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Abstract. We consider multi-party information-theoretic private pro-
tocols, and specifically their randomness complexity. The randomness
complexity of private protocols is of interest both because random bits
are considered a scarce resource, and because of the relation between that
complexity measure and other complexity measures of boolean functions
such as the circuit size or the sensitivity of the function being com-
puted [17,12].
More concretely, we consider the randomness complexity of the basic
boolean function and, that serves as a building block in the design of
many private protocols. We show that and cannot be privately computed
using a single random bit, thus giving the first non-trivial lower bound on
the 1-private randomness complexity of an explicit boolean function, f :
{0, 1}n → {0, 1}. We further show that the function and, on any number
of inputs n (one input bit per player), can be privately computed using
8 random bits (and 7 random bits in the special case of n = 3 players),
improving the upper bound of 73 random bits implicit in [17]. Together
with our lower bound, we thus approach the exact determination of the
randomness complexity of and. To the best of our knowledge, the exact
randomness complexity of private computation is not known for any
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explicit function (except for xor, which is trivially 1-random, and for
several degenerate functions).

1 Introduction

A multi-party private protocol for computing a function f is a distributed proto-
col that allows n ≥ 3 players Pi, for 0 ≤ i ≤ n− 1, each possessing an individual
secret input xi, to compute the value of f(x) in a way that does not reveal
any “unnecessary” information to any player.1 The protocol proceeds in rounds,
where in each round each player sends a message to any other player, over a
secure point-to-point channel. The privacy property of such protocol means that
no player can learn “anything” (in an information-theoretic sense) from the ex-
ecution of the protocol, except what is implied by the value of f(x) and its own
input. In particular, the players do not learn anything about the inputs of the
other players. Private computation in this setting was the subject of consider-
able research, see e.g., [3,6,1,7,16,17,12]. In addition to its theoretical interest,
this setting constitutes the foundation for many cryptographic applications (in
information theoretic settings) such as electronic secret ballot.

Randomness is necessary in order to perform private computations involving
more than two players (except for the computation of very degenerate functions).
That is, the players must have access to (private) random sources. As randomness
is regarded as a scarce resource, methods for saving random bits in various con-
texts have been suggested in the literature, see, e.g., [20,14] for surveys. Thus, an
interesting research topic is the design of randomness-efficient private protocols,
and the quantification of the amount of randomness needed to perform private
computations of various functions and under various constraints. This line of
research has received considerable attention, see, e.g., [19,16,17,5,4,15,11,21].

As in most of the work on the randomness complexity of private compu-
tations, we concentrate here on the computation of boolean functions, where
the input xi of each player is a single input bit. Previous work on the ran-
domness complexity of private computations revealed that there is a tradeoff
between randomness and time (i.e., number of communication rounds) for the
private computation of xor [19], or gave lower bounds on the number of rounds
necessary to privately compute any function, in terms of the sensitivity of the
function and the amount of randomness used [12]. However, if one is allowed an
arbitrary number of rounds for the computation then, prior to the present work,
there were no known lower bounds on the number of random bits necessary for
private protocols computing explicit boolean functions (except that some ran-
domness is indeed necessary, i.e., no deterministic private protocol exists).2 In
fact, Kushilevitz et al. [17] gave a relation between the number of random bits

1 The two-party case, n = 2, is known to be qualitatively different [7].
2 Recently, a lower bound on the number of random bits necessary for the private

computation of the Disjointness function was obtained [21]. However, for the Dis-
jointness function each player has m ≥ 1 bits of input. Furthermore, the obtained
lower bound is of Ω(m), and the hidden constant is less than 1. Thus, for the special
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necessary to privately compute a function f : {0, 1}n → {0, 1}, and the Boolean
circuit size necessary to compute f ; it is proved, among other things, that the
class of boolean functions that have O(1)-random, 1-private, protocols is equal
to the class of boolean functions that have linear size circuits. This, perhaps
surprising, connection to circuit size explains the difficulty of proving ω(1) lower
bounds on the number of random bits necessary for the private computation of
any explicit boolean function f , as such a result would imply superlinear lower
bounds on the circuit size of f – a notoriously difficult problem.3 Additional
connections between the randomness complexity of the private computation of a
function to other complexity measures, such as its sensitivity, have been shown
in, e.g., [19,5,18].

This leaves the interesting, and perhaps feasible, task to determine the exact
randomness complexity of the private computation of boolean functions of linear
circuit size, where each player has a single input bit. This class of functions in-
cludes quite a few interesting functions f and, in particular, the basic functions
xor and and. Indeed, the functions xor and and serve as basic building blocks for
private protocols that rely on the boolean-circuit representation of f (more gen-
erally, addition and multiplication are used as building blocks for protocols that
use the arithmetic-circuit representation of f). In the context of lower bounds
for communication complexity of private protocols, these building blocks also
serve as the center of analysis (as a first step for a more general understanding),
see, e.g., [8,9,10].

It is known that xor can be computed privately using a single random bit,
for any number of players, and this is optimal since no deterministic private
multiparty protocol can exist (see [19]). To the best of our knowledge, there is
no exact determination of the randomness complexity of private computation
for any other explicit function. Furthermore, prior to the present paper, there
was no lower bound showing for any explicit boolean function that it cannot
be privately computed (in the natural setting that we consider here, i.e., where
each player has one input bit) using a single random bit.

In this paper, we give the first such lower bound, showing that the func-
tion and cannot be privately computed using a single random bit.4 We further

case of and (Disjointness with m = 1), the lower bound of [21] only implies, in our
context, the trivial claim that and cannot be privately computed by a deterministic
protocol.

3 When the protocol has to be resilient against coalitions of t > 1 players (so called
t-private protocols) several ω(1) lower bounds on the number of random bits neces-
sary for private protocols for explicit functions have been proved. Kushilevitz and
Mansour [16] proved that any t-private protocol for xor requires at least t random
bits. Blundo et al. [5] gave lower bounds for two special cases. Namely, they proved
that if t = n − c, for some constant c, then Ω(n2) random bits are necessary for
the private computation of xor, and if t ≥ (2 −

√
2)n, then Ω(n) random bits are

necessary. Gal and Rosén [13] proved that Ω(logn) random bits are necessary for
2-private computation of xor.

4 In a different setting, namely, where there are two input players, Alice and Bob,
and a third output player, Charlie, Data et al. [11] also study the randomness (and
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make the first step towards determining the exact randomness complexity of the
private computation of and by showing an improved upper bound of 8 on the
number of random bits necessary for such computation, and we strengthen this
upper bound to 7 for the special case of 3 players.

The rest of the paper is organized as follows. In Section 2, we define the model
and the complexity measures that we consider. In Section 3, we prove that the
private computation of and cannot be performed with a single random bit. In
Section 4, we give a number of upper bounds on the randomness complexity of
private computation of and.

2 Preliminaries

Let f : {0, 1}n → {0, 1} be any Boolean function. A set of n players Pi (0 ≤
i ≤ n− 1), each possessing a single input bit xi (known only to Pi), collaborate
in a protocol to compute the value of f(x). The protocol operates in rounds.
In each round each player may toss some (fair) random coins, and then sends
messages to the other players (messages are sent over private channels so that
other than the intended receiver no other player can see them). After sending
its messages, each player receives the messages sent to it by the other players
in the current round. Without loss of generality (because we are not interested
in this paper in the number of rounds), we assume that the messages sent by
the players consist of single bits. In addition, each player locally outputs the
value of the function at a certain round. We say that the protocol computes the
function f : {0, 1}n → {0, 1} if for every input x ∈ {0, 1}n, and for any outcome
of all coin tosses, the output produced by each player is always f(x) (i.e., perfect
correctness).

To formally define a protocol we first define the notion of a view of a player.

Definition 1. (View) The view of player Pi at round t ≥ 1, denoted V t
i , con-

sists of the input bit to player Pi, i.e. xi, the messages received by Pi in rounds 1
to t− 1, and the results of the coin tosses performed by player Pi in rounds 1 to
t. Let Vt

i be the set of possible views of player Pi at round t. Let V̂ t
i be the view

V t
i without the coins tossed at round t, and let V̂t

i be the set of possible values of

V̂ t
i .

Definition 2. (Protocol) A protocol consists of a sequence of rounds, where
each round t ≥ 1 is formally defined by the following functions:

– St,`
i : (V̂t

i ×{0, 1}`−1)→ {stop, toss}, for ` ≥ 1, defining if another random

coin is to be tossed by player Pi, given V̂t
i and the values of the `−1 random

coins tossed so far by player Pi in round t.
– mt

i,j : Vt
i → {0, 1}, for 0 ≤ i, j ≤ n− 1, defining the message Pi sends to Pj

at round t.

communication) complexity of secure computation (in particular of the and function;
see [11, Thm. 11]).
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– Ot
i : Vt

i → {0, 1,⊥}, for 0 ≤ i ≤ n− 1, defining if and what value player Pi

outputs at round t. Since the views are increasing, we can require that each
player output a non-null output only in one round.

Sometimes it is more convenient to model the coin tossing done by each
player, as a set of binary random tapes Ri, each Ri being provided to player Pi.
The number of random coins tossed by player Pi is the number of random bits
it reads from its random tape.

We denote by ri a specific random tape provided to player Pi, by r =
(r1, . . . , rn) the vector of random tapes of all the players, and by R = (R1, . . . , Rn)
the random variable for these tapes. Note that if we fix r, we obtain a determin-
istic protocol.

Definition 3. (Randomness Complexity) A d-random protocol is a protocol
such that, for any input assignment x, the total number of coins tossed by all
players in any execution is at most d.

Our main question in this paper is what is the randomness complexity of the
best protocol (in terms of randomness complexity) of private protocols for the
boolean function and.

Informally, privacy with respect to player Pi means that player Pi cannot
learn anything (in particular, the inputs of other players) from the messages
it receives, except what is implied by its input bit, and the output value of
the function f being computed.5 Formally, denote by ci a specific sequence of
messages received by Pi, and by Ci the random variable (depending also on R)
for the sequence of messages received by Pi. We define:

Definition 4. (Privacy) A protocol A for computing a function f is private
with respect to player Pi if, for any two input vectors x and y such that f(x) =
f(y) and xi = yi, for any sequence of messages ci, and for any random tape ri
provided to Pi,

Pr[Ci = ci|ri, x] = Pr[Ci = ci|ri, y],

where the probability is over the random tapes of all other players.
A protocol is said to be private if it is private with respect to all players.

3 Lower Bound

In this section we prove that private computation of and of n bits, n ≥ 3, cannot
be performed with a single random bit. We note that a lower bound on the
number of random bits of private computation for n > 3 does not follow from a

5 In the literature, a more general notion of privacy, called t-privacy, is often con-
sidered, where any set of players of size at most t cannot learn anything from the
messages received by all of them. In this paper we consider only 1-privacy, and call
it “privacy” for simplicity.
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lower bound for n = 3, because, in general, simulating by 3 players a protocol
on n > 3 players may violate the privacy requirement.

Our result for and is in contrast to the situation for the function xor, which
can be computed privately using a single random bit. Our result constitutes, to
the best of our knowledge, the first lower bound that quantifies the amount of
randomness needed to privately compute an explicit boolean function (without
any limitation on the protocol, such as its round complexity).

In the course of this proof, we denote by 1 the all-1 input of length n, and
by eS , for S ⊆ {1, . . . , n}, the input assignment of all 1’s except at the coor-
dinates in S. Specifically, we use ej to denote the vector with 0 at position j
and 1’s elsewhere6 and ei,j to denote the vector with 0’s at positions i, j and 1’s
elsewhere.

Assume, towards a contradiction, that π is a 1-random private protocol for
and. We assume w.l.o.g. that π is in a “canonical form”, that we define as follows:
A protocol is in canonical form if no message m, sent from player Pi to player Pj

at round t, can be inferred from the input xj , the private randomness of player
Pj , and the messages previously received by player Pj (i.e., either received in
round t′ < t, or in round t from a player Pi′ , for i′ < i). In particular, no message
in a protocol in canonical form is a constant message.

Obviously, for π to compute and there must be at least one non-constant
message defined in π. Consider any such message, m, sent in round t = 1 (since
π is in canonical form there must be at least one such message in round t = 1),
say, from player Pi to player Pj . Since the message m is sent in round t = 1,
it can depend only on xi and the random bits tossed by Pi by round t = 1.
To preserve privacy with respect to Pj , the message m has to have the same
distribution when xi = 0 and when xi = 1. Since π is 1-random, the number of
random bits tossed by any single player, in particular Pi, in any execution of the
protocol, is at most 1. It follows that Pr[m = 0] = 1/2, and Pr[m = 1] = 1/2
regardless of the value of xi, thus Pi must toss a random bit by round t = 1
whether xi = 0 or xi = 1. To conclude, there is some player (the sender of m),
w.l.o.g. denote it P0, that regardless of its input, and in any execution, tosses
in π a single random bit, denote it r. Since π is 1-random, no other random bit
is tossed in π in any execution (by any player). Thus, since all messages in π
can depend only on the input bits, xi, 0 ≤ i ≤ n − 1, and the single random
bit r tossed by player P0, we may consider any message sent in π as a sum of
monomials in xi, 0 ≤ i ≤ n − 1, and r. We now analyze some properties of the
(assumed) protocol π.

Lemma 5. All messages m sent in π are of the form m = r⊕
∑

i∈S⊆{0,...,n−1} xi
or m = 1⊕ r⊕

∑
i∈S⊆{0,...,n−1} xi. No player receives during the execution of π

two (distinct) messages.

Proof. We prove the claim by induction on the round number t ≥ 1, i.e., we prove
that until round t ≥ 1 all messages are of the form m = r ⊕

∑
i∈S⊆{0,...,n−1} xi

6 Not to be confused with the j-th unit vector.
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or m = 1 ⊕ r ⊕
∑

i∈S⊆{0,...,n−1} xi and that no player receives by the end of

round t two (distinct) messages.
For the basis of the induction consider the first round t = 1 and the messages

sent and received in this round. Clearly, a (non-constant) message in the first
round can be sent only by player P0 otherwise it consists of only the input bit
of the sending player (or its negation) and the privacy property will be violated.
Since no message is received before the messages of the first round are sent, the
messages sent by player P0 at round t = 1 are a function of only r and x0.
We argue that such message has therefore to be of the form m = r ⊕ x0 (or
m = 1⊕ r⊕x0) or of the form m = r (or m = 1⊕ r): since m depends only on r
and x0, the monomials in m can only be 1, x0, r, and rx0. We claim that if the
monomial rx0 appears in the sum representing m then the privacy property is
violated with respect to the player receiving the message, say player Pj . This is
because the possible messages that include rx0 are: rx0, rx0 ⊕ x0 = (r ⊕ 1)x0,
rx0⊕x0⊕ r = (r⊕1)(x0⊕1)⊕1, and rx0⊕ r = r(x0⊕1) (and their negations).
Consider the two input assignments e0,j and ej . Observe that the distribution of
each one of these messages on the inputs e0,j and ej is different, which violates
the privacy requirement (“leaking some information” on x0 to Pj). For example,
rx0 is always 0 in e0,j and uniformly distributed in ej . The argument for the
other cases is similar.

It follows that the messages sent in round t = 1 are of the desired form. Since
only player P0 can send messages in round t = 1, it also follows that by the end
of round t = 1 each player receives at most a single message. Thus, the claim
holds for round t = 1.

We now prove the claim for round t > 1, assuming the induction hypothesis
holds for round t− 1. Consider player Pi and the message mt

i,j that it sends in
round t to player Pj . Since this message is computed by player Pi at round t,
it can be expressed as a function of xi, of the single message m that player Pi

receives in some round t′ < t (if such a message exists) and, if i = 0, of the
random bit r. We distinguish between two cases: when i 6= 0, and when i = 0.

When i 6= 0, the message mt
i,j sent by Pi is the sum of a subset of the mono-

mials 1, xi, m, mxi. If the monomial mxi does not appear in the sum, then mt
i,j

is of the desired form (otherwise mt
i,j is either a messages that can be inferred

by Pj or a message that violates the privacy property with respect to Pj ; in any
case it cannot be part of the protocol.) 7

On the other hand, we show in the following that any message defined by
any of the 8 sums of monomials that include the monomial mxi violates the
privacy property with respect to Pj , and hence such message cannot be part
of the protocol. By the induction hypothesis m = r ⊕

∑
k∈S⊆{0,...,n−1} xk (or

1⊕ r⊕
∑

k∈S⊆{0,...,n−1} xk), for some S. Consider the former form, the latter is

similar. For the message mxi (resp., 1⊕mxi) consider the inputs ei,j and ej and

7 By inspection for each of the 8 subsets of 1, xi, and m (represented by {0, 1}3 in the
natural way): (000, 100) - 0, 1: constants, not in protocol; (010, 110) - xi, 1 ⊕ xi:
violates privacy; (001, 101) - m, 1 ⊕ m: of the desired form; (011, 111) - xi ⊕ m,
1⊕ xi ⊕m: of the desired form.
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observe that on the the former input the message is always 0 (resp., 1) while on
the latter it is m (resp., 1⊕m), and hence does not exhibit the same distribution
on the two inputs. Similarly, consider the messages mxi ⊕ xi = (m ⊕ 1)xi,
mxi⊕m = m(xi⊕1), and mxi⊕xi⊕m = (m⊕1)(xi⊕1)⊕1 (and their negations),
and observe that the message has different distributions on the inputs ei,j and
ej (in each of the cases, for one of these two inputs the value of the message is
either m or its negation, i.e., the support of the distribution is of size 2, and for
the other input the distribution has support of size 1).

For i = 0, player Pi = P0 has also the random bit r, so the message sent
by P0 at round t to player Pj is the sum of a subset of the monomials 1, x0,
m, mx0, r, rx0, rm, rmxi. But, no message m can be received by player P0

before round t, since any message of the form r ⊕
∑

k∈S⊆{0,...,n−1} xk (or m =

1⊕ r⊕
∑

k∈S⊆{0,...,n−1} xk) would either violate the privacy (since P0 knows r),

or would be such that P0 can compute it itself. 8 It follows that the message sent
by player P0 at round t is the sum of a subset of the monomials 1, x0, r, rx0.
But, we have proved above (when proving the base case of the induction) that
in this case mt

i,j must be r ⊕ x0 (or 1⊕ r ⊕ x0).
We conclude that the messages sent in round t are of the desired form.
Now, assume towards a contradiction that some player Pj receives by the end

of round t two (distinct) messages which, as we proved above, must be of the de-
sired form. Denote q1 = r⊕

∑
i∈S1⊆{0,...,n−1} xi, and q2 = r⊕

∑
i∈S2⊆{0,...,n−1} xi.

The two messages received by player Pj are therefore m1 = q1 (or m1 = 1⊕ q1)
and m2 = q2 (or m2 = 1 ⊕ q2), for some sets S1 and S2. Consider now Q =
m1⊕m2. Observe that Q =

∑
i∈S′⊆{0,...,n−1} xi (or Q = 1⊕

∑
i∈S′⊆{0,...,n−1} xi)

for S′ = S14S2. If S′ ⊆ {xj} then, since π is of canonical form, one of the two
messages m1 and m2 (the one arriving later) cannot exist in π. It follows that
S′ 6⊆ {xj} and the privacy property is violated with respect to player Pj , as Q
reveals information on the xor of the inputs in S′. 9 A contradiction to π being
private.

Therefore, the claim holds for round t. ut

Lemma 6. Consider the protocol π, an arbitrary player Pj and an arbitrary
round t ≥ 1. Then, player Pj cannot compute the function and at the end of
round t.

Proof. By Lemma 5, player Pj receives by the end of round t at most a single
message, and this message is of the form m = r ⊕

∑
i∈S⊆{0,...,n−1} xi or m =

1⊕ r ⊕
∑

i∈S⊆{0,...,n−1} xi. We distinguish between two cases.
Case 1: For all k 6= j, k ∈ S. Since n ≥ 3, there exist two distinct k1, k2 ∈ S, k1 6=
j, k2 6= j. Consider the two inputs 1 and ek1,k2

. While AND(1) 6= AND(ek1,k2
),

8 If S = {x0} then P0 can compute the message itself. If there exists a k 6= 0, k ∈ S,
consider the two inputs e0, e0,k to see that the privacy property is violated.

9 Formally, consider the two inputs ej,k and ej , for some k ∈ S′, k 6= j. These two
inputs agree on xj as well as on the value of the function, but the distributions of
the messages that Pj receives on these two inputs are not identical.
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the view of Pj at the end of round t is the same on 1 and ek1,k2
and hence π must

err on at least one of them (note that this in particular holds when j = 0; for
all other players, who do not know r, the message m is uniformly distributed).

Case 2: There exists an index k 6= j, k /∈ S. Consider the two inputs 1 and ek.
As in Case 1, π must err on at least one of these inputs. ut

We conclude that protocol π (a 1-random private protocol for and) does not
exist.

Theorem 7. The private computation of the function and cannot be performed
with a single random bit.

4 Upper Bounds

In this section, we provide significantly improved upper bounds on the random-
ness complexity of and. Specifically, we show that and on any number of players
n can be privately computed using 8 random bits, and can be computed with 7
random bits for the special case of n = 3 players.

In order to present our protocol, we first present two building blocks which
are used in our constructions. They are both implementations of information-
theoretic 1-out-of-2 Oblivious Transfer.

4.1 1-out-of-2 Oblivious Transfer

In a 1-out-of-2 Oblivious Transfer (1-2 OT) protocol two parties, Alice and Bob,
engage in a protocol that allows Bob to choose which part of the information
that Alice holds he wants to learn, in such a way that Alice does not learn which
part of her information Bob learned.

More formally, for a 1-out-of-2 Oblivious Transfer protocol Alice has two bits
b0 and b1, and Bob has a selection bit s. Alice and Bob, together with a set of
helper players, H, engage in a protocol at the end of which the following holds:

– Bob knows the value of bs.

– Bob does not learn any information on b1⊕s (i.e., the transcript of Bob, given
the values of s and bs, is identically distributed whether b1⊕s is 0 or 1).

– Alice does not learn anything (i.e., the transcript of Alice, given any choice of
values for b0 and b1, is identically distributed; in particular, it is independent
of s).

– The helper players do not learn anything (i.e., the transcript of each of them
is distributed independently of the inputs s, b0, b1).

We now give two implementations of this building block using a different
number of helper players, and a different number of random bits. Both are used
in our protocols.
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4.1.1 Implementation 1: 3 random bits, 1 helper player. This imple-
mentation is given by Beaver [2].
There is one helper player, denoted by H. The protocol is defined as follows.

1. The helper player H tosses 2 uniformly distributed and independent random
bits, r0 and r1 (to be used as masking bits), and one additional independent
and uniformly distributed random bit p (to define one of the two possible
permutations of {0, 1}).

2. H sends both r0 and r1 to Alice and it sends p and r∗ = rp to Bob.
3. Bob sends to Alice the message i = s⊕ p.
4. Alice sends to Bob the two bits m0 = b0 ⊕ ri and m1 = b1 ⊕ r1⊕i.
5. Bob “deciphers” the value of the bit he wants to learn (i.e., bs) by computing
ms ⊕ r∗.

The fact that Bob learns the value of bs follows by simple case analysis (p = 0
or p = 1).
For completeness, we sketch a proof of the privacy of this protocol. A more
detailed formal proof is incorporated within the privacy proof for our protocol
that uses the OT protocol as a sub-protocol. We observe the following:

– H does not receive any message and hence privacy is preserved with respect
to H.

– Alice receives from H the bits r0 and r1 and from Bob the bit i = s⊕ p. All
three are independent and uniformly distributed between 0 and 1 (as r0,r1,
and p are uniformly distributed and independent random bits).

– Bob receives from H the bits p and r∗ = rp (but not the bit r1⊕p), and from
Alice the bits m0 = b0⊕ri and m1 = b1⊕r1⊕i. Observe that bs = ms⊕r∗, but
p and m1⊕s are both independent of ms and r∗, and uniformly distributed.

4.1.2 Implementation 2: 2 random bits, 2 helper players. Here we
assume that there are two helper players, denoted H0 and H1. The protocol is
defined as follows.

1. Alice tosses two independent random bits p and r.
2. Alice sends the message m0 = b0 ⊕ r to player Hp, the message m1 = b1 ⊕ r

to player H1⊕p, and p and r to Bob.
3. Bob sends the bit 1 to player Hs⊕p and the bit 0 to player H1⊕s⊕p.
4. If player H0 (resp., H1) receives 1 from Bob, it sends to Bob the message m

it received from Alice (i.e, either m0 or m1).
Otherwise, if player H0 (resp., H1) receives 0 from Bob, it sends to Bob the
(constant) message 0.10

5. Bob “deciphers” the value of the bit he wants to learn (i.e., bs) by computing
bs = m⊕ r, where m is the message Bob got from Hs⊕p.

10 Clearly in this case the relevant helper player does not need to send any message to
Alice. However in order to stay coherent with the model we use, we define which bit
is sent in each round between any two players, unless for all inputs and all random
coins values, no message is sent between the two.
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The fact that Bob learns the value of bs follows from the protocol, by inspec-
tion.
For completeness, we sketch a proof of the privacy of this protocol. A more de-
tailed formal proof is incorporated within the privacy proof for our protocol that
uses the OT protocol as a sub-protocol. We observe the following:

– Alice does not get any message and hence privacy is preserved with respect
to Alice.

– Each of H0 and H1 gets a single message from Alice, which is one of her
input bits xored with r; it also received from Bob a bit which is either 0 or
1, depending on the value s ⊕ p; since r and p are uniformly random and
independent, then privacy is preserved with respect to each one of the helper
players H0 and H1.

– Bob receives p and r from Alice. Then, given the value of p and the value of s,
known to Bob, it receives a constant message from one of H0 or H1, and the
message bs⊕r from the other (if s⊕p = 1 Bob receives the constant message
from H0, and if s⊕p = 0 Bob receives the constant message from H1.) Hence,
given the value of bs, the transcript of Bob is distributed uniformly.

4.2 The AND protocol

We first present a protocol, Πodd, applicable to an odd number of players; this
protocol uses 8 random bits. This protocol serves to introduce the main ideas
of our protocols, and is also the basis for a somewhat improved protocol for
n = 3, that uses 7 random bits. Extending Πodd to work also for even number
of players and keeping the 8 random bits bound requires some more effort, and
we give such a protocol in Subsection 4.2.2, applicable to any n ≥ 4.

4.2.1 Odd number of players

We describe our protocolΠodd for odd number of players, n, denoted P0, P1, . . . , Pn−1.

initialization phase. In the initialization phase player P0 tosses 3 random bits
and plays the role of the helper player of implementation 1 of OT for all pairs
of players where Alice is an odd player and Bob is the successive even player.
Player Pn−1 does the same for all pairs of players where Alice is an even player
and Bob is the successive odd player. Specifically:
Player P0 tosses 3 random bits r10, r11, and p1. It sends the bits r10, r11 to all odd
players, and sends the bits p1 and r1p1 to all even players.

Player Pn−1 tosses 3 random bits r00, r01, and p0. It sends the bits r00, r01 to all
even players, and sends the bits p0 and r0p0 to all odd players.
In addition, player P0 tosses 2 additional random bits q0 and q1. It sends q0 to all
odd players, and q1 to all even players. P0 also locally computes y0 = q0⊕q1⊕x0.
computation phase. This phase runs in n− 1 rounds. The inductive invariant
that we maintain is that at the end of round i ≥ 1 player Pi has the value
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yi = q0⊕ q1⊕Πi
j=0xj . In each round, the protocol will run an OT protocol. We

give a detailed description of the rounds below.

final phase. At the end of the computation phase, player Pn−1 has (by the
inductive invariant) the value yn−1 = q0 ⊕ q1 ⊕Πn−1

j=0 xj . It sends this value to

P0 who xors it with q0⊕ q1 to obtain Πn−1
j=0 xj = AND(x0, x1, . . . , xn−1). Player

P0 then sends this value to all other players.

We now define how the computation phase is implemented so as to maintain
the inductive invariant (and privacy, as we prove later). The invariant clearly
holds at the end of round 0 (i.e., before the computation phase starts) since
player P0 has x0, q0, and q1 and hence can compute y0.

Now, in round i ≥ 1 players Pi−1 and Pi engage in a 1-2 OT protocol, using
Implementation 1 described above. The values that Alice (i.e., player Pi−1) holds
for the OT protocol are b0 = q

i mod 2
and b1 = yi−1. Observe that Alice has b0

from the initialization phase, and b1 by the inductive invariant. The selection bit
of Bob (i.e., player Pi) is s = xi. The random bits used for the OT protocol are
rk0 , rk1 , and pk, where k = (i+1) mod 2. Observe that Pi and Pi−1 receive in the
initialization phase the random bits needed in order to simulate Alice and Bob
of the OT protocol (i.e., rk0 , rk1 for Alice and pk, rkpk for Bob). Let vi denote the

output (i.e., the bit learned by Bob) of the OT protocol run in the i-th round.

It follows that at the end of the OT protocol, if the value that player Pi holds
is xi = 0, then it gets from player Pi−1 the value vi = q

i mod 2
, and if xi = 1

then it gets the value vi = yi−1 = q0 ⊕ q1 ⊕Πi−1
j=0xj .

Now, if xi = 0 then Πi
j=0xj = 0, and player Pi has yi by calculating q

i mod 2
⊕

q
(i+1) mod 2

, where the former is just vi and the latter is received from P0 in

the initialization phase.
If xi = 1 then Πi

j=0xj = Πi−1
j=0xj and player Pi just sets yi = vi.

The total number of random bits used in this protocol is 8: the protocol uses
3 bits for each of the two sets of OT protocols, and 2 additional masking bits,
q0 and q1.

It remains to prove that privacy is preserved with respect to all players.
Intuitively, there are n− 1 invocations of the OT protocol. Each internal player
(i.e., all players except P0 and Pn−1) participates in two OT invocations, once
as Alice (with the following player) and once as Bob (with the preceding player),
each of these two invocations using different sets of random bits, one set from
P0 and one set from Pn−1. Players P0 and Pn−1 participate each in a single
invocation of the OT protocol, P0 as Alice with P1 and Pn−1 as Bob with Pn−2.
Hence the number of players must be odd (to guarantee that the random bits
used by the OT protocol of Pn−1 and Pn−2 come from P0 and not from Pn−1).
Formally,

Theorem 8. The AND protocol Πodd is private for n odd, n ≥ 3.

Proof. We first prove the claim for players Pi, 0 < i < n − 1, and then for P0

and for Pn−1.
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For 0 < i < n − 1, observe that player Pi receives messages pertaining to
exactly two OT invocations, one in which it plays the role of Alice, and one
where it plays the role of Bob. In addition, Pi receives from player P0 either the
bit q0 or the bit q1 and, at the end of the protocol, the computed value of the
function.

We prove the claim for i even (the case of i odd is analogous, switching the
roles of the random bits, i.e., flipping their superscripts, and switching q0 and
q1). The messages that such player Pi receives are:

1. During the initialization phase: bits r00, r
0
1, p

1, r1p1 , q0.

2. During the OT protocol with player Pi−1 (i.e., when playing the role of Bob):
– q1 ⊕ r1j and yi−1 ⊕ r11⊕j , where j = xi ⊕ p1.

3. During the OT protocol with player Pi+1 (i.e., when playing the role of
Alice):
– xi+1 ⊕ p0.

4. In the final phase, from player P0, AND(x0, x1, . . . , xn−1).

Observing the nine messages received by Pi, one can verify that:

1. The messages received in Stage 1 are just the random bits r00, r
0
1, p

1, r1p1 , q0.
2. For the messages of Stage 2 we distinguish between two cases depending on

the value of xi.
If xi = 0 then the first message is q1⊕r1p1 and the second one is yi−1⊕r11⊕p1 .
We have that the first message includes a xor operation with q1, and the
second one a xor with r11⊕p1 .

If xi = 1 then the first message is q1⊕r11⊕p1 and the second one is yi−1⊕r1p1 .

In that case, the first message includes a xor operation with r11⊕p1 and the

second one a xor with q1 (since by the inductive invariant, yi−1 = q0 ⊕ q1 ⊕
Πi−1

j=0xj .)

3. The message received in Stage 3 includes a xor operation with p0.
4. The message received in Stage 4 is the value of the function.

Inspecting the distribution of the above messages, the last message (Stage 4)
is, by definition, the value of the function; all other 8 messages are independent
and uniformly distributed (in correspondence with the 8 random bits that are
used): the bits r00, r

0
1, p

1, r1p1 , q0 in Stage 1, the two messages of Stage 2 one

includes a xor operation with r11⊕p1 and the other with q1, and the message

received in Stage 3 which includes a xor operation with p0. Hence, the privacy
with respect to Pi follows.

Almost the same argument applies to player Pn−1 as well. It receives a subset
of the messages received by players Pi, 0 < i < n− 1, namely, those of Stages 1,
2, 4 above. In addition it knows the value of the random bit p0. But, since the
message of Stage 3 is not received by Pn−1, the privacy with respect to Pn−1
holds.

As to player P0, it receives the messages listed under Stages 1 and 3 above,
and (from player Pn−1 at the final phase) the message yn−1 = q0⊕ q1⊕Πn−1

j=0 xj .
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In addition, player P0 knows the values of the random bits r10, r11, q0 and q1. We
have that the messages received in Stages 1 and 3 each includes a xor operation
with an independent (uniformly distributed) random bit not known to P0. The
message received in the final phase is determined by the value of the function,
q0 and q1. Hence, privacy with respect to player P0 holds as well. ut

4.2.2 At least 4 players

If one attempts to apply the above protocol Πodd to an even number of players
then privacy will not be preserved. This is because when players Pn−2 and Pn−1
engage in their OT protocol, they will do that with the random bits tossed by
player Pn−1 (while in the case of odd n these bits are tossed by the “helper”
P0).

To remedy this problem, we stop the computation phase one round earlier,
that is, we run it for n − 2 rounds only, at the end of which player Pn−2 has,
as in Πodd, the value yn−2 = q0 ⊕ q1 ⊕Πn−2

j=0 xj . We then perform the last OT
protocol of the computation phase using Implementation 2 defined above and
fresh random bits. This, however, increases the total number of random bits used,
and further requires that the total number of players is at least 4 (as required by
Implementation 2 of OT ). While requiring at least 4 players is not an issue since
we have another variant of the protocol for odd number of players, in order not
to increase the total number of random bits used, we generate and distribute
the random bits needed for the various OT invocations in a more efficient way.
That is, while each internal player still participates in 2 OT invocations, we do
not need totally separate 2 sets of random bits. Rather, it is sufficient to ensure
that no player will receive two messages (of two different OT invocations) that
“use” the same random bit. The resulting protocol uses a total of 8 random bits
and is applicable to any n ≥ 4.

We now formally describe our protocol for n ≥ 4 players, denoted P0, P1, . . . , Pn−1.
As indicated above, the high level structure of the protocol is the same as that
of Πodd, with some modifications, most notably a different way to produce and
distribute the random bits.

initialization phase. In the initialization phase player Pn−1 tosses 4 random
bits u0, u1, u2, u4 and defines a sequence of bits r0, r1, . . . , r`, for ` = 2(n − 2),
recursively as follows:11

r0 = u0, r1 = u1, r2 = u2, r4 = u4, and

rj =

{
rj−3+rj−1

j > 1, j odd
rj−6+(1⊕rj−4) j > 4, j even

. (1)

Player Pn−1 then sends to each player Pi, 0 ≤ i ≤ n− 2 the two bits r2i, r2i+1.

11 Here and in the following we sometimes abuse notation and consider indices that
involve summations over both N and F2 (denoted with the operands + and ⊕,
respectively).
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In addition, player P0 tosses 2 additional random bits q0 and q1. It sends
q0 to all odd players, and q1 to all even players. P0 also locally computes y0 =
q0 ⊕ q1 ⊕ x0.
computation phase. This phase runs in n− 1 rounds. The inductive invariant
that we maintain is that at the end of round i ≥ 1 player Pi has the value
yi = q0⊕ q1⊕Πi

j=0xj . In each round, the protocol will run an OT protocol. We
give a detailed description of the rounds below.
final phase. At the end of the computation phase, player Pn−1 has (by the
inductive invariant) the value yn−1 = q0 ⊕ q1 ⊕Πn−1

j=0 xj . It sends this value to

P0 who xors it with q0⊕ q1 to obtain Πn−1
j=0 xj = AND(x0, x1, . . . , xn−1). Player

P0 then sends this value to all other players.
The following lemma gives the properties of the sequence of bits rj , necessary

both for the correctness of the protocol and for its privacy. The proof of this
lemma is quite technical and the reader may wish to skip this proof.

Lemma 9. For any 1 ≤ i ≤ n− 2, the five bits rj, 2(i− 1) ≤ j ≤ 2(i+ 1), are
such that

1. r2i+1 = r2(i−1)+r2i .
2. The four bits r2(i−1), r2(i−1)+1, r2i, r2(i+1) are independent and uniformly dis-

tributed.

Proof. We prove the lemma by induction on i. For the base of the induction (i =
1), observe that Point (2) is satisfied since r0, r1, r2, r4 are set to be u0, u1, u2, u4,
respectively, and these are independent and uniformly distributed random bits
tossed by Player Pn−1. As to Point (1), r3 is set to be equal to rr2 according to
Equation (1) (first part, with j = 3).

We now prove the lemma for i+ 1 assuming it is correct for i. Note that the
5-tuple that corresponds to i+ 1 partially overlaps the 5-tuple that corresponds
to i.

Point (1) holds for i + 1 because by the first part of Equation (1) (taking j
to be 2(i+ 1) + 1) r2(i+1)+1 = r2i+1+r2(i+1)

.
As to Point (2), we consider both parts of Equation (1) and the value of r2i.

There are two cases:

1. If r2i = 0:
– r2i+1 = r2(i−1) (taking j = 2i+ 1 for the first part of Equation (1)).
– r2(i+2) = r2(i−1)+1 (taking j = 2(i + 2) for the second part of Equa-

tion (1)).
2. If r2i = 1:

– r2i+1 = r2(i−1)+1 (taking j = 2i+ 1 for the first part of Equation (1)).
– r2(i+2) = r2(i−1) (taking j = 2(i + 2) for the second part of Equa-

tion (1)).

It follows that the 4-tuple of bits with indices 2i, 2i+1, 2(i+1) and 2(i+2), i.e.,
the 4-tuple (r2i, r2i+1, r2(i+1), r2(i+2) is equal to either the 4-tuple
(r2i, r2(i−1), r2(i+1), r2(i−1)+1) (if r2i = 0) or to (r2i, r2(i−1)+1, r2(i+1), r2(i−1))
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(if r2i = 1), which are two permutations of the same 4 bits. By the induction
hypothesis, these 4 bits are independent and uniformly distributed. Hence also
Point (2) holds for i+ 1. ut

We now define how the computation phase is implemented so as to maintain
the inductive invariant (and privacy, as we prove later). The invariant clearly
holds at the end of round 0 (i.e., before the computation phase starts) since
player P0 has x0, q0, and q1 and hence can compute y0.

Similarly to protocol Πodd, in round 1 ≤ i ≤ n− 2 (but not in round n− 1,
as is the case for Πodd) players Pi−1 and Pi engage in a 1-2 OT protocol, using
Implementation 1 described above. The values that Alice (i.e., player Pi−1) holds
for the OT protocol are b0 = q

i mod 2
and b1 = yi−1. Observe that Alice has b0

from the initialization phase, and b1 by the inductive invariant. The selection bit
of Bob (i.e., player Pi) is s = xi. The random bits used for the OT protocol are
r2(i−1) and r2(i−1)+1 held by Alice (player Pi−1) and r2i held by Bob (player Pi).
Observe that Pi and Pi−1 receive these bits from Pn−1 during the initialization
phase. Further, by Lemma 9 held by player Pi, all satisfy the properties required
for the OT protocol to be correct (and private).

Finally, in round i = n−1, players Pn−2 and Pn−1 engage in an OT protocol
as in previous rounds, but using Implementation 2 and using additional new
random bits.12 Specifically, Pn−1 is Bob of the OT protocol and Pn−2 is Alice;
the helper players are P0 (H0) and P1 (H1), and we denote the two fresh random
bits tossed by Pn−2 by u5 and u6 (see Section 4.1.2). The use of Implementation 2
of the OT protocol in this round is the reason that the protocol described here
works only for n ≥ 4.

As in protocol Πodd, let vi denote the output (i.e., the bit learned by Bob)
of the OT protocol run in the i-th round, 1 ≤ i ≤ n − 1. It follows that at the
end of the OT protocol, if the value that player Pi holds as input is xi = 0, then
it gets from player Pi−1 the value vi = q

i mod 2
, and if xi = 1 it gets the value

vi = yi−1 = q0 ⊕ q1 ⊕Πi−1
j=0xj .

Now, if xi = 0 then Πi
j=0xj = 0, and player Pi has yi by calculating q

i mod 2
⊕

q
(i+1) mod 2

, where the former is just vi and the latter is received from P0 in

the initialization phase. If xi = 1 then Πi
j=0xj = Πi−1

j=0xj and player Pi just sets
yi = vi.

The total number of random bits used in this protocol is 8: u0, u1, u2, u4 and
q0, q1 are tossed by player P0, and u5, u6 are tossed by player Pn−2.

It remains to prove that privacy is preserved with respect to all players.
Intuitively, there are n− 1 invocations of the OT protocol. Each internal player
(i.e., all players except P0 and Pn−1) participates in two OT invocations, once
as Alice and once as Bob, and the privacy property with respect to these players
will follow from the properties of the sequence of bits rj (Lemma 9). We now
prove that the protocol is private.

12 It is also possible to perform the OT protocol of this round using Implementation 1
with a separate set of 3 random bits, tossed by another player, say player P0, but
this results in a larger total number of random bits for the protocol.
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Theorem 10. The AND protocol for n ≥ 4 is private.

Proof. We first prove the claim for players Pi, 1 < i < n − 2, and then for the
players having special roles, P0, P1, Pn−2, Pn−1.

For 1 < i < n − 2, observe that player Pi receives messages pertaining to
exactly two OT invocations, one in which it plays the role of Alice, and one
where it plays the role of Bob (as implemented in Section 4.1.1). In addition,
Pi receives from player P0 either the bit q0 or the bit q1 and, at the end of the
protocol, the computed value of the function.

We prove the claim for i even (the case of i odd is analogous, switching the
roles of q0 and q1). The messages player Pi receives are:

1. During the initialization phase: bits r2i, r2i+1, q0.
2. During the OT protocol with player Pi−1 (i.e., when playing the role of Bob):

– q1 ⊕ r2(i−1)+j and yi−1 ⊕ r2(i−1)+(1⊕j), where j = xi ⊕ r2i.
3. During the OT protocol with player Pi+1 (i.e., when playing the role of

Alice):
– xi+1 ⊕ r2(i+1).

4. In the final phase, from player P0, AND(x0, x1, . . . , xn−1).

Observing the seven messages received by Pi, one can verify that:

1. The messages received in Stage 1 are the bits r2i, r2i+1, q0.
2. For the messages of Stage 2, we distinguish between two cases depending on

the value of xi.
If xi = 0 then the first message is q1 ⊕ r2(i−1)+r2i and the second one is
yi−1⊕ r2(i−1)+(1⊕r2i). In this case, the first message includes a xor operation
with q1, and the second one a xor operation with r2(i−1)+(1⊕r2i).
If xi = 1 then the first message is q1 ⊕ r2(i−1)+(1⊕r2i) and the second one
is yi−1 ⊕ r2(i−1)+r2i . In this case, the first message includes a xor operation
with r2(i−1)+(1⊕r2i) and the second one a xor operation with q1 (since by the

inductive invariant, yi−1 = q0 ⊕ q1 ⊕Πi−1
j=0xj).

3. The message received in Stage 3 includes a xor operation with r2(i+1).
4. The message received in Stage 4 is the value of the function.

The last message (Stage 4) is, by definition, the value of the function. From
the observations above, it follows that the distribution of the other 6 messages is
the same as the distribution of the tuple r2i, r2i+1, q0, q1, r2(i−1)+(1⊕r2i), r2(i+1)

(if xi = 0) or the tuple r2i, r2i+1, q0, r2(i−1)+(1⊕r2i), q1, r2(i+1) (if xi = 1). But,
using Lemma 9, we can conclude that both of these 6-tuples are uniformly dis-
tributed over the 26 possible binary vectors. Thus, privacy is preserved for all
players Pi, 1 < i < n− 2.

Similar arguments apply to the remaining four players. Let b̂0 = q
(n−1) mod 2

⊕
u6 and let b̂1 = yn−2⊕u6 (recall that player Pn−2 tosses two random bits u5, u6,
to be used by the OT protocol, Implementation 2, in round n− 1).
Player P0: Player P0 receives the following messages: those listed under Stages 1
and 3 above; in round n− 1 of the computation phase, when Implementation 2
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of OT is invoked, P0 receives from Pn−2 either the message b̂0 = qn−1 mod 2⊕u6
or the message b̂1 = yn−2 ⊕ u6 and from Pn−1 the message xn−1 ⊕ u5 ⊕ 1; and
from Pn−1, at the final phase, the message yn−1 = q0⊕q1⊕Πn−1

j=0 xj . In addition,
player P0 has the values of the random bits q0 and q1 tossed by itself. Therefore,
the messages received in Stages 1 and 3, as well as the messages received from
Pn−2 and Pn−1, each includes a xor operation with an independent (uniformly
distributed) random bit not known to P0. The message received in the final
phase is (together with q0 and q1) the value of the function. Hence, privacy with
respect to P0 holds.
Player P1: Player P1 receives the following messages: the messages listed un-
der Stages 1, 3 and 4 above; In round n − 1 of the computation phase, when
Implementation 2 of OT is invoked, P1 receives from Pn−2 either the message
b̂0 = qn−1 mod 2 ⊕ u6 or the message b̂1 = yn−2 ⊕ u6 and from Pn−1 the message
xn−1 ⊕ u5. Therefore, the messages received in Stages 1 and 3, as well as the
messages received from Pn−2 and Pn−1, each includes a xor operation with an
independent (uniformly distributed) random bit not known to P1. The message
received in Stage 4 is the value of the function. Hence privacy with respect to
P1 holds.
Player Pn−2: The set of messages that player Pn−2 receives is a subset of the
messages received by players Pi, 1 < i < n− 2. None of these messages depend
on u5 or u6 tossed by Pn−2. The privacy with respect to player Pn−2 thus follows
from the proof for Pi, 1 < i < n− 2.
Player Pn−1: Player Pn−1 receives a subset of the messages received by the play-
ers Pi, 1 < i < n − 2, namely those of Stage 1 and of Stage 4. In addition,
it receives, while engaging in Implementation 2 of the OT protocol with player
Pn−2 and helpers P0, P1, the following messages:
(1) the messages u5 and u6 from player Pn−2,
(2) the message M0 · (xn−1 ⊕ u5 ⊕ 1) from player P0, where M0 is the message
P0 receives from Pn−2 in the OT protocol, Implementation 2,
(3) the message M1 · (xn−1 ⊕ u5) from player P1, where M1 is the message P1

receives from Pn−2 in the OT protocol, Implementation 2.
We now have four cases depending on the values of xn−1 and u5. In each of the
four cases, the two messages received from P0 and P1 can be written as follows:

– xn−1 = 0, u5 = 0: Pn−1 receives from P1 the message 0, and from P0 the

message M0 = b̂0 = q
(n−1) mod 2

⊕ u6.

– xn−1 = 0, u5 = 1: Pn−1 receives from P0 the message 0, and from P1 the

message M1 = b̂0 = q
(n−1) mod 2

⊕ u6.

– xn−1 = 1, u5 = 0: Pn−1 receives from P0 the message 0, and from P1 the

message M1 = b̂1 = yn−2 ⊕ u6.
– xn−1 = 1, u5 = 1: Pn−1 receives from P1 the message 0, and from P0 the

message M0 = b̂1 = yn−2 ⊕ u6.

It can be verified that, given the values of xn−1 and ofAND(x0, x1, . . . , xn−1),
the distribution of the messages received by Pn−1 is identical in all four cases.
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Indeed, given the value xn−1, the value of u5 determines which of the two mes-
sages above is a constant, and which includes a xor operation with q

(n−1) mod 2
.

Now recall that yn−2 = q0 ⊕ q1 ⊕ Πn−2
j=0 xj , thus the rest of the messages (ex-

cept AND(x0, x1, . . . , xn−1)) include a xor operation with a distinct random bit,
other than q

(n−1) mod 2
, all are uniformly distributed and independent. Hence,

privacy is preserved with respect to Pn−1. ut

4.2.3 The case of n = 3. This case can be slightly improved compared to
the general case. We can privately compute the and of 3 players using 7 random
bits instead of 8.

The protocol is simple to define: run the protocol Πodd, but fix the bit q1 to
be 0 (rather than it being a random bit).

The correctness of the protocol clearly holds since it holds for Πodd with
any choice of random bits. To see that privacy is still preserved with respect to
all three players, observe that both player P0 and player P1 get q1 in the original
protocol (P0 tosses it, and P1 gets it in the initialization phase). Therefore, fixing
it to 0 leaves the privacy with respect to these two players intact. As to player
P2, note that the OT protocol performed between P1 and P2 does not change
in the modified protocol. Therefore, if x2 = 0 then P2 gets q1 (which is fixed
to 0), and no other information. If x2 = 1 then the only information P2 gets is
q0 ⊕ q1 ⊕ Π1

j=0xj = q0 ⊕ Π1
j=0xj , from which it can compute, using the bit q0

that it got in the initialization phase, the value of Π1
j=0xj . But this value can

be inferred, in the case of n = 3 and x2 = 1 from the value of the function and
x2, so privacy is preserved with respect to P2 too.

5 Conclusions

We consider the randomness complexity of the information-theoretic multi-party
private computation of the function and. We show that this computation cannot
be done using a single random bit, thus giving the first non-trivial lower bound
on the randomness complexity of the private computation of an explicit boolean
function. We further give an improved upper bound on the randomness complex-
ity of the private computation of and, thus approaching the exact determination
of that measure for and. To the best of our knowledge, for no explicit function
f is the exact randomness complexity of the private computation of f known
(except for xor, which is trivially 1-random, and degenerate functions). We leave
the exact determination of the randomness complexity of private computations
of and for further research.
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