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Abstract We report experimental results on the mode-locked
operation of a flash-lamp-pumped Nd:YAG laser at1.064µm.
The KTP crystal, which induces passive mode-locking, exploits
the existence and properties of spatial Zakharov-Manakov soli-
ton dynamics. A train of pulses with duration close to100 ps,
repetition rate of136MHz and modulation depth almost
100% has been produced. The mode-locked pulses are mod-
ulated with a longer180ns pulse envelope with repetition rate
of 10Hz.

Oscilloscope trace of a train of mode-locked100 ps pulses of
the flash-pumped Nd:YAG at1.064µm. Inset: selected mode-
locked pulse within the train.
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1. Introduction

Pulsed lasers in the infrared and near infrared have been
widely used in the fields of spectroscopy, nonlinear op-
tics, remote sensing, micro–surgeon, micromachining and
optical communication [1,2,3,4,5]. This kind of laser re-
sources can be efficiently obtained by actively or passively
Q-switching and mode-locking in solid–state lasers [6,7,
8,9,10]. For high peak power applications, passively Q-
switched and mode-locked lasers are more desirable than
actively ones because of their compactenss and simplicity.

A great variety of passive mode-locking techniques per-
mit to produce short and ultra-short laser pulses: fast sat-
urable absorber mode-locking, which makes use of the sat-
uration properties of a dye molecule or a semiconductor

[11,12,13]; slow saturable absorber mode-locking, which
exploits the dynamic saturation of the gain medium [14];
Kerr lens mode-locking, which exploits the self-focusing
property of a transparent nonlinear optical material [15];
nonlinear quadratic mode-locking, which exploits quadratic
nonlinear phenomena exhibiting intensity-dependent trans-
mission or reflection [16,17,18].

In this Letter, we report experimental results on passive
nonlinear quadratic mode-locking operation of a Nd:YAG
laser. The laser is optically pumped with flash lamps [7].
The quadratic KTP crystal, which acts as saturable ab-
sorber, exploits the existence and properties of non diffrac-
tive spatial three wave solitons [19,20,21], in particular
Zakharov-Manakov (ZM) soliton waves [22,23,24]. It is
the first time, to the best of our knowledge, that such non-
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linear waves have been applied to build a pulsed laser.
A train of pulses with duration close to100 ps, modu-
lation depth near100% and repetition rate of136MHz
has been produced. The flash–lamp pumped laser operates
in a regime where the mode-locked pulses are modulated
with a longer180ns pulse envelope with repetition rate of
10Hz.

2. Nonlinear absorption mechanism

We consider the optical spatial non-collinear scheme with
type II second harmonic generation (SHG) in a birefrin-
gent crystal. Two orthogonally polarized beams at the fun-
damental frequency (FF) are injected into the nonlinear
birefringent medium to cross and overlap at the input face
of the crystal. Each field is linearly polarized and aligned
with a polarization eigenstate of the crystal. The corre-
sponding wave–vectors are tilted with respect to the direc-
tion of perfect collinear phase matching, so that the sum-
frequency harmonic propagation direction lies in between
the directions of the two input waves. Depending on the
input intensities, three different propagation regimes exist
[24]. Linear regime: the beams injected at the (FF) do not
interact. Frequency conversion: parts of the beams at FF
interact and generate a field at the second harmonic (SH);
the beams at FF which do not interact behave linearly.
Solitonic regime: the beams at FF interact and generate a
field at the SH; the generated field sustains a Zakharov-
Manakov soliton at SH that, after a certain propagation
length, decays into solitons at FF. The high intensity gener-
ated solitons at FF are spatially shifted with respect to the
linear components at FF. Figure 1 shows tipical numerical
dynamics of the FF and SH beams, in the ordinary propa-
gation planex− z, in the linear, frequency conversion and
solitonic regimes.

A device with nonlinear transmission (reflection) can
be implemented by simply spatially transmitting (reflect-
ing) the soliton beams at FF and only partially reflect-
ing (transmitting) the linear beams at FF [25]. A typical
intensity-dependent trasmission, calculated in the case of a
birefringent crystal, which may sustain ZM solitons, com-
bined with a filter which provides100% transmission of
the soliton components and15% trasmission of the linear
components, is shown in figure 2. Data correspond to a
single–pass transmission through the set–up.

We use this mechanism for mode-locking of a flash-
lamp-pumped Nd:YAG oscillator.

3. Experimental set-up and results

The oscillator configuration used in our experiments is shown
schematically in figure 3.

The set-up consists of two flat mirrors M1 and M2. M1
has80% reflectivity at1.064µm, and6% at0.532µm; M2
has90% reflectivity at 1.064µm, and6% at 0.532µm.
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Figure 1 Numerical dynamics of beams at FF (top row) and
beams at SH (bottom) in the ordinaryx − z plane. Left column,
linear regime; central column, frequency conversion regime;
right column, solitonic regime.
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Figure 2 Numerical data on the intensity-dependent transmis-
sion of a quadratic saturable absorber made by the combination
of a type II SHG crystal, which may sustain ZM solitons, and a
spatial filter which provides100% transmission of the FF soliton
components and15% trasmission of the FF linear beams.I is the
intensity of FF input beams,Is define the ZM soliton threshold.

The laser output is delivered through mirror M1. The ac-
tive medium is a1.1% atomic doped Nd:YAG rod of10 cm,
transversely pumped by two flash lamps with a typical en-
ergy of25J . The repetition rate is10Hz. Single-transverse
mode operation is ensured by a circular aperture (diaphragm)
of 1mm in diameter. We use a Brewster polarizer, P1, to
ensure the linear polarization of the beam; a lens, L1, a
half-wave plate and a Wollastone cube polarizer to produce
two independent beams with perpendicular linear polariza-
tion states. The two beams have almost the same amount of
energy. Through lens L2, the beams are focused and spa-
tially superimposed in the plane of their beam waist with a
circular shape around200µm full width at half maximum
in intensity (FWHMI). A 3 cm long KTP crystal cut for
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Figure 3 Schematic set-up of the flash-lamp-pumped Nd:YAG
laser operating in the mode-locked regime. L1, L2, L3 lenses; P1
polarizer; M1, M2 mirrors.

type II second harmonic generation is positioned such that
its input face coincides with the plane of superposition of
the two beams. The crystal is oriented for perfect phase
matching. The directions of the linear polarization state of
the two beams were adjusted to coincide with the ordi-
nary and the extraordinary axes, respectively, of the KTP
crystal. The wave–vectors of the input fields were tilted
at angles0.7o and−0.7o (in the crystal) with respect to
the direction of perfect collinear phase matching for the
extraordinary and the ordinary components, respectively.
Lens L3 ensures the beam recomposition after reflection
on mirror M2.

The choice and alignement of lens L3 can provide trans-
mission of soliton beams at1.064µm, and partial trans-
mission of linear beams at1.064µm, which are spatially
shifted with respect to nonlinear waves. Thus, the com-
bination of KTP crystal, which may sustain ZM solitons,
and the lens L3 may behave as a saturable absorber. In fact,
in a way similar to what is observed with a saturable ab-
sorber, the mode-locked regime is reached by increasing
the pump level above an intensity threshold. The thresh-
old intensity for mode-locked operation is estimated to be
about800MW/cm2.

Figure 4 shows the mode-locked train of energetic pulses,
with an envelope duration of180ns FWHMI. The mode-
locking regime is simultaneously accompanied by a repeti-
tive10Hz Q-switching like regime, due to the flash pump-
ing repetition rate. Figure 5 shows a mode-locked pulse
within the envelope train, with a duration of about100 ps
FWHMI. The mode locked pulse repetition rate is136
MHz, which match with the cavity round trip time, and
the modulation depth is almost100%. The profile and the
duration of the envelope train and the pulses are meausured
with fast photodiode and oscilloscope (minimum band-
width 12GHz). The stability of peak power from shot to
shot is close to80%.

4. Conclusion

We have demonstrated, for the first time to our knowledge,
the passive mode-locked operation of a flash-lamp pumped
Nd:YAG laser using a type II phase-matched KTP crys-
tal, exploiting Zakharov–Manakov solitonic dynamics, as
saturable absorber. The mode-locked regime has produced
train of pulses with duration close to100 ps, repetition

Figure 4 Characterization of the pulse train delivered by the
mode-locked flash-lump-pumped Nd:YAG laser. The envelope
train duration is about180ns FWHMI.

Figure 5 Characterization of the profile and duration of a pulse
selected in the central part of the pulse train delivered by the
mode-locked flash-lump-pumped Nd:YAG laser. The envelope
duration is about100 ps FWHMI.

rate of136 MHz and modulation depth almost100%. The
mode-locked pulses are modulated with a longer180ns
pulse envelope with repetition rate of10Hz. The intensity
threshold for mode locking is imposed by the correspond-
ing threshold of soliton formation.
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