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Abstract. This paper reports numerical investigations on the identification of the

electron temperature profile Te from interferometry and polarimetry Stokes vector

measurements with the equilibrium code NICE. This latter enables the consistent

resolution of the inverse equilibrium reconstruction problem in the framework of non-

linear free-boundary equilibrium coupled to the Stokes model equation for polarimetry.

We find that for ITER plasma with high Ip, Ne and Te the identification from noisy

measurements is possible.

Keywords: equilibirum reconstruction, polarimetry, Stokes model, electron temperature

profile identification

1. Introduction

The high levels of plasma current, electron density and electron temperature foreseen

in ITER plasma regimes impose that the Stokes model should be used for polarimetry

[1, 2, 3, 4, 5] instead of its approximation giving the Faraday rotation angle formula

usually used in equilibrium reconstruction.

Equilibrium reconstruction using more elaborated polarimetry models than the

Faraday angle only have already been proposed and tested in [6, 7, 8] on simplified

plasma models and in [9, 10] for the complete framework of non-linear free-boundary

equilibrium coupled to the Stokes model equation in the code NICE (Newton direct and

Inverse Computation for Equilibrium).

The goal of the present paper is to investigate numerically the possibility to identify

the electron temperature profile Te from interferometry and polarimetry Stokes vector

measurements. In [7] it has been shown on a simplified case (fixed boundary plasma
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equilibrium, no interferometry measurements, no noise on measurements) that it is

possible to extract information on the Te profile from polarimetry measurements. Since

these measurements are routinely available during a shot the perspective of using free-

boundary equilibrium reconstruction tools to identify the Te profile is very interesting.

For the present work the Stokes model already implemented in NICE was modified in

order to take into account Te effects. The dependence of interferometric measurements

on Te is also taken into account [2].

The outline of the paper is as follows. Next Section 2 is devoted to the formulation

of the direct model. Except for the Te dependence of the Stokes model it is very

close to Section 2 from our previous paper [10] but needed for the rest of the present

paper. Section 3 deals with the inverse equilibrium reconstruction and Te identification

problem. Eventually Section 4 starts with a brief description of the numerical methods

implemented in NICE and then presents results for several numerical experiments.

2. Direct model

Free-boundary plasma equilibrium Assuming axial symmetry and introducing a

cylindrical coordinate system (er, eφ, ez) we consider the classical non-linear free-

boundary Grad-Shafranov equilibrium model for the poloidal flux ψ(r, z) −∆∗ψ = [λ(
r

r0

A(ψN) +
r0

r
B(ψN))]1Ωp(ψ) +

∑
i

Ii
Si

1Ωci
in Ω

boundary conditions for ψ on ∂Ω,

(1)

Here ∆∗ is defined by

∆∗. := ∇ ·
(

1

µ0r
∇.
)
.

∇ is the 2D operator in the (r, z)-plane and µ0 is the magnetic permeability of vacuum.

The computational domain Ω contains the limiter domain ΩL accessible to the

plasma. It can also contain poloidal field coils Ωci with section Si and currents Ii.

The first term in the right hand side of Eq. (1) represents the toroidal component

of the current density in the plasma,

jφ = rp′(ψ) +
1

rµ0

ff ′(ψ) ,

expressed using the adimentionalized non linear functions A and B, the major radius r0

and a scaling factor λ. 1Ωp(ψ) is the indicator function of the unknown plasma domain.

This domain is defined by its boundary which is the outermost closed ψ iso-contour

contained within the limiter domain ΩL.

The normalized poloidal flux ψN(r, z) is

ψN(r, z) =
ψ(r, z)− ψa

ψb − ψa

,

with ψa and ψb being the flux values at the magnetic axis and at the boundary of the

plasma.
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Stokes model for polarimetry Polarimetry consists in measurements of the change of

state of polarization of an electromagnetic radiation propagating across the magnetized

plasma along several lines of sight (or chords) distributed on the poloidal section of the

tokamak. One method of describing the state of polarization is to introduce a Stokes

vector s = (s1, s2, s3). The evolution of the polarization when the laser beam crosses

the plasma is then given by the following Stokes equation on each line of sight:
ds

dZ
= Gs, on (Z0, Z1],

s(Z0) = s0.
(2)

We refer to [1] for details on this modelization. Here we have introduced a coordinate

system (eX , eY , eZ) attached to a line of sight L. Z is the coordinate tangent to the

chord, X represents the toroidal direction and Y the direction perpendicular to Z in

the poloidal plane. In this coordinate system the components of the magnetic field are

denoted by (BX , BY , BZ).

The initial polarization is given by s0 at Z0. Z1 corresponds to the location of the

output measurement sensor. The 3× 3 matrix G is such that Gs = Ω× s where vector

Ω = (Ω1,Ω2,Ω3) has components [7]:

Ωc
1 := c1Ne(B

2
X −B2

Y ), Ωc
2 := 2c1NeBXBY , Ωc

3 := c3NeBZ , (3)

in the low electron temperature approximation and components

Ω1 = (1 +
9Te

2mec2
)Ωc

1, Ω2 = (1 +
9Te

2mec2
)Ωc

2, Ω3 = (1− 2
Te
mec2

)Ωc
3, (4)

in the high electron temperature approximation (Te & 5 [keV]).

Here the electron density and temperature in the plasma, Ne = Ne(ψN) and

Te = Te(ψN), are assumed to be constant on flux surfaces. The components of the

magnetic field can be written as

BZ = −1

r
∇ψ · eY , BY =

1

r
∇ψ · eZ , BX =

f

r
(5)

where the diamagnetic function f is related to function B from Eq. (1) through the

relation ff ′ = λµ0r0B. In order to keep notations consistant let us also introduce

normalizing constants, λNe and λTe , and functions, C and D, such that Ne(ψN) =

λNeC(ψN) and Te(ψN) = λTeD(ψN). The dependence of G on ψ, on the electron density

function C, on the electron temperature function D and on function B is denoted by

G(ψ,B, C,D). Constants c1 and c3 depend on the wavelength of the beam radiation.

In order to use polarimetry measurements with Stokes modelization for the

equilibrium reconstruction problem one has to supplement equation (1) with, for each

interfero-polarimetry line of sight, a system of linear ordinary differential equations (2)

for the Stokes vector.

3. Inverse identification problem

Equilibirum reconstruction together with the identification of functions A, B and C from

magnetic measurements and interfero-polarimetry measurements is a well known and
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studied problem. On the other hand the inclusion of electron temperature in the Stokes

model and the possibility to identify it has been much less investigated.

The identification problem is formulated as a constrained optimization problem for

the cost function

J(ψ, {s},A,B, C,D) := Jmag(ψ) + Jinterf (ψ, C,D) + JS({s}) +R(A,B, C,D), (6)

with {s} denoting the vector (s1, ..., sNL) of Stokes vectors for all NL chords.

Jmag(ψ) is the classical least square misfit term on magnetic measurements

which constitutes the basic set of experimental measurements used in equilibrium

reconstruction for the identification of functions A and B.

Jinterf (ψ, C,D) is the least square misfit term on line integrated interferometric

measurements for each chord. It depends on Ne (= λNeC) and on Te (= λTeD) since,

refering to [2], at high electron temperature interferometric measurements along a chord

L are given by ∫
L

Ne(ψN)(1− 3

2

Te(ψN)

mec2
)dZ.

Polarimetric Stokes measurements are given by the full Stokes vector at the Zi
1

coordinate on each chord, siobs ≈ s(Zi
1) and JS({s}) is the least square misfit term on

these measurements.

Finally R(A,B, C,D) is a regularization term ensuring the smoothness of the

reconstructed profiles [9].

The equilibrium reconstruction problem using Stokes model with electron

temperature for polarimetry is formulated as:

Reconstruction problem. Find (ψ, {s},A,B, C,D)

minimizing J(ψ, {s},A,B, C,D) from Eq. (6)

under the constraint of the model equations (7) and (8) below: −∆∗ψ = [λ(
r

r0

A(ψN) +
r0

r
B(ψN))]1Ωp(ψ) +

∑
i

Ii
Si

1Ωci
in Ω

boundary conditions for ψ on ∂Ω,

(7)

and for all lines of sight Li, i = 1, ...NL:
dsi

dZi
= G(ψ,B, C,D)si, on (Zi

0, Z
i
1],

si(Zi
0) = si0

(8)

The unknown functions A, B, C and D are supposed to belong to a set U of regular

functions defined on [0, 1].

4. Numerical results

Numerical solution method The numerical methods used in this work are the ones

presented in [9, 10, 11] implemented in the code NICE and extended to take into account
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electron temperature in the polarimetry Stokes model as well as in the interferometry

model.

Basically we use finite elements [12, 13, 14] for the discretization of equilibrium

equation (7) and the Crank-Nicolson scheme for equation (8). An iterative sequential

quadratric programming method (SQP) [15, 16] is implemented to solve the optimization

problem for the non-quadratic cost function under the constraint of the non-linear model.

Optimal A, B, C and D functions are found at convergence of the iterations and error

bars on theses reconstructed functions can be computed from the Hessian matrix of the

reduced cost function.

ITER Synthetic magnetic, interferometry and polarimetry measurements are

computed using input reference profiles A, B, C and D to solve the direct model

(7) and (8). The setting is the same as in [9]: plasma current Ip = 15 [MA],

central density Ne(0) = 1020 [m−3], 15 interfero-polarimetry chords (Figure 3 from

[9] shows the computed reference plasma). Concerning electron temperature it is given

as Te(ψN) = λTeD(ψN) with D(ψN) = (1− ψ3
N) and λTe = 5, 10, 20 or 30 [keV ].

Figures 1, 2, 3 and 4 show the simulated intereferometry and Stokes vector

measurements without noise and for the different λTe values considered. The effect

of the inclusion of Te in the modelization is visible. Increasing Te clearly decreases

interferometry values as expected. On the contrary no general trend on Stokes vector

components can be observed. Some components are highly perturbated by increasing

Te whereas other or less perturbated.

In a second step the equilibrium reconstruction algorithm is run using these input

synthetic measurement to which noise can be added. The inclusion of Te in the

modelization is a perturbation of interfero-polarimetry measurements only and in any

case the algorithm identifies correctly the 3 other profiles A, B and C. As an example

the reconstructed electron density profiles are shown on figures 5, 6, 7 and 8 for different

noise levels on interfero-polarimetry and different values of λTe . More importantly the

objective of this study is to see how well the Te profile can be recovered.

Figure 9 shows the reference and computed profiles for the 4 λTe values and without

additional noise on the measurements. The reconstruction is excellent and this can be

considered as a sanity check for the algorithm. It can be seen from the second column

of Table 1 that the errors on the identified Te profile are very low, the highest value

being of 2.5% for the λTe = 5 case. This is the most difficult case since the perturbation

induced by electron temperature on the Stokes vector is the smallest.

Figures 10, 11 and 12 show the mean (over 10 reconstructions) Te and error bar

profiles for experiments with additional 1%, 5% and 10% noise on interferometry and

polarimetry measurements and 1% noise on magnetics. Table 1 also shows the relative

errors for these cases. In the first case (1% noise) the identification of the Te profile

is excellent. For the second case (5% noise) and third case (10% noise) the results are

degraded and particularly in the most difficult situation of the lowest λTe value.

The effect of noise on measurements can also be understood from Figure 13 where
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for each of the 3 components of the Stokes vector for each of the 15 chords (hence 45

values on the X-axis) are plotted: 0.01, 0.05 and 0.1 times the result of the model without

Te (denoted |S0|) as well as the difference between the model with Te for λTe = 5, 10, 20

and 30, and the model without Te. The horizontal line shows the mean value over the

45 components. The mean values |S5 − S0| and |S10 − S0| are lower than 0.1 × |S0|.
This shows that 10% noise on Stokes vector measurements can hide the influence of Te
on the model. On the contrary most dots are above the mean 0.01× |S0| value showing

that a 1% noise on measurements should not forbid the correct identification of the Te
profile.

0 2 4 6 8 10 12 14
chord index
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3.0
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Te5
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Figure 1. Effect of Te on simulated line integrated electron density measurements.

For each chord (index 0 to 14 on X-axis) the Ne values using the model with λTe = 0,

5, 10, 20 and 30 are plotted. The vertical black segments shows 10% variation around

the λTe = 0 value.
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Figure 2. Effect of Te on simulated first component s1 of the Stokes vector

measurements. For each chord (index 0 to 14 on X-axis) the s1 values using the

model with λTe
= 0, 5, 10, 20 and 30 are plotted. The vertical black segments shows

10% variation around the λTe = 0 value.

λTe no noise 1% 5% 10%

5 0.025 0.053 0.198 0.310

10 0.015 0.018 0.092 0.178

20 0.008 0.010 0.032 0.089

30 0.006 0.008 0.026 0.015

Table 1. Relative error on the identified Te profile,
||Te−T ref

e ||
||T ref

e ||
, for varying λTe and

experiments with 0, 1, 5 and 10% additional noise on interferometry and polarimetry

measurements.
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Figure 3. Effect of Te on simulated second component s2 of the Stokes vector

measurements. For each chord (index 0 to 14 on X-axis) the s2 values using the

model with λTe
= 0, 5, 10, 20 and 30 are plotted. The vertical black segments shows

10% variation around the λTe = 0 value.
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Figure 4. Effect of Te on simulated third component s3 of the Stokes vector

measurements. For each chord (index 0 to 14 on X-axis) the s3 values using the

model with λTe
= 0, 5, 10, 20 and 30 are plotted. The vertical black segments shows

10% variation around the λTe = 0 value.
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Figure 5. Identified and reference Ne profile for λTe
= 5, 10, 20 and 30 (top

left to bottom right). Experiments without additional noise on interferometry and

polarimetry measurements.
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Figure 6. Mean (over 10 reconstructions) identified Ne profile and error bar profiles,

referenceNref
e profile for λTe

= 5, 10, 20 and 30 (top left to bottom right). Experiments

with 1% additional noise on interferometry and polarimetry measurements.
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Figure 7. Mean (over 10 reconstructions) identified Ne profile and error bar profiles,

referenceNref
e profile for λTe

= 5, 10, 20 and 30 (top left to bottom right). Experiments

with 5% additional noise on interferometry and polarimetry measurements.
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Figure 8. Mean (over 10 reconstructions) identified Ne profile and error bar profiles,

referenceNref
e profile for λTe

= 5, 10, 20 and 30 (top left to bottom right). Experiments

with 10% additional noise on interferometry and polarimetry measurements.
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Figure 9. Identified and reference Te profile for λTe
= 5, 10, 20 and 30. Experiments

without additional noise on interferometry and polarimetry measurements.
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Figure 10. Mean (over 10 reconstructions) identified Te profile and error bar profiles,

reference T ref
e profile for λTe

= 5, 10, 20 and 30. Experiments with 1% additional

noise on interferometry and polarimetry measurements.
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Figure 11. Mean (over 10 reconstructions) identified Te profile and error bar profiles,

reference T ref
e profile for λTe

= 5, 10, 20 and 30. Experiments with 5% additional

noise on interferometry and polarimetry measurements.
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Figure 12. Mean (over 10 reconstructions) identified Te profile and error bar profiles,

reference T ref
e profile for λTe

= 5, 10, 20 and 30. Experiments with 10% additional

noise on interferometry and polarimetry measurements.
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Figure 13. For each of the 3 components of the Stokes vector for each of the 15 chords

(45 values on the X-axis) are plotted: 0.1 and 0.01 times the result of the model without

Te (denoted |S0|) as well as the difference with the model with Te for λTe
= 5, 10, 20

and 30. The horizontal line shows the mean value over the 45 components. The mean

values |S5− S0| and |S10− S0| are lower than 0.1× |S0|. This shows that 10% noise

on Stokes vector measurements can hide the influence of Te on the model.
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5. Conclusion

In this study we have presented the first attempt to reconstruct a free-boundary plasma

equilibrium and to identify the Te profiles using noisy magnetics, interferometry and

polarimetry Stokes vector measurements. The method has been implemented in the code

NICE. The interfero-polarimetry formulation explicitly takes into account dependence

on electron temperature. This is relevant for foreseen ITER plasma scenarios. Numerical

experiments show that for an ITER plasma the identification of the Te profile from noisy

measurements is possible. Its quality increases with Te values thus with the importance

of the Te perturbation on interfero-polarimetry measurements.
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