose the Avrami Evans
Kolmogorov Johnson Mehl type model. Following the review of
Piorkowska and Haudin [107], the degree of transformed material, t( )
is defined by:

=t E t
S

( ) 1 exp ( )
0 (7)

where E t( ) is the ‘extended surface’ which is equal to the total surface
of all domains growing from all nuclei inside the reference surface,
without considering the impingement of growing domains. It is defined
in 2 dimensions by:

=E t G t u N u( ) ( ) d ( )
t

0
2 2

(8)

where N ud ( ) is the number of nuclei created at time u inside S0. Here,
we assume that N ud ( ) is proportional to both the nucleation rate, I, and
the reference surface, S0, for <t t , so that:

= <N u S I u u t
u t

d ( ) d
0

0

(9)

After integration, we obtain:

=

= <

= +

( )
E t

S IG t u u S t t

S IG t u u

S t tt t

t t( )

( ) d for

( ) d

(3 3 ( ) )

for

t t
t

t

t
t

0 0
2 2

3 0
3

0 0
2 2

3 0
2 2

c

c
3 (10)

Below t , this model is similar to the Avrami model with an ex-
ponent =n 3, above t , the behavior tends to a model of Avrami with

Fig. 9. Normalized number of spherulites as a function of t t/ c for various cases.



an exponent =n 2. It is interesting to note that for sporadic nucleation
without nucleation saturation (t and =L L/ 0d c ), this model
predicts an exponent =n 3 and the crystallization half-time

= ( )t t tln 2 0.90c c0.5 3

1
3 . These values are obtained by numerical si-

mulation (see Fig. 8a). The asymptotic approximation of equation (10)
suggests the following relationship between n and the ratio t t/ c:

>

<

n

3 0.99

0.09 0.99

2 0.09

t
t

t
t

t
t

14.2

4.72 ln

c

t
tc

c

c (11)

Note that the simulation results and this equation provide the range
of t in which the nucleation is purely sporadic ( =n 3) or instantaneous
( =n 2) according to Avrami's approach. The asymptotic approximation
suggests also the relationship between t t/ c0.5 and t t/ c :

>

+

<

( )
( )

t
t

0.90 0.49

0.37 1 0.07 0.49

0.47 0.07

c

t
t

t
t

t
t

t
t

t
t

0.5

c

c c

c c

1
2

1
2

(12)

The parameter of these relationships are fitted on the simulation
results, except for the law given for t t/ c0.5 at very small values of

<t t/ 0.07c . In fact, the ‘extended surface’ is given by the first order
approximation of Equation (10), E t S t t t t( ) ( / )( / )c c0

2, for very small
value of <t t/ 0.07c . For this case, we have

=t t t t t t/ (ln(2)/ ) ( / ) 0.47( / )c c c0.5
1
2

1
2

1
2 .

From the microstructural point of view, Equation (9) gives the final
number of spherulites, N inside the reference surface S0 :

= = =N N t S It S
L

t
t

( )
c c

0
0
2 (13)

So, the mean value of spherulite area, S is given by
= =S N S L t t/ /c c0

2 . Assuming that S is proportional to R 2, we obtain
the following expression:

>

( )
R
L

0.53 1

0.53 1c

t
t

t
t

t
t

c

c c

1
2

(14)

Here, the parameters are fitted from the simulation results. A good
agreement is observed with the simulation results (see Figs. 7(d) and
8(d)).

4.1.2. Influence of the thickness of the nucleation excluded zone Ld
The simulation results suggest that the following relationship for the

mean radius is (see Fig. 7 (c)):

+R
L

L
L

0.57 0.9
c

d

c (15)

From the kinetic point of view, the comparison with Avrami's type
model would require the introduction of the nucleation excluded zone
concept. This would be possible but it is outside the scope of the present
paper as it needs specific numerical methods to solve this kind of pro-
blem. Here, we prefer to proceed by analogy by taking inspiration from
the simulation results. Indeed, all the kinetic and microstructural
parameters vary linearly with the ratio t t( / )c

1
2 (see Equations (11), (12)

and (14)). We also find that these parameters vary linearly with the
L L/d c ratio. This is why we propose the following relationship to fit the
simulation data:

<

>

+n

3 1.12

1.12 6.05

2 6.05

L
L

L
L

L
L

10.1

ln 3.25

d
c

Ld
Lc

d
c

d
c (16)

+ >
t
t

0.90 0.69

0.36 0.65 0.69c

L
L

L
L

L
L

0.5
d
c

d
c

d
c (17)

Here, these relationships are fitted from simulation results. A good
agreement is observed with the simulation results (see Figs. 7(c) and
8(c)).

4.2. Comparison between the two modeling hypotheses of the nucleation
saturation

Two assumptions have been studied in this paper to model the
nucleation saturation: the excluded nucleation zone, which is defined
by the thickness Ld, and the effective nucleation time, t . Although both
hypotheses induce changes in the Avrami exponent, n, from 2 to 3, they
exhibit significantly different effects on the crystallization half-time,
t0.5, and the spherulite mean radius, R .

For the kinetics, we can see the difference by looking at the evo-
lution of the normalized spherulite density as a function of normalized
time (see Fig. 9(c–d)). The transition between the part, where the
density increases proportionally with time, and the plateau is smoother
for the excluded nucleation zone assumption (Fig. 9(c)).

Furthermore, in case of the excluded nucleation zone assumption,
the size distributions of spherulite radii show no spherulite of radius
less than Ld (see Fig. 6(c–d)). This assumption also changes the relative
position of the nucleus inside the spherulite. We introduce the eccen-
tricity of the ith spherulite, ei to study this effect (Fig. 10(a)). It is de-
fined by =e d R/i i

i( ); where =d x xi
i

g
i

0
( ) ( ) is the distance between the

spherulite nucleus, x i
0
( ), and its centroid xg

i( ). The value of e is presented
as a function of the Avrami exponent n in Fig. 10(b). The average ec-
centricity does not seem affected by the effective nucleation time,
whereas the existence of the excluded nucleation zone halves its value.
It is noteworthy that for low L L/d c that do not affect the kinetics
( =n 3), there is a significant effect on the average eccentricity. This
effect is explained by the fact that the nucleus cannot be at a distance
less than Ld from the spherulite boundary.

We believe that the experimental study of the eccentricity of
spherulites will make it possible to choose or discriminate against one
or the other assumptions used to model nucleation staturation, i.e. ex-
istence of an effective nucleation time or existence of a nucleation ex-
cluded zone. Specifically, at a certain Avrami parameter n, if the ec-
centricity of the spherulites is obvious, the effective nucleation time
assumption algorithm can be employed in the modeling. Otherwise, we
rather choose the nucleation excluded zone assumption algorithm.

4.3. Relationships between kinetics and microstructure

The last interesting point is the relationship between kinetics and
microstructure. Indeed, if we know the growth rate, G, it is possible to
generate an equivalent microstructure from the results of the Avrami
analysis. More precisely, the Avrami exponent, n, and the crystal-
lization half-time, t0.5, provide us the value of tc and t (or Ld) as shown
in Steps 1 and 2 of the previous subsection. Finally, the characteristic
length is given by =L Gtc c. It is interesting to note that this approach
allows to compute the nucleation rate, =I L tc c

2 1, from the Avrami
parameters and the growth rate G by the following expression:

= +I
G t n
0.051 1 exp 7.10 2.362

0.5
3

3

(18)



this expression is valid for 2D cases and for < n2 3. It should be
noted that the surface effects which can lead to transcrystallinity are
not taken into account.

Note that Billon and Haudin [108] also provided an algorithm to
determine the nucleation rate, I, by combining the isothermal crystal-
lization experiments with the computational simulation.

5. Conclusions

The numerical framework, which is presented in this paper, allows
to generate 2D microstructures of isothermal crystallization from phy-
sical data such as growth rate, G, and nucleation rate, I. The new
concept of nucleation time can well impose the sporadic nucleation or
predetermined nucleation (instantaneous nucleation) by introducing
the effect of nucleation saturation. Two assumptions have been studied
to model the nucleation saturation, namely the existence of an effective
nucleation time, t , or the existence of a nucleation excluded zone of
thickness, Ld.

An analysis was carried out using the characteristic length,
=L G Ic

1
3

1
3 , and the characteristic time, =t G Ic

2
3

1
3 , as well as two

adimensional parameters (t t/ c and L L/d c) associated with the two
previous assumptions, leading us to the following remarks:

• The mean spherulite radius, R is proportional to Lc and independent
of tc; with a proportionality constant that depends on the di-
mensionless numbers t t/ c and L L/d c (cf. Equations (14) and (15)).
• Conversely, the crystallization half-time, t0.5 is proportional to tc and
independent of Lc; with a proportionality constant that depends on
the dimensionless numbers t t/ c and L L/d c (cf. Equations (12) and
(17)).
• The nucleation saturation influences the Avrami exponent, n, (cf.
Equations 11 and 16), which varies continuously from 3 (no sa-
turation) to 2 (high saturation) for both studied assumptions. In
addition, the saturation of the nucleation increases the mean radius
of the spherulites and the crystallization half-time according to the
laws given by Equations (12) and (14) using the assumption of the
existence of an effective nucleation time, and by Equations (15) and
(17) using the assumption of the existence of a nucleation excluded
zone.
• These simulations allow to highlight a relationship between crys-
tallization kinetics and microstructure. These results suggest that it
is possible to generate a microstructure from data from a DSC iso-
thermal analysis, provided that the growth rate G is known (cf.
Equation (18)). Nevertheless, a 3D crystallization occurs during DSC
experiment. This is the reason why it is necessary to have a 3D
numerical framework.

It is interesting to note that the efficiency of our numerical frame-
work offers the possibility to perform 3D simulations containing several
hundred spherulites. The extension to 3D cases will be the subject of a
further publication [109].
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