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High order numerical schemes

for transport equations on bounded domains

Benjamin Boutin∗ & Thi Hoai Thuong Nguyen† & Abraham Sylla‡

& Sébastien Tran-Tien§ & Jean-François Coulombel¶

December 5, 2019

Abstract

This article is an account of the NABUCO project achieved during the summer camp CEMRACS
2019 devoted to geophysical fluids and gravity flows. The goal is to construct finite difference ap-
proximations of the transport equation with nonzero incoming boundary data that achieve the best
possible convergence rate in the maximum norm. We construct, implement and analyze the so-called
inverse Lax-Wendroff procedure at the incoming boundary. Optimal convergence rates are obtained by
combining sharp stability estimates for extrapolation boundary conditions with numerical boundary
layer expansions. We illustrate the results with the Lax-Wendroff and O3 schemes.

1 Introduction

1.1 Context

The goal of this article is to propose a high order numerical treatment of nonzero incoming boundary
data for the advection equation. The methodology is developed here for the one-dimensional problem but
it is our hope that the tools used below will be useful for higher dimensional problems. We are thus given
a fixed constant velocity a > 0, an interval length L > 0 and we consider the (continuous) problem:





∂tu+ a ∂xu = 0 , t ≥ 0 , x ∈ (0, L) ,

u(0, x) = f(x) , x ∈ (0, L) ,

u(t, 0) = g(t) , t ≥ 0 .

(1.1)
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The requirements on the initial and boundary data, namely f and g, will be made precise below. The
solution to (1.1) is given by the method of characteristics, which yields the formula:

∀ (t, x) ∈ R
+ × (0, L) , u(t, x) =

{
f (x− a t) , if x ≥ a t ,

g
(
t− x

a

)
, if x ≤ a t .

(1.2)

The question we address is how to construct high order numerical approximations of the solution (1.2) to
(1.1) by means of (explicit) finite difference approximations. This problem has been addressed in [CL20]
in the case of zero incoming boundary data (that is, g = 0 in (1.1)). The focus in [CL20] is on the outflow
boundary (x = L here since a is positive), for which extrapolation numerical boundary conditions are
analyzed. Fortunately for us, a large part of the analysis in [CL20] can be used here as a black box and
we therefore focus on the incoming boundary. To motivate the analysis of this paper, let us present a
very simple -though illuminating- example for which we just need to introduce the basic notations that
will be used throughout this article. In all what follows, we consider a positive integer J , that is meant
to be large, and define the space step ∆x and the grid points (xj)j∈Z by

∆x :=
L

J
, xj := j∆x (j ∈ Z) .

The interval (0, L) corresponds to the cells (xj−1, xj) with j = 1, . . . , J , but considering the whole real
line {j ∈ Z} will be useful in some parts of the analysis. The time step ∆t is then defined as ∆t := λ∆x,
where λ > 0 is a constant that is fixed so that assumption 1.1 below is satisfied. We use from now on the
notation tn := n∆t, n ∈ N; the quantity unj will play the role of an approximation for the solution u to
(1.1) at the time tn on the cell (xj−1, xj).

We now examine an example where the exact solution to (1.1) is approximated by means of the
Lax-Wendroff scheme. The approximation reads:

un+1
j = unj − λa

2
(unj+1 − unj−1) +

(λa)2

2
(unj+1 − 2unj + unj−1) , n ∈ N , j = 1, . . . , J , (1.3)

where we recall that λ = ∆t/∆x is a fixed constant and a > 0 is the transport velocity in (1.1). The
initial condition for (1.3) is defined, for instance, by computing the cell averages of the initial condition
f in (1.1), namely:

∀ j = 1, . . . , J , u0j :=
1

∆x

∫ xj

xj−1

f(x) dx . (1.4)

Without any boundary, the Lax-Wendroff scheme is a second order approximation to the transport equa-
tion [GKO95]. We would like, of course, to maintain the second order accuracy property when implement-
ing (1.3) on an interval. This implementation, however, requires, at each time iteration n, the definition of
the boundary (or ghost cell) values un0 and unJ+1. At the outflow boundary, we prescribe an extrapolation
condition [Kre66, Gol77], the significance of which will be thoroughly justified in the next sections:

unJ+1 = 2unJ − unJ−1 , n ∈ N . (1.5)

Combining (1.3) with (1.5), the last interior cell value unJ obeys the induction formula:

un+1
J = unJ − λa (unJ − unJ−1) , n ∈ N ,

which is nothing but the upwind scheme. It then only remains to determine the inflow numerical boundary
condition un0 . Since we wish to approximate the exact solution to (1.1) and un0 is meant, at least, to
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approximate the trace u(tn, 0), it seems reasonable at first sight to prescribe the Dirichlet boundary
condition:

un0 = g(tn) , n ∈ N . (1.6)

In the case of zero incoming boundary data (g = 0), and for any sufficiently smooth initial condition f
that is “flat” at the incoming boundary, the main result of [CL20] shows that the above numerical scheme
(1.3), (1.4), (1.5), (1.6) converges towards the exact solution to (1.1) with a rate of convergence 3/2 in the
maximum norm. Numerical simulations even predict that the rate of convergence should be 2, or at least
close to 2, for smooth initial data. However, implementing the above numerical scheme1 quickly shows
that the rate of convergence falls down to 1 when g is nonzero and satisfies the compatibility conditions2

described hereafter with the initial condition f .
Our goal is to provide with a thorough treatment of nonzero incoming boundary data and to design

numerical boundary conditions that recover the optimal rate of convergence in the maximum norm (at
least, the same rate of convergence as the one in [CL20] for zero boundary data). The strategy is not
new and is now referred to as the inverse Lax-Wendroff method. It consists, as detailed below, in writing
Taylor expansions with respect to the space variable x close to the incoming boundary and then using the
advection equation (1.1) to substitute the normal derivatives ∂m

x u(t, 0) for tangential derivatives ∂m
t u(t, 0),

the latter being computed thanks to the boundary condition in (1.1). This strategy is available when the
boundary is non-characteristic [BGS07].

The inverse Lax-Wendroff method is a general strategy that has been followed in various directions.
We refer for instance to [TS10, ST17, FY13, VS15, DDJ18] for various implementations related to either
hyperbolic or kinetic partial differential equations. In these works, most of the time, the incoming nu-
merical boundary condition prescribes the ghost cell value un0 in terms of the boundary datum g but also
of interior cell values unj with j ≥ 1. This is the reason why stability is a real issue in these works, see for
instance the discussion in [VS15, Section 4], and many rigorous justifications are still open. We develop
here a simplified version of some of those previously proposed boundary treatments, but we rigorously
justify the convergence with an (almost) optimal rate of convergence. As in [CL20], the key ingredient in
our analysis is an unconditional stability result for the Dirichlet boundary conditions which dates back
to [GT78, GT81], see an alternative proof in [CG11].

1.2 The inverse Lax-Wendroff method

We first fix from now on some notations. In all this article, we are given some fixed integers p, r ∈ N and
consider an explicit two time step approximation for the solution to (1.1):

un+1
j =

p∑

ℓ=−r

aℓ u
n
j+ℓ , n ∈ N , j = 1, . . . , J . (1.7)

In (1.7), the numbers a−r, . . . , ap are defined in terms of the parameter λ and of the velocity a (see, for
instance, (1.3) for which p = r = 1). These numbers are fixed, which means that (1.7) is linear with
respect to (unj ). For simplicity, we follow [CL20] and choose as initial data for (1.7) the cell averages of

the initial condition f in (1.1). This means that the vector (u01, . . . , u
0
J ) is defined by (1.4). For (1.7) to

define inductively (with respect to n) the vector (un1 , . . . , u
n
J), we need to prescribe the ghost cell values

un1−r, . . . , u
n
0 and unJ+1, . . . , u

n
J+p. As explained above, we focus here on the inflow boundary and we

1One can choose for instance a = 1, λ = 5/6, L = 6, f(x) = sin(x), g(t) = − sin(t) and increase the integer J geometrically.
2The rate of convergence could be even smaller than 1 when the compatibility conditions are not satisfied but that would

just reflect the fact that the exact solution (1.2) is not smooth (for instance, not even continuous if f(0) 6= g(0)).
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therefore follow the extrapolation boundary treatment of [CL20] for the outflow boundary. Namely, if we
define the finite difference operator D− as:

(D−v)j := vj − vj−1 ,

and its iterates Dm
− accordingly, we choose from now on an extrapolation order kb ∈ N for the outflow

boundary and prescribe:
(Dkb

− un)J+ℓ = 0 , n ∈ N , ℓ = 1, . . . , p . (1.8)

The example (1.5) corresponds to kb = 2 (recall p = 1 for the Lax-Wendroff scheme so there is only
one ghost cell). It now remains to prescribe the inflow values un1−r, . . . , u

n
0 . Unlike some previous works,

we are going to prescribe Dirichlet boundary conditions, meaning for instance that the value un0 will be
determined in terms of the boundary datum g only. Let us assume for a while that unj is a second order
approximation of u(tn, (xj−1 +xj)/2) where u is the exact solution (1.2) of the continuous problem (1.1).
Then we formally have:

un0 ≈ u

(
tn,−∆x

2

)
≈ u(tn, 0)− ∆x

2
∂xu(t

n, 0) ,

where ≈ means “equal up to O(∆x2)”, and we then use (1.1) to get:

un0 ≈ u(tn, 0) +
∆x

2 a
∂tu(t

n, 0) = g(tn) +
∆x

2 a
g′(tn) .

The last term ∆x/(2 a) g′(tn) in the previous equality is precisely the correction that is required to
recover the second order accuracy when dealing with the Lax-Wendroff scheme (compare with (1.6)).
More generally speaking, we could have pushed further the above Taylor expansion and obtained as a
final (formal !) result that un0 should be “close” (whatever that means !) to some quantity of the form:

K∑

κ=0

∆xκ

κ ! aκ
ακ g

(κ)(tn) ,

where K is a truncation order and α0, . . . , αK are numerical constants.
The general form of the Dirichlet boundary conditions that we consider below is:

unℓ =

K∑

κ=0

∆xκ

κ ! aκ
ακ,ℓ g

(κ)(tn) , n ∈ N , ℓ = 1− r, . . . , 0 ,

where the ακ,ℓ’s are numerical constants which will play a role (together with the truncation order K)
in the consistency analysis. There are two main choices which we discuss in this article. The first one is
given in [TS10, VS15]:

ακ,ℓ :=

(
1

2
− ℓ

)κ

, κ ∈ N , ℓ = 1− r, . . . , 0 ,

and is relevant if unj is eventually compared in the convergence analysis with u(tn, (xj−1+xj)/2), u being
the exact solution (1.2). The other possible choice we advocate is:

ακ,ℓ :=
(−1)κ

κ+ 1

(
ℓκ+1 − (ℓ− 1)κ+1

)
, κ ∈ N , ℓ = 1− r, . . . , 0 , (1.9)

and is relevant if unj is eventually compared (as in our main result, which is Theorem 1.2 below) in the
convergence analysis with the average of u(tn, ·) on the cell (xj−1, xj). The truncation orderK is discussed
with our main result in the following paragraph.
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1.3 Results

We assume that the approximation (1.7) is consistent with the transport operator and that it defines a
stable procedure on ℓ2(Z).

Assumption 1.1 (Consistency and stability without any boundary). The coefficients a−r, ..., ap in (1.7)
satisfy a−r ap 6= 0 (normalization), and for some integer k ≥ 1, there holds:

∀m = 0, . . . , k ,

p∑

ℓ=−r

ℓm aℓ = (−λa)m , (consistency of order k), (1.10)

sup
θ∈[0,2π]

∣∣∣∣∣

p∑

ℓ=−r

aℓ e
i ℓ θ

∣∣∣∣∣ ≤ 1 , (ℓ2-stability on Z). (1.11)

For the Lax-Wendroff scheme (1.3), we have p = r = 1 if λa 6= 1, the integer k equals 2, and (1.11)
holds if and only if λa ≤ 1. In Theorem 1.2 below and all what follows, the velocity a > 0, the length
L > 0, the parameter λ = ∆t/∆x and the extrapolation order kb ∈ N at the outflow boundary are given.
Subsequent constants may depend on them. The integer k ≥ 1 is also fixed such that assumption 1.1
holds. We consider the initial condition (1.4) and its evolution by the numerical scheme (1.7), (1.8), the
inflow ghost cell values being given by:

unℓ =
k−1∑

κ=0

∆xκ

(κ+ 1) ! (−a)κ
(
ℓκ+1 − (ℓ− 1)κ+1

)
g(κ)(tn) , n ∈ N , ℓ = 1− r, . . . , 0 . (1.12)

Of course, prescribing (1.12) is meaningful only if g is sufficiently smooth (say, g ∈ C k−1). One could
push further the Taylor expansion in (1.12) and consider higher order correctors but it would require
further smoothness on g and it would eventually not improve our convergence result below, so fixing the
truncation order K = k − 1 seems to be the most convenient choice. Our main convergence result is the
extension of the main result in [CL20] to the case of nonzero boundary data.

Theorem 1.2 (Main convergence result). Under assumption 1.1, there exists a constant C > 0 such that
for any final time T ≥ 1, any integer J ∈ N

∗, any data f ∈ Hk+1((0, L)) and g ∈ Hk+1((0, T )) satisfying
the compatibility requirements at t = x = 0:

∀m = 0, . . . , k , f (m)(0) = (−a)−m g(m)(0) ,

the solution (unj ) to (1.4), (1.7), (1.8), (1.12) satisfies:

sup
0≤n≤T/∆t

sup
1≤j≤J

∣∣∣∣∣u
n
j − 1

∆x

∫ xj

xj−1

u(tn, x) dx

∣∣∣∣∣ ≤ C T eC T/L ∆xmin(k,kb)−1/2
(
‖f‖Hk+1((0,L))+‖g‖Hk+1((0,T ))

)
,

(1.13)
with u the exact solution to (1.1), whose expression is given by (1.2).

Actually, the constant C in (1.13) is independent of L ≥ 1, which is consistent with the convergence result
we shall prove below for the half-space problem on R

+ with inflow at x = 0. As in [CL20], the loss of
1/2 in the rate of convergence of Theorem 1.2 looks somehow artificial and is mostly a matter of passing
from the ℓ∞n ℓ2j topology to ℓ∞n,j. Our next result examines a situation where the optimal convergence rate
min(k, kb) can be obtained. In order to simplify (and shorten) the proof of Theorem 1.3, we only examine
here the case of a half-space with extrapolation outflow conditions. The extension of the techniques to
the case of an interval is left to the interested reader.
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Theorem 1.3 (Optimal rate of convergence for the outflow problem). Under assumption 1.1 and under
the additional assumption 3.2 stated hereafter, there exists a constant C > 0 such that for any final time
T ≥ 1, any integer J ∈ N

∗, any data f ∈ Hk+1((−∞, L)), the solution to the scheme:





u0j =
1

∆x

∫ xj

xj−1

f(x) dx , j ≤ J ,

(Dkb
− un)J+ℓ = 0 , 0 ≤ n ≤ T/∆t , ℓ = 1, . . . , p ,

un+1
j =

p∑

ℓ=−r

aℓ u
n
j+ℓ , 0 ≤ n ≤ T/∆t− 1 , j ≤ J ,

(1.14)

satisfies the error estimate

sup
0≤n≤T/∆t

sup
j≤J

∣∣∣∣∣u
n
j − 1

∆x

∫ xj

xj−1

f(x− a tn) dx

∣∣∣∣∣ ≤ C T ∆xkb ‖f‖Hk+1((0,L)) ,

as long as kb < k.

In other words, the technical assumption 3.2 hereafter, which is verified on many examples such as
the Lax-Wendroff and O3 schemes, allows to recover the optimal rate kb = min(kb, k) in the case kb < k.
Of course, one would also like to improve the rate min(kb, k)− 1/2 in the case kb = k, which is clearly the
most natural choice. However, in that case, both the interior and boundary consistency errors scale like
∆xk and, in the framework of assumption 1.1, stability in the interior domain is available only in the ℓ2j
topology, so it is quite difficult to derive the convergence rate k in the ℓ∞j topology. Theorem 1.3 already
indicates that combining the approach of [CL20] with other techniques (here, boundary layer expansions)
may improve some results. We hope to deal with the case kb = k in the future.

2 Convergence analysis for the inverse Lax-Wendroff method

This Section is devoted to the proof of Theorem 1.2. In order to shorten the exposition, we shall use some
results of [CL20] as a black box and we refer the interested reader to [CL20] for more details. Following
[CL20], we shall prove Theorem 1.2 by using a stability estimate for (1.7), (1.8), (1.12) and a superposition
argument, which amounts to considering separately two half-space problems: one in which there is only
inflow at x = 0, and one for which there is only outflow at x = L. The novelty here is the nonzero inflow
source term so we first deal with that case.

2.1 Convergence analysis on a half-line for the inflow problem

We focus here on the inflow source term, and therefore start by proving the main convergence estimate
that is the new ingredient for the proof of Theorem 1.2.

Theorem 2.1 (Convergence estimate for the inflow problem). Under assumption 1.1, there exists a
constant C > 0 such that for any final time T ≥ 1, for any J ∈ N

∗, for any initial condition f ∈
Hk+1((0,+∞)) and boundary source term g ∈ Hk+1((0, T )) satisfying the compatibility conditions:

∀m = 0, . . . , k , f (m)(0) = (−a)−m g(m)(0) , (2.1)
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the solution (unj )j≥1−r,n∈N to the numerical scheme:





u0j =
1

∆x

∫ xj

xj−1

f(x) dx , j ≥ 1 ,

unℓ =

k−1∑

κ=0

∆xκ

(κ+ 1) ! (−a)κ
(
ℓκ+1 − (ℓ− 1)κ+1

)
g(κ)(tn) , 0 ≤ n ≤ T/∆t , ℓ = 1− r, . . . , 0 ,

un+1
j =

p∑

ℓ=−r

aℓ u
n
j+ℓ , 0 ≤ n ≤ T/∆t− 1 , j ≥ 1 ,

(2.2)

satisfies:

sup
0≤n≤T/∆t


∑

j≥1

∆x

(
unj − 1

∆x

∫ xj

xj−1

u(tn, x) dx

)2



1/2

≤ C T ∆xk
(
‖f‖Hk+1((0,+∞)) + ‖g‖Hk+1((0,T ))

)
,

where u is the exact solution to the half-line transport problem:





∂tu+ a ∂xu = 0 , t ∈ (0, T ) , x ≥ 0 ,

u(0, x) = f(x) , x ≥ 0 ,

u(t, 0) = g(t) , t ∈ (0, T ) .

(2.3)

Proof. For convenience, we first extend g into a function g♭ ∈ Hk+1((0,+∞)) and then define:

∀x ∈ R , f♯(x) :=

{
f(x) , if x > 0,

g♭(−x/a) , if x < 0.

Since f and g satisfy the compatibility conditions (2.1), we have f♯ ∈ Hk+1(R), and the exact solution u
to (2.3) is given by:

∀ (t, x) ∈ [0, T ]× (0,+∞) , u(t, x) = f♯(x− a t) .

Let us now define:

∀ j ∈ Z , ∀n ∈ N , wn
j :=

1

∆x

∫ xj

xj−1

f♯(x− a tn) dx ,

which corresponds to the cell average of the exact solution to (2.3). With (unj )j≥1−r,0≤n≤T/∆t the solution
to the numerical scheme (2.2), we define the error εnj := unj − wn

j , that is a solution to:





ε0j = 0 , j ≥ 1 ,

εnℓ = unℓ − wn
ℓ , 0 ≤ n ≤ T/∆t , ℓ = 1− r, . . . , 0 ,

εn+1
j =

p∑

ℓ=−r

aℓ ε
n
j+ℓ +∆t en+1

j , 0 ≤ n ≤ T/∆t− 1 , j ≥ 1 .

(2.4)

The interior consistency error (en+1
j )j≥1,0≤n≤T/∆t−1 is easily estimated by means of the Cauchy-
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Schwarz inequality and Fourier analysis:

∑

j≥1

∆x (en+1
j )2 =

∆x

∆t2

∑

j≥1

(
wn+1
j −

p∑

ℓ=−r

aℓw
n
j+ℓ

)2

=
1

∆x∆t2

∑

j≥1

(∫ xj

xj−1

(
f♯(x− a tn − a∆t)−

p∑

ℓ=−r

aℓ f♯(x− a tn + ℓ∆x)

)
dx

)2

≤ 1

∆t2

∫

R

(
f♯(x− a tn − a∆t)−

p∑

ℓ=−r

aℓ f♯(x− a tn + ℓ∆x)

)2

dx

≤ 1

2π∆t2

∫

R

∣∣∣e−i a λ∆x ξ −
p∑

ℓ=−r

aℓ e
i ℓ∆x ξ

∣∣∣
2 ∣∣f̂♯(ξ)

∣∣2 dξ ≤ C∆x2 k
∫

R

ξ2 (k+1)
∣∣f̂♯(ξ)

∣∣2 dξ ,

where the final inequality comes from assumption 1.1 and the fact that the ratio ∆t/∆x is constant.
Going back to the definition of f♯, we have obtained the bound:

sup
0≤n≤T/∆t−1


∑

j≥1

∆x (en+1
j )2




1/2

≤ C∆xk
(
‖f‖Hk+1((0,+∞)) + ‖g‖Hk+1((0,T ))

)
, (2.5)

for some constant C that is independent of the final time T ≥ 1 and the data f and g.
We now turn to the boundary errors in (2.4), and wish to estimate the following quantities:

∑

0≤n≤T/∆t−1

∆t
(
unℓ − wn

ℓ

)2
, ℓ = 1− r, . . . , 0 .

Let us consider an integer n such that 0 ≤ n ≤ T/∆t− 1. From the definition of wn
ℓ , ℓ ≤ 0, we have:

unℓ − wn
ℓ =

k−1∑

κ=0

∆xκ

(κ+ 1) ! (−a)κ
(
ℓκ+1 − (ℓ− 1)κ+1

)
g(κ)(tn)− 1

∆x

∫ xℓ

xℓ−1

g♭(t
n − x/a) dx

= − (−a)−k

∆x

∫ xℓ

xℓ−1

xk
∫ 1

0

yk−1

(k − 1) !
g
(k)
♭

(
tn − x y

a

)
dy dx ,

where we have used the Taylor formula3. By the Cauchy-Schwarz inequality, we get:

(
unℓ − wn

ℓ

)2 ≤ C

∆x

∫ xℓ

xℓ−1

∫ 1

0
x2 ky2 (k−1) g

(k)
♭

(
tn − x y

a

)2
dy dx ,

and we now apply the change of variables (x, y) → (x y, x) to get:

(
unℓ − wn

ℓ

)2 ≤
∫ xℓ

xℓ−1

(∫ 0

v
|v| |u|2 (k−1) g

(k)
♭

(
tn − u

a

)2
du

)
dv .

3This is precisely at this point of the analysis that the definition of the coefficients ακ,ℓ in the inverse Lax-Wendroff
method arises. Our choice in (1.12) is motivated by the fact that we compare the numerical solution with the cell average of
the exact solution.
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Restricting to ℓ = 1− r, . . . , 0, we have:

0∑

ℓ=1−r

(
unℓ − wn

ℓ

)2 ≤ C∆x2 k−1

∫ r∆x/a

0
g
(k)
♭ (tn + τ)2 dτ .

Summing now with respect to n, we end up with the estimate:

∑

0≤n≤T/∆t−1

∆t

0∑

ℓ=1−r

(εnℓ )
2 ≤ C∆x2 k

∫ +∞

0
g
(k)
♭ (t)2 dt ≤ C∆x2 k ‖g‖2Hk((0,T )) , (2.6)

for some constant C that is independent of the final time T ≥ 1 and the data f and g.
We now apply the main stability estimate for the error problem (2.4), for which we refer to the seminal

papers [GT78, GT81] and to the more recent works [CG11, CL20]:

sup
0≤n≤T/∆t



∑

j≥1

∆x (εnj )
2




1/2

≤ C




T sup

1≤n≤T/∆t



∑

j≥1

∆x (enj )
2




1/2

+




∑

0≤n≤T/∆t−1

∆t

0∑

ℓ=1−r

(εnℓ )
2




1/2




.

The conclusion of Theorem 2.1 then comes from the combination of the estimates (2.5) and (2.6).

2.2 Convergence estimate for the outflow problem

We recall the convergence estimate obtained in [CL20] for the complementary half-space problem where
extrapolation conditions are prescribed at the outflow boundary. We refer the reader to [CL20] for the
details.

Theorem 2.2 (Convergence estimate for the outflow problem [CL20]). Under assumption 1.1, there
exists a constant C > 0 such that for any final time T ≥ 1, for any J ∈ N

∗ and for any initial condition
f ∈ Hk+1((−∞, L)), the solution (unj )j≤J+p,0≤n≤T/∆t to the numerical scheme:





u0j =
1

∆x

∫ xj

xj−1

f(x) dx , j ≤ J ,

(Dkb
− un)J+ℓ = 0 , 0 ≤ n ≤ T/∆t , ℓ = 1, . . . , p ,

un+1
j =

p∑

ℓ=−r

aℓ u
n
j+ℓ , 0 ≤ n ≤ T/∆t− 1 , j ≤ J ,

satisfies:

sup
0≤n≤T/∆t



∑

j≤J

∆x

(
unj − 1

∆x

∫ xj

xj−1

f(x− a tn) dx

)2



1/2

≤ C T ∆xmin(k,kb) ‖f‖Hk+1((−∞,L)) .
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2.3 Proof of Theorem 1.2

It remains to combine the convergence estimates of Theorems 2.1 and 2.2 to prove Theorem 1.2. We use
a slight modification of the superposition argument in [CL20] in order to cope with the nonzero incoming
condition, but we basically follow the same lines. Let us consider a final time T ≥ 1 and some data
f ∈ Hk+1((0, L)), g ∈ Hk+1((0, T )) that satisfy the compatibility conditions stated in Theorem 1.2. We
consider some function χ ∈ C∞(R) such that χ(x) = 0 if x ≤ 1/3 and χ(x) = 1 if x ≥ 2/3. We then
decompose the initial condition f as:

∀x ∈ (0, L) , f(x) = (1− χ(x/L)) f(x) + χ(x/L) f(x) .

Since (1 − χ(·/L)) f vanishes on (2L/3, L), we can extend it by zero to the interval (L,+∞) and thus
consider (1 − χ(·/L)) f as an element of Hk+1((0,+∞)). Furthermore, the functions (1 − χ(·/L)) f and
g satisfy the same compatibility conditions as f and g at t = x = 0. We can thus apply Theorem 2.1 to
the sequence (vnj )j≥1−r,0≤n≤T/∆t that is defined as the solution to the numerical scheme:





v0j =
1

∆x

∫ xj

xj−1

(1− χ(x/L)) f(x) dx , j ≥ 1 ,

vnℓ =

k−1∑

κ=0

∆xκ

(κ+ 1) ! (−a)κ
(
ℓκ+1 − (ℓ− 1)κ+1

)
g(κ)(tn) , 0 ≤ n ≤ T/∆t , ℓ = 1− r, . . . , 0 ,

vn+1
j =

p∑

ℓ=−r

aℓ v
n
j+ℓ , 0 ≤ n ≤ T/∆t− 1 , j ≥ 1 .

We obtain the estimate:

sup
0≤n≤T/∆t


∑

j≥1

∆x

(
vnj − 1

∆x

∫ xj

xj−1

v(tn, x) dx

)2



1/2

≤ C T ∆xk
(
‖f‖Hk+1((0,L)) + ‖g‖Hk+1((0,T ))

)
,

(2.7)
where v is the exact solution to the transport problem:





∂tv + a ∂xv = 0 , t ∈ (0, T ) , x ≥ 0 ,

v(0, x) = (1− χ(x/L)) f(x) , x ≥ 0 ,

v(t, 0) = g(t) , t ∈ (0, T ) .

Similarly, we can view χ(·/L) f as an element of Hk+1((−∞, L)) that vanishes on (−∞, L/3). Theorem
2.2 then shows that the solution (wn

j )j≤J+p,0≤n≤T/∆t to the numerical scheme:





w0
j =

1

∆x

∫ xj

xj−1

χ(x/L) f(x) dx , j ≤ J ,

(Dkb
− wn)J+ℓ = 0 , 0 ≤ n ≤ T/∆t , ℓ = 1, . . . , p ,

wn+1
j =

p∑

ℓ=−r

aℓw
n
j+ℓ , 0 ≤ n ≤ T/∆t− 1 , j ≤ J ,
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satisfies:

sup
0≤n≤T/∆t


∑

j≤J

∆x

(
wn
j − 1

∆x

∫ xj

xj−1

χ((x− a tn)/L) f(x− a tn) dx

)2



1/2

≤ C T ∆xmin(k,kb) ‖f‖Hk+1((0,L)) . (2.8)

Using the support property of the function χ and the fact that the scheme (1.7) is explicit with a
finite stencil, we find that for all time iteration n up to the threshold:

N := min

(
E

(
J/3− kb

r

)
, E

(
E(J/3)

p

))
,

there holds:
wn
1−r = · · · = wn

0 = 0 , vnJ+1−kb
= · · · = vnJ+p = 0 .

In particular, the solution (unj )1−r≤j≤J+p,0≤n≤T/∆t to (1.7), (1.4), (1.8), (1.12) satisfies:

∀n = 0, . . . , N , ∀ j = 1− r, . . . , J + p , unj = vnj + wn
j .

Combining then the error estimates (2.7) and (2.8), we obtain:

sup
0≤n≤N


 ∑

1≤j≤J

∆x

(
unj − 1

∆x

∫ xj

xj−1

u(tn, x) dx

)2



1/2

≤ C1 T ∆xmin(k,kb)
(
‖f‖Hk+1((0,L)) + ‖g‖Hk+1((0,T ))

)
, (2.9)

where u is the exact solution to (1.1).
It remains, as in [CL20], to iterate in time the error estimate (2.9). We follow again the argument in

[CL20]. For any time iteration n between N and 2N , we split the solution (unj )1−r≤j≤J+p,0≤n≤T/∆t to
(1.7), (1.4), (1.8), (1.12) as the sum of the solution to the problem:





ũNj =
1

∆x

∫ xj

xj−1

u(tN , x) dx , 1 ≤ j ≤ J ,

(Dkb
− ũN+n)J+ℓ = 0 , 0 ≤ n ≤ N , ℓ = 1, . . . , p ,

ũN+n
ℓ =

k−1∑

κ=0

∆xκ

(κ+ 1) ! (−a)κ
(
ℓκ+1 − (ℓ− 1)κ+1

)
g(κ)(tN+n) , 0 ≤ n ≤ N , ℓ = 1− r, . . . , 0 ,

ũN+n+1
j =

p∑

ℓ=−r

aℓ ũ
N+n
j+ℓ , 0 ≤ n ≤ N − 1 , 1 ≤ j ≤ J ,

and of the (presumably small) solution to the ‘error’ problem:




εNj = uNj − 1

∆x

∫ xj

xj−1

u(tN , x) dx , 1 ≤ j ≤ J ,

(Dkb
− εN+n)J+ℓ = 0 , 0 ≤ n ≤ N , ℓ = 1, . . . , p ,

εN+n
ℓ = 0 , 0 ≤ n ≤ N , ℓ = 1− r, . . . , 0 ,

εN+n+1
j =

p∑

ℓ=−r

aℓ ε
N+n
j+ℓ , 0 ≤ n ≤ N − 1 , 1 ≤ j ≤ J .
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Since the initial condition u(· − a tN ) and the boundary source term g(tN + ·) satisfy the compatibility
conditions at the corner t = x = 0, we can apply the first step of the proof (leading to the error estimate
(2.9)) for the (ũN+n

j ) part, and we apply the stability estimate of [CL20, Proposition 4.1] for the (εN+n
j )

part. This leads to the second error estimate:

sup
N≤n≤2N



∑

1≤j≤J

∆x

(
unj − 1

∆x

∫ xj

xj−1

u(tn, x) dx

)2



1/2

≤ C1 (1 + C2)T ∆xmin(k,kb)
(
‖f‖Hk+1((0,L)) + ‖g‖Hk+1((0,T ))

)
,

and, more generally, to:

sup
µN≤n≤(µ+1)N


 ∑

1≤j≤J

∆x

(
unj − 1

∆x

∫ xj

xj−1

u(tn, x) dx

)2



1/2

≤ C1

(
µ∑

ν=0

Cν
2

)
T ∆xmin(k,kb)

(
‖f‖Hk+1((0,L)) + ‖g‖Hk+1((0,T ))

)
.

The end of the proof is the same as in [CL20] and we refer the interested reader to that reference for the
details.

3 High order outflow boundary layer analysis

In the present section, we explain how the analysis of [BC17], which dealt with the case of the Dirichlet
boundary condition at the outflow boundary, can be extended to the case of high order extrapolation (1.8).
The goal is to obtain an accurate description of the numerical solution close to the outflow boundary by
means of a boundary layer expansion. The leading order term in the expansion corresponds to the exact
solution to the transport equation. However, this leading order term does not satisfy the extrapolation
condition (1.8), leading to a consistency error of magnitude O(∆xkb) on the boundary. Under some mild
structural assumption on the numerical scheme (1.7), we show below that this O(∆xkb) error on the
boundary gives rise to a boundary layer term which scales as O(∆xkb+1/2) in the ℓ2j norm. This gain of a

factor ∆x1/2 enables us to recover the optimal convergence rate kb in the maximum norm on the whole
spatial domain for kb < k.

3.1 An introductive example

Let us go back for a while to the case of the Lax-Wendroff scheme (1.3), which we consider here on the
left half space:

un+1
j = unj − λa

2
(unj+1 − unj−1) +

(λa)2

2
(unj+1 − 2unj + unj−1) , n ∈ N , j ≤ J .

At the outflow boundary, we impose the first order extrapolation condition (which corresponds to kb = 1
while k = 2 for the Lax-Wendroff scheme):

unJ+1 = unJ , n ∈ N .

12



We start with some smooth initial condition f defined on (−∞, L) which we project as a piecewise constant
function:

u0j :=
1

∆x

∫ xj

xj−1

f(x) dx , j ≤ J .

The exact solution to the transport equation on (−∞, L) with initial condition f is u(t, x) = f(x− a t)
(recall a > 0). Hence the consistency analysis of the Lax-Wendroff scheme indicates that unj reads:

unj =
1

∆x

∫ xj

xj−1

f(x− a tn) dx+ error , (3.1)

where the first term in the expansion on the right hand side yields an O(∆x2) consistency error in the
interior domain, but also an O(∆x) consistency error on the boundary. If we wish to push forward the
above expansion, we need to take into account the boundary consistency error and introduce a corrector
which will hopefully not alter the interior consistency error. This can be achieved by observing that the
sequence:

vj := κj , j ∈ Z , κ := −1 + λa

1− λa
,

is kept unchanged by the Lax-Wendroff scheme on Z, and belongs to ℓ2(−∞, J) (we assume 0 < λa < 1
so |κ| > 1). Hence, to remove the boundary consistency error, we can add a corrector on the right hand
side of (3.1) in the following way:

unj =
1

∆x

∫ xj

xj−1

f(x− a tn) dx+∆xwn vj−J + error , (3.2)

where wn is defined in such a way that the two first terms on the right hand side satisfy the first order
extrapolation condition, that is:

wn := − 1

∆x (κ− 1)

∫ xJ

xJ−1

f(x+∆x− a tn)− f(x− a tn)

∆x
dx , n ∈ N .

If f is sufficiently smooth, then wn is O(1) and the first corrector on the right hand side of (3.2) is O(∆x)
in ℓ∞j . Note however that the ℓ2 norm (in space) of this boundary layer corrector scales as ∆x3/2 since

the sequence (κj) is square integrable on (−∞, 0). Another important observation at this point is that
defining wn requires the real number κ not to equal 1. This fact follows here from a mere verification but
it is a general consequence of the analysis in [Gol77] of the Lopatinskii determinant associated with the
boundary condition (1.8) (see also the proof of Lemma 3.5 below).

At this stage, the error analysis amounts to studying the system satisfied by the sequence:
(
unj − 1

∆x

∫ xj

xj−1

f(x− a tn) dx−∆xwn κj−J

)

j≤J+1,n∈N

,

the main point being that there is no boundary forcing term, and since the added boundary layer corrector
is O(∆x3/2) in ℓ2, the initial condition and interior consistency errors will be O(∆x3/2). Overall, the
stability estimate for the Lax-Wendroff scheme with first order extrapolation at the boundary yields the
convergence estimate:

sup
n≤T/∆t

∥∥∥∥∥u
n
j − 1

∆x

∫ xj

xj−1

f(x− a tn) dx−∆xwn vj−J

∥∥∥∥∥
ℓ2(−∞,J)

= O(∆x3/2) .
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By the triangle inequality, we thus obtain:

sup
n≤T/∆t

∥∥∥∥∥u
n
j − 1

∆x

∫ xj

xj−1

f(x− a tn) dx

∥∥∥∥∥
ℓ2(−∞,J)

= O(∆x3/2) ,

and this immediately gives the uniform convergence estimate:

sup
j≤J,n≤T/∆t

∣∣∣∣∣u
n
j − 1

∆x

∫ xj

xj−1

f(x− a tn) dx

∣∣∣∣∣ = O(∆x) .

The above brief sketch is made complete and rigorous below in the general framework of Theorem 1.3.

3.2 Discrete steady states

Formalizing somehow the previous example in a more general framework, let us now introduce the fol-
lowing definition.

Definition 3.1 (Steady state for the numerical scheme). A sequence (vj)j∈Z is called a (discrete) steady
state for the scheme (1.7) if it is kept unchanged by the time iteration process on Z, that is, if it satisfies:

∀ j ∈ Z ,

p∑

ℓ=−r

aℓ vj+ℓ = vj . (3.3)

In order to characterize the discrete steady states, it is natural to introduce the characteristic poly-
nomial:

A(X) :=

p∑

ℓ=−r

aℓX
ℓ+r −Xr . (3.4)

From the consistency property (1.10), any constant sequence is a discrete steady state for (1.7), the same
property being available for the continuous model (namely, the transport operator). However, the discrete
nature of the differentiation operator involved in the numerical scheme (1.7) allows the existence of many
other discrete steady states. The latter play an important role when considering the half-space problem
with some discrete boundary conditions.

From the non-characteristic assumption a > 0, it follows that among the roots of A, X = 1 is always
a simple root. Let us now introduce the whole set of (pairwise distinct) roots of A together with their
multiplicities through the factorization of A in C[X]:

A(X) = ap

τ∏

σ=1

(X − κσ)
µσ . (3.5)

Clearly, looking at the degree of the polynomial A, one has the equality

τ∑

σ=1

µσ = r + p .

For convenience, we order the roots of A with decreasing modulus:

|κ1| ≥ |κ2| ≥ · · · ≥ |κτ | .

To make the analysis more intelligible, we will work under the following assumption, which was already
present in [BC17].
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Assumption 3.2. The characteristic polynomial A defined in (3.4) has a unique root (equal to 1) on the
unit circle S

1 = {z ∈ C , |z| = 1}. In other words, we assume:

τ⋃

σ=1

{κσ} ∩ S = {1} . (3.6)

As observed on the above example of the Lax-Wendroff scheme, the steady states we are looking at
should decrease rapidly as j tends to −∞, so that they provide with a localized correction (near the
boundary) to the usual convergence analysis and belong to ℓ2(−∞, J). We are therefore only concerned
with those roots of A that have modulus larger than 1. Lemma 3.3 below gives the precise number of
such roots (counted with their multiplicities). We refer to [BC17, Lemma 2.1] for the proof.

Lemma 3.3 (Unstable roots of A [BC17]). Under assumptions 1.1 and 3.2, letting κ1, . . . , κτ+ be the
roots of A that belong to U := {z ∈ C , |z| > 1} with their corresponding multiplicities µ1, . . . , µτ+ , then
one has

τ+∑

σ=1

µσ = p . (3.7)

A direct consequence of Lemma 3.3 is the following description of steady states for (1.7) that belong
to ℓ2(−∞, J). The proof follows from the standard description of the set of solutions to the recurrence
relation (3.3).

Lemma 3.4. The set of discrete steady states for the scheme (1.7) that belong to ℓ2(−∞, J) is the finite
dimensional linear subspace spanned by the p linearly independent sequences ρ(σ,ν):

ρ
(σ,ν)
j := (j − J)ν κj−J

σ , j ∈ Z , 1 ≤ σ ≤ τ+ , 0 ≤ ν < µσ . (3.8)

Equivalently, such discrete steady states in ℓ2(−∞, J) read:

vj =

τ+∑

σ=1

pσ(j)κ
j−J
σ , j ∈ Z , (3.9)

where pσ ∈ Cµσ−1[X] for all index 1 ≤ σ ≤ τ+.

Let us detail the parametrization of the set of (stable) discrete steady states on the two main examples
we are concerned with. For the Lax-Wendroff scheme (1.3), one has:

A(X) = −λa (1− λa)

2
X2 + (1− (λa)2)X +

λa (λa+ 1)

2
.

The (two simple) roots of A are 1 and:

κ := −1 + λa

1− λa
,

with κ ∈ U assuming, as usual, 0 < λa < 1. For the half space problem on (−∞, J), κ is therefore
the unique stable root, and 1 counts as an unstable root (see [BC17]). In particular, assumption 3.2 is
satisfied. The set of solutions to (3.3) that belong to ℓ2(−∞, J) is the one-dimensional subspace spanned
by the sequence (κj−J)j∈Z.
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Let us now consider the so-called O3 scheme, which is a convex combination of the Lax-Wendroff and
Beam-Warming schemes, see [Str62, Des08]. We now have p = 1 and r = 2, and the scheme reads:

un+1
j = −λa (1− (λa)2)

6
unj−2 +

λa (1 + λa) (2 − λa)

2
unj−1

+
(1− (λa)2) (2 − λa)

2
unj − λa (1 − λa) (2− λa)

6
unj+1 , (3.10)

with, again, 0 < λa < 1. Assumption 1.1 is then satisfied (with k = 3). The roots of the corresponding
characteristic polynomial A are:

κ± :=
−(1 + λa) (5− 2λa) ±

√
(1 + λa) (33 − 15λa)

2 (1 − λa) (2 − λa)
, κ0 := 1 ,

each of them being simple. The root κ− is the only one in U and κ+ belongs to the open unit disk D,
which is consistent with Lemma 3.4 (p = 1). In particular, assumption 3.2 is satisfied.

3.3 The boundary layer expansion. Proof of Theorem 1.3

We now start proving Theorem 1.3, and for that, we consider some initial condition f ∈ Hk+1((−∞, L))
which, for convenience, we extend to the whole real line R as an element of Hk+1(R). Our aim is
to compare the solution to the scheme (1.14) (which is set on a half line) with the piecewise constant
projection of the exact solution to the transport equation. We thus introduce the notation:

ωn
j :=

1

∆x

∫ xj

xj−1

f(x− a tn) dx , j ≤ J + p , n ∈ N .

The consistency analysis in [CL20] of the scheme (1.14) amounts to considering the numerical scheme
satisfied by the error (unj − ωn

j ). It is proved in [CL20] that the resulting boundary consistency errors

have size O(∆xkb), while the interior consistency errors have size O(∆xk). Here we have kb < k so the
worst term is on the boundary. Following the arguments in [BC17], we are therefore going to introduce
a boundary layer corrector in order to remove the boundary consistency error, up to introducing new
initial and interior consistency errors, whose size will be proven to be O(∆xkb+1/2) hence the final result
of Theorem 1.3. Let us make this argument precise.

The consistent expansion of the numerical solution (unj ) takes the form of a corrected version of (ωn
j ),

involving now a boundary layer term (vnj ) ∈ ℓ2(−∞, J) as for the above introductive example. The aim
is to reduce the magnitude, at the boundary, of the following error:

εnj := ωn
j − unj +∆xkb vnj , j ≤ J + p , n ∈ N . (3.11)

The definition of (vnj )j≤J+p,n∈N is chosen so as to correct the consistency error at the boundary. The
simplest way to do so consists in chosing (vnj )j≤J+p,n∈N so as to get precisely in the ghost cells the relations

(Dkb
− εn)J+ℓ = 0, ℓ = 1, . . . , p. From now on, we formulate the problem in such a way to normalize the

generating sequences according to the value of J . In view of Lemma 3.4, the problem to be solved writes:

vnj =

τ+∑

σ=1

µσ−1∑

ν=0

znσ,ν ρ
(σ,ν)
j , j ≤ J + p , n ∈ N , (3.12)

(Dkb
− vn)J+ℓ = − 1

∆xkb
(Dkb

− ωn)J+ℓ , ℓ = 1, . . . , p , n ∈ N , (3.13)
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where the sequences ρ(σ,ν) are defined in (3.8). Equivalently to (3.12), we can look for the boundary layer
corrector (vnj )j≤J+p,n∈N under the form

vnj =

τ+∑

σ=1

pn,σ(j − J)κj−J
σ , (3.14)

where pn,σ ∈ Cµσ−1[X] for all index 1 ≤ σ ≤ τ+. The existence of the corrector (vnj ) is given by the
following result. We recall that in the framework of Theorem 1.3, there holds kb < k.

Lemma 3.5. Consider the initial condition f ∈ Hk+1((−∞, L)) extended to the whole real line R. Then
the boundary layer problem (3.12)-(3.13) admits a unique solution (vnj )j≤J+p,n∈N, and this solution satisfies
the estimate:

sup
n∈N


∑

j≤J

∆x (vnj )
2




1/2

≤ C∆x1/2 ‖f‖Hkb+1((−∞,L)) , (3.15)

where the constant C > 0 is independent of ∆x > 0, J , L and f .

Proof. Let us fix some integer n ∈ N. The solution (unj )j≤J+p to (1.14) solves the homogeneous boundary
condition (1.8), thus equivalently to (3.13) one has to find the vector of coordinates z ∈ C

p solution to
the linear system Akb z + b = 0 where b = ∆x−kb ((Dkb

− ωn)J+ℓ)1≤ℓ≤p, and the p× p matrix Akb is defined
as follows:

Akb :=



(Dkb

− ρ(1))1 . . . (Dkb
− ρ(p))1

...
...

(Dkb
− ρ(1))p . . . (Dkb

− ρ(p))p


 ,

where we have relabeled the sequences ρ(σ,ν), σ = 1, . . . , τ+, ν = 0, . . . , µσ − 1 as ρ(1), . . . , ρ(p) in order to
make the definition of Akb easier to read. The latter matrix is somehow the kbth-order discrete derivative
of the so-called confluent Vandermonde matrix. It seems possible to compute the determinant of A0,
see [HJ94], and then to extend this result to higher values of kb but we prefer to avoid such complicated
computations. From the identity of dimensions, we shall just prove that the matrix Akb is one-to-one, in
other words we shall prove that the problem (3.12)-(3.13), or equivalently (3.14)-(3.13), admits a trivial
kernel.

Dealing with discrete derivatives of products of polynomial and/or geometric sequences, the divided
difference algebra appears as a suitable tool in our analysis. For more details we refer the interested reader
to [Ste39, Pop40, dB05]. For consistency in the notation, we recall hereafter the recursive definition of
divided differences, but specified for the case of consecutive integer abscissae. Being given a sequence of
complex numbers (wj)j∈Z, one defines:

w[j] := wj , j ∈ Z ,

w[j − k, . . . , j] :=
1

m

(
w[j −m+ 1, . . . , j] − w[j −m, . . . , j − 1]

)
, j ∈ Z , m ∈ N

⋆ .
(3.16)

The quantity (Dkb
− w)j is directly related to the divided difference w[j − kb, . . . , j] by the equality:

(Dkb
− w)j = kb!w[j − kb, . . . , j] , j ∈ Z . (3.17)
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Importantly, we may also use the Leibniz formula for divided differences of a product of two sequences:

(w w̃)[j − kb, . . . , j] =

kb∑

m=0

w[j − kb, . . . , j −m] w̃[j −m, . . . , j] , j ∈ Z . (3.18)

In terms of the D− operator, using the relation (3.17), the Leibniz formula (3.18) rewrites under the more
recognizable form:

(Dkb
− (w w̃))j =

kb∑

m=0

(
kb
m

)
(Dkb−m

− w)j−m (Dm
− w̃)j , j ∈ Z .

Let us continue with the representation formula (3.9) of the solution to the boundary layer problem.
Looking at the kernel of the linear problem (3.13), we have to find polynomials (pσ)1≤σ≤τ+ with respective
degrees less than or equal to (µσ − 1)1≤σ≤τ+ , satisfying the set of equations:

τ+∑

σ=1

kb∑

m=0

pσ[ℓ− kb, . . . , ℓ−m]κσ[ℓ−m, . . . , ℓ] = 0 , 1 ≤ ℓ ≤ p ,

where we denote, with a slight abuse in the notation, κσ for the corresponding geometric sequence
(κm)m∈Z, for any σ = 1, . . . , τ+. Actually, from the identity (3.17) and by induction on the integer
m (or using (3.16)), it is easy to prove that the m-th order divided difference of κσ is given by:

κσ[ℓ−m, . . . , ℓ] =
1

m!
(Dm

−κσ)ℓ =
1

m!
(1− κ−1

σ )m κℓσ , 1 ≤ ℓ ≤ p .

Let us introduce, for any integer σ and any polynomial pσ with degree less than or equal to µσ − 1, the
following polynomial Qσ also with degree less than or equal to µσ − 1:

Qσ(X) :=

kb∑

k=0

(1− κ−1
σ )k pσ[X − kb, . . . ,X − k] . (3.19)

With these notations, the equations to solve now equivalently read:

τ+∑

σ=1

Qσ(ℓ)κ
ℓ
σ = 0, 1 ≤ ℓ ≤ p . (3.20)

Actually, the above set of equations (3.20) exactly corresponds to the generalized Lagrange-Hermite
interpolation problem, which is known to be invertible. Thus one necessarily has Qσ = 0 for any σ =
1, . . . , τ+. It then only remains to deduce that any of the polynomials pσ is also zero.

Observe that for any integer k with 0 ≤ k ≤ kb, from the divided difference algebra, the polynomial
pσ[X − kb, . . . ,X − k] has degree less than µσ − (kb − k), see (3.17). Thus the highest degree polynomial
involved in the sum (3.19) is pσ[X − kb] (for k = kb). Since we know that Qσ is zero, then pσ is also
necessarily zero (consider the highest degree coefficient). The injectivity of the boundary layer problem
(3.14)-(3.13) is proved, and the matrix Akb is therefore invertible.

As a consequence, there exist some uniquely determined coefficients (βσ,ν,ℓ) that depend only on the
considered scheme and on the extrapolation order kb (but neither on the initial condition f nor on the
time index n), such that the solution to (3.12)-(3.13) has the form:

vnj = ∆x−kb

τ+∑

σ=1

µσ−1∑

ν=0

p∑

ℓ=1

βσ,ν,ℓ (D
kb
− ωn)J+ℓ ρ

(σ,ν)
j . (3.21)
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Using now triangular inequalities, we obtain, for some constant C > 0, the upper bound:

(vnj )
2 ≤ C∆x−2 kb

p∑

ℓ=1

(
(Dkb

− ωn)J+ℓ

)2
τ+∑

σ=1

µσ−1∑

ν=0

(ρ
(σ,ν)
j )2 , j ≤ J .

On the one side, we recall the definition (3.8) of the sequences ρ(σ,ν) in Lemma 3.4, hence the estimate:



∑

j≤J

∆x

τ+∑

σ=1

µσ−1∑

ν=0

(ρ
(σ,ν)
j )2




1/2

≤ C
√
∆x , (3.22)

where the constant C > 0 is independent of J and ∆x. On the other side, from [CL20, Lemma 3.6] and
the continuity of the reflection operator from Hkb+1((−∞, L)) to Hkb+1(R), we have the upper bound:

∣∣(Dkb
− ωn)J+ℓ

∣∣ ≤ C∆xkb ‖f‖Hkb+1((−∞,L)) , ℓ = 1, . . . , p , n ∈ N ,

and thus the required estimate (3.15) follows.

The interested reader will find in [Gol77] a similar argument to the one developed in the proof of
Lemma 3.5. In [Gol77], the analysis of the determinant of the matrix Akb arises from the verification of
the so-called Uniform Kreiss-Lopatinskii Condition (a condition whose significance is based on the work
[GKS72]). Let us now prove Theorem 1.3. The error (εnj )j≤J+p,n∈N introduced in (3.11), and fully defined

through Lemma 3.5, satisfies the following set of equations4:





ε0j = ∆xkb v0j , j ≤ J ,

(Dkb
− εn)J+ℓ = 0 , 0 ≤ n ≤ T/∆t , ℓ = 1, . . . , p ,

εn+1
j =

p∑

ℓ=−r

aℓ ε
n
j+ℓ +∆t Fn+1

j , 0 ≤ n ≤ T/∆t− 1 , j ≤ J .

(3.23)

Here above, the consistency error Fn+1
j consists of two terms: a first one coming from the usual interior

consistency error denoted en+1
j , and a second one coming from the time evolution of the boundary layer

corrector denoted δn+1
j . In other words, we split Fn+1

j = en+1
j + δn+1

j with:

en+1
j :=

1

∆t

(
ωn+1
j −

p∑

ℓ=−r

aℓ ω
n
j+ℓ

)
, and δn+1

j :=
∆xkb

∆t

(
vn+1
j −

p∑

ℓ=−r

aℓ v
n
j+ℓ

)
.

Considering the scheme (3.23), the error (εnj )j≤J+p,0≤n≤T/∆t obeys the stability estimate applicable in the
case of the homogeneous extrapolation boundary condition, see [CL20, Proposition 3.4]:

sup
0≤n≤T/∆t

∑

j≤J

∆x (εnj )
2 ≤ C




∑

j≤J

∆x (ε0j )
2 + T 2 sup

1≤n≤T/∆t

∑

j≤J

∆x (Fn
j )

2



 . (3.24)

It therefore remains to estimate the initial and interior consistency errors in (3.23):

4Here we use u0
j = ω0

j for j ≤ J .
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• The initial consistency error. Estimating the initial condition (ε0j )j≤J directly follows from the es-
timate (3.15) in Lemma 3.5:

∑

j≤J

∆x (ε0j )
2 ≤ C∆x2 kb+1 ‖f‖2

Hkb+1((−∞,L))
.

• The interior consistency error. I. Estimating the interior consistency error (enj ) related to the pro-
jected exact solution (ωn

j ) has already been achieved in [CL20] so we just report the result:

sup
1≤n≤T/∆t

∑

j≤J

∆x (enj )
2 ≤ C∆x2 k ‖f‖2Hk+1((−∞,L)) .

• The interior consistency error. II. Estimation of the new error term related to (δnj ). Observe that,
first due to the steady states decomposition from Lemma 3.4, and then using successively (3.12)
and (3.21), the interior consistency error arising from the boundary layer corrector rewrites as:

δn+1
j =

∆xkb

∆t
(vn+1

j − vnj ) =
1

∆t

τ+∑

σ=1

µσ−1∑

ν=0

p∑

ℓ=1

βσ,ν,ℓ (D
kb
− (ωn+1 − ωn))J+ℓ ρ

(σ,ν)
j .

Thus, from Cauchy-Schwarz inequalities, there exists a constant C such that

∑

j≤J

∆x (δn+1
j )2 ≤ C∆x sup

ℓ=1,...,p

(
Dkb

−

(
ωn+1 − ωn

∆t

)

J+ℓ

)2

.

In the above formula, the discrete in time derivative of ωn
j rewrites, for any j ≤ J + p as

ωn+1
j − ωn

j

∆t
=

1

∆x

∫ xj

xj−1

f(x− atn − a∆t)− f(x− atn)

∆t
dx

=
1

∆x

∫ xj

xj−1

1

∆t

∫ x−atn−a∆t

x−atn
f ′(y) dy

︸ ︷︷ ︸
=:F (x)

dx .

Since f ∈ Hk+1(R) with k > kb, we have at least f ∈ Hkb+2(R) and therefore F ∈ Hkb+1(R) with

‖F (kb+1)‖L2(R) ≤ a2 ‖f (kb+2)‖L2(R) ,

from which we deduce, using again [CL20, Lemma 3.6]:

∣∣∣∣D
kb
−

(
ωn+1 − ωn

∆t

)

J+ℓ

∣∣∣∣ ≤ C∆xkb ‖f‖Hkb+2(R) , ℓ = 1, . . . , p .

Thus, using again the upper bound (3.22), the above estimate and the Hkb+2-continuity of the
extension operator, we end up with:

sup
1≤n≤T/∆t

∑

j≤J

∆x (δnj )
2 ≤ C∆x2 kb+1 ‖f‖2Hk+1((−∞,L)) .
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Let us now come back to the stability estimate (3.24) and use the three above consistency estimates
to get (recall T ≥ 1 and kb < k):

sup
0≤n≤T/∆t



∑

j≤J

∆x (εnj )
2




1/2

≤ C T ∆xkb+1/2 ‖f‖Hk+1((−∞,L)) .

From the constructive formula for the boundary layer corrector (vnj ), we have derived the bound (3.15)

which, by the triangle inequality, yields the convergence estimate (recall εnj = ωn
j − unj +∆xkb vnj ):

sup
0≤n≤T/∆t


∑

j≤J

∆x (unj − ωn
j )

2




1/2

≤ C T ∆xkb+1/2 ‖f‖Hk+1 .

Using now the (crude) estimate:

sup
j≤J

|bj | ≤ ∆x−1/2



∑

j≤J

∆x b2j




1/2

,

we complete the proof of Theorem 1.3.

4 Numerical experiments

4.1 The Lax-Wendroff scheme

We report in this paragraph on various numerical experiments with the Lax-Wendroff scheme (1.3) (which
corresponds to p = r = 1). Assumption 1.1 is satisfied provided that λa ≤ 1, and the order k equals 2. In
all what follows, we choose a = 1 and λ = 5/6. The interval length is L = 6 and the final time T equals
8. The initial condition is f(x) = sinx and the boundary source term is g(t) = − sin t so that the exact
solution to (1.1) is u(t, x) = sin(x − t). With the values of J reported in Table 1 below, we implement
the Lax-Wendroff scheme (1.3) with the following numerical boundary conditions:

unJ+1 = unJ , (first order outflow extrapolation condition),

un0 =

{
− sin tn , (Dirichlet inflow condition (1.6)),

− sin tn − (∆x/2) cos tn , (inverse Lax-Wendroff inflow condition (1.12)).

The errors, as measured in the statement of Theorem 1.2, are reported in Table 1 below for each of the
two cases (either the Dirichlet inflow condition (1.6) or the inverse Lax-Wendroff inflow condition (1.12)).
In either case, the observed convergence rate is 1 since increasing J by a factor 2 decreases the error of
the same factor 2. This behavior is fully justified by Theorem 1.3 since we have kb < k here.

We now turn to the second order outflow extrapolation condition:

unJ+1 = 2unJ − unJ−1 , (second order outflow extrapolation condition (1.5)),

un0 =

{
− sin tn , (Dirichlet inflow condition (1.6)),

− sin tn − (∆x/2) cos tn , (inverse Lax-Wendroff inflow condition (1.12)).
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Number of cells J Dirichlet inflow condition Inverse Lax-Wendroff inflow condition

1000 4.1 · 10−3 5.1 · 10−4

2000 2.1 · 10−3 2.5 · 10−4

4000 1.1 · 10−3 1.3 · 10−4

8000 5.3 · 10−4 6.3 · 10−5

Table 1: The ℓ∞n,j error for the Lax-Wendroff scheme (1.3) with first order outflow extrapolation and either
the Dirichlet, or inverse Lax-Wendroff, inflow condition.

The errors, as measured in the statement of Theorem 1.2, are reported in Table 2 below for each of the two
cases (either the Dirichlet inflow condition (1.6) or the inverse Lax-Wendroff inflow condition (1.12)). For
the Dirichlet inflow condition, the observed convergence rate is 1 again (despite the more accurate outflow
treatment), but one recovers the convergence rate 2 with the inverse Lax-Wendroff inflow condition (1.12).
However, proving rigorously that this numerical scheme converges with the rate 2 in the maximum norm
might be very difficult (it might actually even be wrong !), even for smooth data, since the Lax-Wendroff
scheme is known to be unstable in ℓ∞(Z). Improving the convergence rate 3/2 of Theorem 1.2 in the case
of the Lax-Wendroff scheme with second order extrapolation outflow condition is left to a future work.

Number of cells J Dirichlet inflow condition Inverse Lax-Wendroff inflow condition

1000 3.7 · 10−3 1.2 · 10−5

2000 1.8 · 10−3 2.9 · 10−6

4000 9.3 · 10−4 7.3 · 10−7

8000 4.7 · 10−4 1.8 · 10−7

Table 2: The ℓ∞n,j error for the Lax-Wendroff scheme (1.3) with second order outflow extrapolation (1.5)
and either the Dirichlet or inverse Lax-Wendroff inflow condition.

4.2 The O3 scheme

Let us now consider the O3 scheme (3.10), which is implemented by considering the recurrence:

un+1
j = a−2 u

n
j−2 + a−1 u

n
j−1 + a0 u

n
j + a1 u

n
j+1 , n ∈ N , j = 1, . . . , J ,

with:

a−2 := −λa

6

(
1− (λa)2

)
, a−1 :=

λa

2
(1 + λa) (2 − λa) ,

a0 :=
1

2

(
1− (λa)2

)
(2− λa) , a1 := −λa

6
(1− λa) (2 − λa) .

The reader can verify that assumption 1.1 is satisfied provided that λa ≤ 1, and the order k equals 3
(r = 2 and p = 1 here). To maintain third order accuracy, we implement the latter scheme with the
following boundary conditions:

unJ+1 = 3unJ − 3unJ−1 + unJ−2 , (third order outflow extrapolation condition, kb = 3),

un0 = − sin tn − (∆x/2) cos tn + (∆x2/6) sin tn , (inverse Lax-Wendroff inflow condition (1.12)),

un−1 = − sin tn − (3∆x/2) cos tn + (7∆x2/6) sin tn , (inverse Lax-Wendroff inflow condition (1.12)).

22



The measured errors are reported in Table 3 below. They correspond to a rate of convergence 3. Let us
observe that the O3 scheme is known to be stable in ℓ∞(Z), see [Tho65, Des08], hence there is a genuine
hope of proving rigorously that this rate of convergence does indeed hold (for smooth compatible data).
Such a justification is also left to a future work.

Number of cells J Inverse Lax-Wendroff inflow condition

1000 2.1 · 10−8

2000 2.6 · 10−9

4000 3.3 · 10−10

Table 3: The ℓ∞n,j error for the O3 scheme (1.3) with third order outflow extrapolation and the inverse
Lax-Wendroff inflow condition.
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