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We investigate wave-breaking and dispersive shock wave formation driven by a pulse undergoing second-
harmonic generation in a quadratic medium. We show that the process is accessible in the regime of high
phase-mismatch (cascading limit) and weak dispersion. Insight into the phenomenon is obtained by means of a
suitable hydrodynamic reduction of the equations that govern the mixing. c© 2012 Optical Society of America

OCIS codes: 190.7070, 190.4410.

Parametric nonlinearities characteristic of quadratic
media can exactly balance dispersion (and or diffrac-
tion) to form solitons [1, 2]. Conversely, in such media,
the phenomena occurring when nonlinearities overwhelm
dispersion, are left mostly unexplored. Studies performed
in this regime for cubic Kerr media show that disper-
sive (or collisionless) shock waves (also known as un-
dular bore) develop in settings ruled by the defocusing
nonlinear Schrödinger equation (NLSE). The distinctive
feature of this phenomenon is the onset of oscillations de-
termined by the regularizing action of dispersion over in-
finite gradients produced by the nonlinear response [3,4].
This process has been observed in fibers [5] and more
recently in the spatial domain [6–8] where suitable gen-
eralizations of the NLSE account for the specific nature
(saturable, nonlocal, etc.) of cubic nonlinearities. On the
other hand, a properly generalized NLSE can also de-
scribe the propagation of light pulses in second-harmonic
generation (SHG) in the so-called cascading limit [1].
In this framework, formation of steep gradients are at-
tributed to self-steepening terms that stem from correc-
tions to the main cascading term (i.e., the effective non-
linear index due to repeated up- and down-conversions),
whose effects have been investigated theoretically and
experimentally [1, 9–12].
In this letter we show, however, that dispersive

shock formation can occur regardless of such correc-
tions, driven by the leading-order index change due to
mismatched SHG, when the group-velocity dispersion
(GVD) is sufficiently weak. To this end we introduce
a hydrodynamic reduction of the standard SHG model
that we perform by starting from a suitable renormal-
ization of the latter. We validate the outcome of such an
approach by means of numerical analysis of the original
model, predicting that this regime is accessible in prac-
tice. In this context, the self–steepening term that arises
from group-velocity mismatch (GVM) [9–11] appears to
play only a perturbative role that modifies the symmetry
of the wave-breaking process.
We consider type I mixing of pulse envelopes w(Z, T )

and v(Z, T ) (electric fields in V/m) at fundamental fre-
quency (FF) and its second harmonic (SH), respectively,
which travel along Z in a normally dispersive quadratic
medium. In the retarded time frame T moving with the
FF group-velocity, the model that governs SHG reads
as [1, 2, 11]

iwZ − β′′

1

2 wTT + χvw∗e−i∆kZ = 0,

ivZ + iδvT − β′′

2

2 vTT + χw2ei∆kZ = 0, (1)

where β′′
1,2 stands for GVDs, δ = β′

2−β′
1 is the GVM (β′

1,2

are the inverse group velocities), ∆k is the wave–number
mismatch, and χ is the effective nonlinearity. We intro-
duce scaled variables suited to investigate the weakly
dispersing regime: z = Z/L, t = T/T0, a1 = w/

√
P ,

a2 = v/
√
P exp(−i∆kZ), with L =

√
LDLNL, LNL =

|∆k|/(χ2P ) and LD = T 2
0 /β

′′
1 being the nonlinear and

dispersive lengths associated with input pulse duration
T0 and peak FF field

√
P . In terms of such variables,

introducing also the small parameter ε =
√

LNL/LD as
well as δk = ∆kL, γ = β′′

2 /β
′′
1 , and η = L/LGVM , where

LGVM = T0/δ, we cast Eqs. (1) in dimensionless form

iεa1z − ε2

2 a1tt +
√

|δk|ε a2a∗1 = 0,

iεa2z + iεηa2t − γ ε2

2 a2tt − εδka2 +
√

|δk|ε a21 = 0.(2)

We consider the standard case such that only a FF
pulse is launched. By using the SH asymptotic expan-

sion a2 =
∑∞

n=0 a
(n)
2 /|δk|n, and the method of repeated

substitution [1], retaining leading-order terms, we arrive
at a single evolution equation (obtained at n = 1 order):

iεuz −
ε2

2
utt + s|u|2u+ 2iεσ|u|2ut = 0, (3)

where, for sake of clarity we defined u = a1, s = sign(δk)
and σ = η/(ε|δk|). In the following we consider effective
self–focusing nonlinearities (s = 1), which yields the in-
tegrable defocusing NLSE in the limit of null GVM (σ =
0). When σ 6= 0, Eq. (3) is also integrable, being equiva-
lent to Chen-Lee-Liu equation (CLLE) [12–14]. We em-
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phasize that the validity of Eq. (3) entails weak over-
all FF to SH conversion, which, assuming small GVM
and GVD, requires |δk| ≫ 4/ε. If we take |δk| = M4/ε,
M ≫ 1, then σ = η/(4M).
For ε ≪ 1, the leading order system (geometric op-

tics or hydrodynamic limit), that stems from the WKB
transformation u(z, t) =

√

ρ(z, t) exp[iS(z, t)/ε] applied
to Eq. (3), takes the form of the following first–order
quasi–linear system of equations:

ρz + (vρ+ σρ2)t = 0

vz + vvt + ρt + 2σ(ρv)t = 0 (4)

where v = −St is the equivalent fluid velocity. Equa-
tions (4) entail that a smooth input pulse breaks at
finite distance zs [4, 14–16]. At variance with the case
of a single hyperbolic equation where such distance can
be evaluated a priori, Eqs. (4) allow us to give only a
lower and upper bound (i.e. a capture window) for zs.
This can be done by applying a well-known criterion by
Lax [14, 16], which requires Eqs. (4) to be cast in di-
agonal form r±z + λ±r±t = 0 in terms of Riemann in-
variants r± = ±(v + 2σρ) +

√

ρ(1 + 2σv), with corre-

sponding eigenvelocities λ± = v + 2σρ ± 2
√

ρ(1 + 2σv)
(also expressed through Riemann variables using iden-
tical formulas of the NLSE case: λ− = (−3r− + r+)/4,
λ+ = (−r− + 3r+)/4). We focus henceforth on the ini-
tial condition a1(0, t) =

√

ρ(0, t) = ν+(1− ν) exp(−t2),
v(0, t) = 0 representing an unchirped Gaussian input
pulse on a weak pedestal ν ≪ 1, for which the results
are summarized in Fig. 1. For null background (ν = 0)
and σ = 0 we find zs ∈ [

√
e/3,

√
2e/3], while the shock

distance turns out to decrease with σ [see Fig. 1(a)]. A
similar trend is obtained in the presence of pedestal, as
displayed in Fig. 1(b) for ν = 0.1, which shows also how
the distance zs computed via direct numerical integra-
tion of Eqs. (4) is correctly captured by the bounds from
the Lax criterion.
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Fig. 1. Shock capture window (shaded area) vs. GVM pa-
rameter σ: (a) Gaussian input; (b) Gaussian on pedestal,
ν = 0.1. The bullets give the shock distance obtained via
direct numerical integration of Eqs. (4).

We then proceeded to verify the shock formation pro-
cess via numerical integration of the original model (2).
The whole physical parameter space can be explored by
varying the GVD parameter ε and the GVM parame-
ter η. We report examples for a fixed ε = 0.05 and
δk = 200/ε (i.e. M = 50 ≫ 1) which ensures to be
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Fig. 2. (a-b) Color level plot of FF field |a1| (a) and
SH field (b), ruled by Eqs. (2); (c) same for FF field |u|
from Eq. (3); (d) Snapshots of output field moduli |a1|
(FF, solid black) and |a2| (SH, solid red) from Eqs. (2),
compared with |u| (FF, dashed red) from Eq. (3). The
solid blue curve is the input. Here η = σ = 0, ε = 0.05.

in the cascading limit. Without loss of generality we
present results for ν = 0.1 (pedestal power equal to 1
% of the peak power) which, though not essential for the
physics, enhances the visibility of post-breaking oscilla-
tions. First, we consider the case of zero GVM (η = 0),
setting γ = 2 to account for the (usually) higher GVD at
SH. The evolution of the FF field displayed in Fig. 2(a)
shows symmetric steepening on both the leading and the
trailing edges, until beyond the breaking distance zs ∼ 1
(in good agreement with zs predicted from the hydro-
dynamic limit), undular bores appear, filling extending
portions of time with fast oscillations. The SH compo-
nent shown in Fig. 2(b) remains always small, though
it shows a complicated behavior dominated by periodic
back-conversions and a sort of temporal focusing at short
distance, which is found to be ruled by the GVD at SH.
For comparison Fig. 2(c) reports the corresponding evo-
lution according to Eq. (3), which, as shown, turns out
to be in satisfactory agreement with that of Fig. 2(a), as
also witnessed by the snapshots displayed in Fig. 2(d).
Next, we consider the case of non-vanishing GVM, tak-

ing η = 30, γ = 2, for which the evolution of the FF and
SH fields are shown in Fig. 3(a,b). In this case, the GVM
leads to break the symmetry in time, enhancing the
steepening effect on the trailing edge of the pulse which
turns out to break at a shorter distance z ≃ 0.8 com-
pared with the GVM-free case. This is in agreement with
the estimates from the hydrodynamic limit (4) [see Fig.
1(b)], and is satisfactorily reproduced by the reduced
CLLE [Eq. 3], whose dynamics is reported in Fig. 3(c)
(in this case σ = 0.15). Furthermore, the leading edge
also undergoes a secondary breaking at a longer distance
(z ≃ 1.1), where the trailing edge already exhibits a well-
developed dispersive shock wave. This strong asymmetry
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Fig. 3. As in Fig. 2, with non vanishing GVM such that
η = 30 [Eqs. (2)] and σ = 0.15 [Eq. (3)].

is also clear from the snapshots shown in Fig. 3(d). Note
also that the SH evolution exhibits weak initial emission
of non-phase-matched component traveling with natural
SH group velocity, while the rest of the SH field follows
almost adiabatically the FF. An accurate comparison be-
tween the output fields obtained from Eqs. (2) and Eq.
(3) shows slight discrepancies for higher values of |σ|.
In fact, our numerics suggest that the reduction of Eqs.
(2) to Eq. (3) following from truncation at order n = 1,
holds for small |σ| (roughly |σ| < 0.15 for ε = 0.05), i.e.
when GVM is small enough with respect to mismatch.
A better accuracy up to the shock point can be obtained
even for larger σ by including other terms in Eq. (3) [we
find the most significant to be −2sεσ2(uut)tu

∗ arising
at order n = 2, details will be given elsewhere]. How-
ever, beyond zs, even improved reductions break down
for high values of |σ|. This can be explained as follows:
on one hand, shock entails pulse spectral broadening;
on the other hand, GVM introduces a frequency depen-
dence of the effective phase-matching (ωPM ≈ δk/η).
When the spectrum broadens enough to reach the effec-
tive phase-matching frequency ωPM , portions of the FF
spectrum are phase-matched and give strong conversion
which make the single–field reduction to break down.
Finally, one can address the observability of the pro-

cess by returning to dimensional quantities (peak power
and duration, characteristic length L), as follows:

P =
∆k2

χ2|δk|ε , T0 =
1

χε

√

|∆k|β′′
1

P
, L =

|δk|
|∆k| . (5)

In order to observe the dynamical interplay between
GVM and GVD illustrated in Fig. 3, we can consider
for instance a periodically poled stoichiometric lithium
tantalate sample [17], which has been successfully ex-
ploited to study femtosecond pulse propagation with
strong phase- and group-velocity mismatch [11]. A pol-
ing period of Λ = 12.66µm at FF wavelength of 1400
nm gives a residual mismatch ∆k = 1250 cm−1, and dis-

persion parameters β′′
1 = 0.1 ps2/m, δ = 324 ps/m [17].

Using χ = 1.43 ·10−5 m/V (plane-wave limit), the values
ε = 0.05 and δk = 4000 yield T0 ≈ 260 fs, L ≈ 3.2 cm,
and an input peak intensity I ≈ 100 GW/cm2. The lat-
ter compares favorably with the values reported in the
literature [10], and will be further reduced with non-
negligible contribution from cubic nonlinearities which
is of the self-focusing type, or in waveguide geometries.
Additionally we get η = 40 and correspondingly σ = 0.2.
In conclusion, we have reported a hydrodynamic

reduction describing shock formation in highly mis-
matched SHG. Oscillatory wave-breaking driven by the
interplay of cascading and GVD has been demonstrated
numerically and predicted to be observable. The pertur-
bative role of GVM-induced self-steepening is expected
to cause an asymmetry in the shock process. Future work
will address how this scenario changes in the (possibly
phase-matched) strong conversion regime.
Funding from PRIN 2009 project (No. 2009P3K72Z)
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