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Theoretical and experimental research on the optical features exhibited by metallic nano-systems has 

paved the way to extensive applications in several fields, from surface-enhanced spectroscopies, to 

biological and chemical nano-sensing. Such developments are primarily due to the localized plasmon 

resonances (LPR), resulting in intense optical absorption and scattering as well as sub-wavelength 

localization of large electrical fields in the vicinity of the nano-object. [1-9] The plasmonic response of 

these metallic nanostructures is strongly dependent on the type of metal of which they are made, on the 

dielectric function of the surrounding medium, on the particle shape and, to a lesser extent, it is also 

dependent on the particle size. However, for ultra-small nanoparticles, size dependent effects are 

negligible, and for homogeneous (i.e. purely metallic) structures, the plasmonic resonance is only 

determined by the properties of the metal. Since few metallic materials such as Ag, Au, Cu and Pt have 

been successfully shaped into ultra-small nanoparticles, [10-14] plasmonic response has been mostly 

reported in the visible, with the exception of some Au-based elongated nanostructures which have also 

demonstrated plasmonic response in the near infra-red (~800 nm). [15-16] 

In order to circumvent such a limitation, a consistent effort has been spent in the last years in the 

synthesis of heavily-doped semiconductor nanocrystals so as to achieve metallic behaviour and 

eventually a tunable plasmonic response in a broader optical spectrum. In particular, research was 

concentrated onto S-based, Se-based and Te-based II-VI semiconductor nanocrystals with Cd-Cu 

substitution. [17-22] In these nanoparticles Copper can exist in a wide range of stoichiometric ratios in 

addition to the 2:1 with respect to Selenium or Sulfur, resulting into Copper vacancies and into “self-

doping” of the material. The influence of this heavy doping on the optical response in the infrared 

region has been a subject of interest in the last decade. In 1973, Gorbachev and Putilin observed a 

plasmon band in the reflectivity of p-type copper selenide and copper telluride thin films. [23] They also 

found that the spectral position of this band strongly depends on temperature, a fact that they attributed 

to a strong dependence of the hole effective mass on temperature. Very recently, Alivisatos and 

coworkers [22] and Manna and coworkers [24] reported a detailed study on plasmonic properties of 
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Cu2X nanocrystals (with S in [22] and Se in [24], respectively), which showed how starting from nearly 

stoichiometric Cu2X particles, their oxidation (upon exposure on air) increased the degree of Copper 

deficiency leading to the emergence of an IR band that gradually increased in intensity and blue-shifted 

in energy. Manna et al. also showed the reversible tuning of the IR plasmonic response of Cu2-xSe 

nanocrystals via their gradual oxidation, either under air or by stepwise addition of a Ce(IV) complex. 

[24] 

In the very last years, the dynamical response of plasmonic nano-structures has also attracted more and 

more attention, giving rise to the emerging field of ultra-fast active plasmonics [25]. Actually, it has 

been recently reported that direct optical excitation of the metal by intense femtosecond laser pulses 

lead to ultra-fast modulation of plasmonic signals, thus resulting in unprecedented terahertz modulation 

bandwidth, a speed at least five orders of magnitude faster than existing technologies. [25] A 

quantitative investigation of such dynamical features is thus of the most importance for the development 

of next generation of ultra-fast nano-devices. Pump-probe spectroscopy, giving access to the electronic 

excitation and subsequent relaxation processes in the material, has been demonstrated to be the eligible 

tool for the experimental study of the ultra-fast dynamical features exhibited by plasmonic 

nanostructures. So far, several noble metal sctructures have been investigated, including spherical 

particles [26-28], as well as nanorods [29], leading to a general scenario of the underlying physical 

phenomena similar to the one observed in bulk (i.e. thin film) metallic systems [30,31]. Actually, when 

the pump pulse is in the infrared the initial Fermi distribution of electrons in the conduction band is 

strongly perturbed by pump absorption; the pump pulse creates energetic electrons that are not in 

thermal equilibrium and within few hundred fs a new Fermi distribution is achieved by strong electron-

electron scattering, resulting in a thermalized electron gas with higher temperature than the lattice (hot 

electrons); subsequently, within the next few ps the electron gas cools down by releasing its excess 

energy to the lattice through electron-phonon coupling; and, ultimately, within hundred of ps, the 

nanoparticle releases its energy to the environment, [16] (with heat conduction to the surface of the 

nanoparticles provided by phonon-phonon coupling).  
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In this work, we report on the optical response of Cu2-xSe colloidal nanocrystals to ultrafast laser pulses, 

recorded via pump-probe experiments in the infra-red with 200 fs resolution time. In particular we 

investigated the hole-phonon coupling dynamics taking place in the ps time scale. The experimental 

results are interpreted according to the two-temperature model already developed for the theoretical 

investigation of more conventional metallic systems.  

 

The Cu2-xSe nanocrystals considered in the present study have been prepared following the synthesis 

process reported in [24]. As already demonstrated, the optical response exhibited by these 

nanostructures under continuous wave excitation with infra-red light is plasmonic in nature and can be 

quantitatively interpreted according to quasi-static approximation of the Mie theory [24]. More 

precisely, the dipolar absorption and scattering cross-sections of a Cu2-xSe nanoparticle of radius R << 

2πc/ω are respectively given by: 

 

         (1) 

where εm = nm
2  is the dielectric constant of the environmental medium, k = nm ω/c and                            

ε =  ε1(ω) + iε2(ω) is the Cu2-xSe dielectric function provided by the Drude model: 

 

          (2) 

with ε∞ the high frequency dielectric permittivity (due to the presence of inter-band transitions at a 

higher photon energy), ωP the plasma frequency of the free carriers of the system, and Γ   the free carrier 

damping (i.e. the inverse of the carrier relaxation time). 

Our previous results [24] showed that, depending on the ‘oxidation’ parameter x, different material 

dielectric functions ε are retrieved, resulting in a plasmon resonance (at frequency ω0 approximately 
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given by ε1(ω0) = −2εm) that blue-shifts with increasing x. For the present study we selected x = 0.15 (i.e. 

Cu1.85Se) samples leading to a large blue shift of the plasmon peak. We measured a relatively narrow 

plasmonic resonance, with an intense peak around 1050 nm, is measured for Cu1.85Se particles dispersed 

in toluene solution (refractive index nm = 1.505, εm = 2.25), as illustrated in Figure 1, where we plot the 

optical density measured in a 1 mm thick quartz cuvette with an estimated particle concentration N = 

3x1013 cm-3. Figure 1 also reports the total extinction cross-section σE = σA+σS of Cu1.85Se nanoparticles 

computed from Eqs. (1)-(2) with Drude parameters ε∞ = 1.38, ωP = 4.43x1015 rad/s, and Γ = 9.72x1014 

rad/s, in agreement with our previous study [24]. 

 

The pump probe set-up is based on a commercial Ti:Sapphire amplified laser system delivering 150 fs 

pulses at 1 KHz repetition rate at a central  wavelength of 800 nm. A fraction of the beam is used to 

pump a non-collinear parametric amplifier (NOPA) to generate pulses in the infra-red [32,33]; we tuned 

the NOPA to obtain pump pulses in correspondence with the plasmonic resonance of the sample             

(∼1050 nm, 1.19 eV with a bandwidth of 40 nm). The probe pulses are produced by focusing the 

fundamental beam into a 2 mm thick sapphire plate to generate a stable white light super-continuum. A 

long pass filter with cut-on wavelength at 820 nm is used to filter out the residual fundamental and the 

visible component of the probe pulses. The pump and probe beams are focused onto the sample with a 

spot size of 200 µm. The pump-probe setup, employs a computer controlled optical multichannel 

analyser and the measured signal is a map of the chirp-free differential transmission ΔT/T = (Ton – Toff ) / 

Toff  as a function of wavelength and the pump-probe time delay; Ton and Toff  are the probe spectra 

transmitted by the excited and unperturbed sample, respectively. 

 

Figure 2 reports the temporal dynamics of the relative differential transmission (ΔT/T) probed at 900 

nm, obtained by exciting the nanocrystals with different pump fluencies. The experimental results reveal 

ΔT/T > 0 right after the absorption of the pump beam, with maximum value of about 40% under the 
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maximum pump fluence of 2.23 mJ/cm2. A monothonic and fast decrease of the signal is then observed 

within a few ps (Figure 2a) followed by a much slower (ns time scale) decay (Figure 2b), leading to 

complete recovery of the initial condition (before pump arrival) within few ns. 

To tentatively describe the non-linear optical features as reported in Fig. 2 we applied the theoretical 

methods developed for metals, since the linear optical response of Cu2-xSe nanocrystals is dominated by 

the metallic behaviour of the system, which leads to a plasmonic resonance in the extinction spectrum, 

we applied the theoretical methods developed for metals to tentatively describe the non-linear optical 

features as reported in Figure 2. 

 

The pump-probe dynamics of metallic systems can be ascribed to the variations attained by the metal 

dielectric function induced by pump absorption. [30,31]  As explained before, the ps dynamics is related 

to the cooling of the hot electron gas generated by absorption of the pump energy. Therefore, the time 

evolution of the system wihin ps time scale can be modelled as a heat transfer between a thermalized 

gas of carriers at temperature TC and the lattice at a lower temperature TL, via carrier-phonon scattering 

process. The so-called Two Temperature Model (TTM) quantitatively accounts for such transfer 

according to the following coupled equations [30]: 

 

        (3) 

where γTC is the heat capacity of the carrier gas, being γ  the so-called carrier heat capacity constant, CL 

is the heat capacity of the lattice, G is the carrier-lattice coupling factor, GL is the lattice-environment 

coupling factor, T0 is the environmental temperature (which is supposed to be constant) and PA(t) is the 

pump power density absorbed in the volume of the metallic system. Once the temperature dynamics 

induced by the pump pulse is determined from Eq. (3), the optical response of the systems to the probe 

pulse can then be retrieved from the temperature dependence of the dielectric function of the material 
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and from the electromagnetic boundary conditions due to the particular geometry of the system, which 

in the case of a small spherical particle are described by Eq. (1). 

 

The effects of the carrier and lattice temperatures on the dielectric function also depend on the detailed 

band structure of the material, and on the energy of the probe photon. Little is known on the band 

structure of Cu2-xSe, apart from the fact that it behaves as a p-type degenerate semiconductor with half 

filled valence band. [34,24] Moreover, many possible crystallographic phases of Cu2-xSe have also been 

found. [35] Here we report in Figure 3.a a tentative and qualitative sketch of the band structure deduced 

from spectroscopical investigations reported in the literature. According to Al-Mamun et. al. [36], the 

Cu2-xSe system with x = 0.15 exhibits two interband optical transitions, a direct transition at 2.1 eV and 

an indirect transition at 1.3 eV. It is thus expected that the pump photon at 1.19 eV energy is absorbed 

by an intra-band process similarly to what happens in noble metals in the infra-red. The subsequent 

heating of the carrier gas results in a smearing of the Fermi distribution, and gives rise to a modulation 

of the inter-band transition probability for the probe light at 1.38 eV (Figure 3.a), which results in a 

modulation Δε∞ of the ε∞ parameter in the Drude dielectric function Eq. (2). Being the probe photon 

energy here used much lower than the direct inter-band transition edge, and considering that the indirect 

inter-band process, and its modulation, is much weaker compared to direct transitions, we conclude that 

the imaginary part of Δε∞ is negligible compared to the real part. In metals, it is well known that this 

modulation is proportional to the carrier excess energy [28,31], and thus it scales quadratically with the 

carrier temperature TC, i.e. Δε∞ =  δ TC
2, δ  being a fitting parameter. 

 

Not only the carrier temperature but also the lattice temperature results in a modulation of the dielectric 

function ε∞. In metallic systems the Drude damping Γ factor increases linearly with TL. However, the 

resulting temperature dependence of the dielectric function ε is relatively weak and tipically negligible, 

unless the lattice temperature is increased significantly. Instead Cu2-xSe exhibits the additional and 
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distinctive dependence of the hole mass on the lattice temperature as reported by Gorbachev and Putilin. 

[23] This dependence on the temperature is much stronger compared to the modulation of Γ. For the 

aims of the present work, we retrieved an analytical expression for such dependence by simply fitting 

the data reported in [23], providing the following formula for the hole effective mass: mh(TL) = (aTL
b+ c) 

m0, with a = 4.04x10-16 (K-b), b = 5.71, c = 0.151, and m0 the free electron mass. The temperature 

dependence of mh results in a temperature dependence of the plasma frequency of the form:  

 ωP(TL) = [NCe2/mh(TL)ε0]1/2         (4)  

Therefore the plasma frequency decreases as the lattice is heated (NC being the free carrier density). The 

effect on the extinction cross-section, numerically computed from quasi-static formulas given in Eq. (1) 

is illustrated in Figure 3b. Note that for the probe wavelength of 900 nm the extinction is strongly 

reduced as the lattice is heated by just few tens of degrees. 

 

The previous discussion provides a qualitative understanding of the dynamics observed in the 

experimental data reported in Figure 2.a: the TC dependent inter-band effect, resulting in an increase of 

the real part of the dielectric function ε of the material, leads to a red-shift of the plasmonic resonance 

(which is now provided by ε1(ω0) + Δε∞  = −2εm), and thus enhances the transmissivity of the probe 

(which is in the blue-tail of the extinction spectrum, Figure 1) right after the pump absorpion; the TL 

dependent intra-band effect, due to the temperature dependence of the free carrier effective mass, also 

results in a red shift of the plasmonic resonance, and is related to the long-living differential 

transmission tail which can be observed after the end of the carrier-lattice interaction, and for several ps. 

The long time-scale dynamics (Figure 2.b) is thus completely decoupled from the fast carrier-phonon 

dynamics, and thus an exponential decay with a time constant 1/GL is expected.  

 

In order to attempt a quantitative comparison with the experiment, the theoretical differential 

transmission was computed as ΔT/T = exp(−ΔσENL) − 1, ΔσE being the variation attained by the 
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extinction cross-section according to the quasi-static formulas of Eq.(1), and the temperature-dependent 

dielectric function of Cu2-xSe given by: 

  
     (5) 

with TC and TL provided by numerical solution of the TTM, and G, δ,  and GL for the long time-scale 

dynamics, as fitting parameters. In doing so, we assumed a heat capacity of the lattice CL = 2.72x106 J 

m-3 K-1, according to the experimental data reported in [35] for α-Cu2Se, whereas the heat capacity of 

the carriers was estimated as γ  = rγAu = 1.37 J m-3 K-2, with γAu = 62.9 J m-3 K-2 being the heat capacity 

of the free electrons in Gold and r the ratio between Cu2Se carrier density (estimated, from the plasma 

frequency and hole effective mass at room temperature, to be NC = ωP
2ε0mh(TC)/e2 = 1.28x1027 cm-3) and 

gold carrier density (5.9x1028 cm-3).  

 

Given the incident pump fluences of 96, 318 and 2230 µJ/cm2, the absorbed pump power density PA(t) 

was estimated from pump absorption measurements, showing that only 1% of the incident pump energy 

is absorbed by the sample, despite the pump wavelength is at the peak of the linear absorption of 

Cu1.85Se nanoparticles. This indicates that the high fluence of the pump leads to strongly non-linear 

absorption phenomena even during the pump pulse. Such phenomena might be related to the strong 

perturbation of the plasmonic regime due to energetic and non-thermalized carriers, which could lead to 

a substantial shift of the plasmonic resonance, and/or to a substantial smearing, so as to drastically 

reduce the absorption cross-section at the pump wavelength. The absorption dynamics is thus expected 

to be dominated by the non-thermalized carrier dynamics, which occurs in the tens of fs time scale and 

is far beyond the resolution time of the present experiment. 

 

Numerical solution of the TTM model with the best fitting parameters is reported in Figure 4a, whereas 

the corresponding numerically computed differential transmission is shown in Figure 2.a (for the ps 
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time scale) and in Figure 2.b (for the long-time scale). We estimated a low temperature carrier-phonon 

coupling factor G = G0 = 2.0x1015 W m-3K-1, which is one order of magniture lower than in Gold. Since  

the G0 factor is proportional to the carrier density [37], this lower G is in agreement with the much 

lower carrier density in Cu1.85Se compared to gold. We also estimated δ  = 5x10-8 K-2, which is about 40% 

higher than in silver structures at 900 nm probe wavelength [31].  

 

Note that numerical simulations are in good agreement with the experimental data for the lower pump 

fluences whereas the higher fluence results in some quantitative misagreement within the short time-

scale dynamics (compare solid and dotted green curves in Figure 2a). Actually for such a high fluence 

the TTM predicts a carrier temperature increase exceeding 3000 K (see green curves in Figure 4a). It is 

thus expected that, similarly to what happens in noble metals, the carrier heat capacity γ  and the 

electron-phonon coupling factor G are no more temperature independent [37]. We found that by 

tentatively introducing temperature dependences for γ  and G that mimick the temperature dependences 

reported for Gold at high temperatures [37], i.e. γ  =γ 0+β1(TC− TG) and G = G0+β2(TC− TG)3 for TC> TG, 

with β1, β2 and TG fitting parameters, a much better agreement between the model and the experiment is 

found also for the higher pump fluence (see dashed green curve in Figure 2.a, and see Figure 4.c for 

fitted temperature dependent parameters). However, being γ  and G strongly dependent on the actual 

DOS of the free carriers [37], a quantitative determination of their temperature dependence can not be 

asserted without a better knowledge of the band structure of the Cu1.85Se crystal, which is out of the 

scope of the present work. 

 

In conclusion, we report the first observation of the ultrafast optical response of Cu2-xSe nanoparticles 

excited at the plasmon resonant energy. We have been able to quantitatively describe the optical 

response, and to extract from it the electron-phonon coupling constant, which compares reasonably well 

with those found in noble metals after accounting for the lower carrier density. We remark that the 
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relatively low carrier density and structural peculiarities of Cu2-xSe lead to significant deviations of the 

response from the well-known behaviour found in the more traditional metallic nanoparticles (for 

example the noble metal nanoparticles). In particular, the lower carrier density is responsible for a lower 

carrier heat capacity and for a much larger effective carrier temperatures at comparable fluences. This 

leads to strong non-linear effects at high fluences both during the pump absorption process, and during 

the carrier temperature relaxation process. Moreover, the large temperature dependence of the hole 

effective mass results into large residual differential transmission signals due to significant shifts of the 

plasmonic resonance. Such a marked temperature dependence of the hole mass is possibly related to the 

complex phase diagram of Cu2-xSe [35], to incipient changes of the crystalline phase, and to a strong 

sensitivity of the valence band shape on this change of phase. From a technological point of view, this 

material can be promising, as an example, for the development of ultrafast nano-devices operating at 

terahertz modulation bandwidth, [25] with the peculiar advantage of plasmon resonance tunability in the 

IR region, with potential interest for telecom applications. 
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Figure 1. Experimental optical density spectrum of the Cu1.85Se nanoparticles dispersed in toluene 

solution from extinction measurements in continuous wave (black solid line), and theoretically 

computed extinction efficiency (red dashed line) from dielectric function data reported in [24]. The 

narrow peal at around 1700 nm is due to toluene absorption. Arrows indicate the wavelength of the 

optical pulses in the pump-probe experiments. Inset shows a TEM image of the nanoparticles. 
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Figure 2. Differential transmission signal from Cu2-xSe nanocrystal dispersion in toluene for (a) short-

time dynamics and (b) long-time dynamics. Experimental results (solid lines) are compared with 

numerical calculations (dotted and dashed lines) for three different incident pump fluences. 
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Figure 3. (a) Tentative sketch of Cu2-xSe band diagram for optical transitions in the visible. Smearing of 

the electron distribution f(E) due to intra-band pump absorption and subsequent carrier temperature (TC) 

increase is also illustrated. (b) Extinction cross-section of Cu2-xSe nano-spheres at different lattice 

temperatures (TL) resulting from the carrier effective mass temperature dependence reported in [23]. 
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Figure 4. (a) Carrier (hole) and lattice temperature numerically computed from the TTM of Eq. (3). (b) 

Interband dielectric permittivity Δε∞ = δ TC
2. (c) Hole heat capacity γ TC = [γ 0+β1(TC−TG)]TC, and hole-

phonon coupling parameter G = G0+β2(TC−TG)3. Fitted parameters: δ = 5x10-8 K-2; G0 = 2.0x1015 W m-3 

K-1; β1 = 9.08x10-4 W m-3 K-3, β2 = 2x109 W m-3 K-4; GL= 25x1015 W m-3 K-1. 
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