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Metals typically have very large optical nonlinearities, whose origin is mainly of thermal character. We model
the cubic nonlinearity of thin metal films by means of a delayed response derived from an improved version of
the classic two-temperature model. We validate our model by comparison with ultrafast pump-probe experiments
on gold films.
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Noble-metal nanostructures, such as thin films, gratings,
multilayers, and nanoparticles, have been largely exploited in
optics, especially within the fields of plasmonics and meta-
materials. The linear optical response of these structures has
been extensively studied both theoretically and experimentally,
leading to the demonstration of unprecedented possibilities for
extreme light concentration and manipulation (see Ref. 1 and
references therein). Also, the huge nonlinear optical response
of metallic nanostructures after intense excitation with fs-laser
pulses has attracted increasing attention in view of the potential
to achieve ultrafast all-optical control of light beams.2–5

Usually, the nonlinear response of the metal is modeled
as a pure Kerr effect,2–4 where the nonlinear polarization is
proportional to the cube of the electric field: PNL = ε0χ

(3)E3.
In fact, this model, though perfectly describing nonresonant
nonlinearities of electronic type that respond extremely fast
(on the subfemtosecond time scale) to a driving electric field,
turned out to be unsuitable for fs and ps optical pulses.
Actually, the values of the χ (3) coefficient, measured by the
z-scan technique, which can be found in the literature, differ
by up to two orders of magnitude,3,6–8 clearly demonstrating
that an instantaneous Kerr model is inadequate to describe the
nonlinear response of metallic nanostructures.

Pump-probe experiments in thin films9–11 and
nanoparticles12,13 reveal that the nonlinearity of metals
is due to the smearing of the electron distribution induced
by intense optical absorption, resulting in a modulation of
the interband and intraband transition probabilities with
subsequent variation of the dielectric permittivity. The
temporal dynamics of the system has been accurately
interpreted according to the two-temperature model (TTM),
which describes the energy balance between the electron
bath and the lattice by means of two differential equations
governing the temporal evolution of the electron and lattice
temperatures through a coupling parameter related to the
electron-phonon scattering rate.9,14 The TTM indicates that
the nonlinear response is dominated by a delay mechanism,
but a theoretical formulation in terms of a noninstantaneous
χ (3) susceptibility is still lacking.

In this paper we derive, from an improved version of the
TTM, a delayed third-order nonlinear response suitable for the
description of optically thin metallic structures. The outcome
of our model is also quantitatively compared with experimental
results from pump-probe spectroscopy on thin gold films.

Starting from Maxwell equations (written in mks units),
neglecting transverse dimensions (i.e., considering the propa-
gation of plane waves), we can obtain the 1D wave equation
for the electric field E(z,t):

∂2E(z,t)

∂z2
− 1

c2

∂2

∂t2

∫ +∞

−∞
E(z,t ′)ε(t − t ′)dt ′

= 1

ε0c2

∂2

∂t2
PNL(z,t), (1)

where c is the vacuum velocity of light, ε0 is the vacuum
dielectric permittivity, ε̂(ω) = 1 + χ̂(ω), and χ̂(ω) is the linear
electric susceptibility (the hat standing for Fourier transform).
In the perturbative regime, the nonlinear polarization can
be expanded in Volterra series, accounting for small and
noninstantaneous nonlinearity.15 Considering only third-order
nonlinearity, nonresonant, incoherent (intensity-dependent)
nonlinear effects can be included by assuming the following
functional form for the third-order polarization:

PNL(z,t) = ε0

[∫ +∞

−∞
χ (3)(t1)E2(t − t1,z)dt1

]
E(z,t). (2)

With the aim of validating our derivation of the nonlinear re-
sponse function by comparison with pump-probe experiments,
we assume that the electric field is the sum of a powerful
pump A and a weak probe B: E(z,t) = 1

2A(z,t)eiωat +
1
2B(z,t)eiωbt + c.c., with |A| � |B|. In the slowly varying
envelope approximation (|∂tA| � ωa|A|, |∂tB| � ωb|B|), the
evolution equation for the probe becomes

∂2B

∂z2
+ k2

bB = − ω2
b

2c2

∫ +∞

−∞
χ (3)(t − t1)|A(t1,z)|2 dt1B, (3)

where k2
b = ω2

bεb/c
2 = ω2

bε̂(ωb)/c2. In optically thin metallic
structures we can assume that the pump is nondepleted, so
that the nonlinear response is space-independent. By doing so,
Eq. (3) can be written as

∂2B

∂z2
+ ω2

b

c2
[εb + �ε(|A(t)|2)]B = 0, (4)

where the time-dependent nonlinear dielectric constant change
�ε is a convolution between the pump pulse intensity and the
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third-order nonlinear response of the system; that is,

�ε(|A(t)|2) = 1

2

∫ +∞

−∞
χ (3)(t − t1)|A(t1,z)|2 dt1. (5)

Note that Eq. (4) is a linear wave equation for the probe B,
where the time enters as a parameter.

In the following we demonstrate that the third-order
nonlinear susceptibility can be derived from the extended
two-temperature model, which describes the evolution of the
electrons and lattice temperature of a metal after absorption of
a laser pulse:9

Ce

∂Te

∂t
= −g(Te − Tl) + aN,

Cl

∂Tl

∂t
= g(Te − Tl) + bN, (6)

∂N

∂t
= −aN − bN + P (z,t),

where Ce and Cl are the electronic and lattice heat capac-
ities, Tl is the lattice temperature, g is the electron-phonon
coupling constant, N stands for the energy density stored
in the nonthermalized part of the electronic distribution,
a is the electron gas heating rate, and b is the electron-
phonon coupling rate. It is worth noting that separating the
electronic distribution in a thermalized part (characterized
by Te) and a nonthermalized part (N ) may appear as a
strong hypothesis. However, rigorous calculations based on
the Boltzmann equation9,14 show the validity of this procedure
for the temperature and energy ranges we are dealing with. P

is the absorbed energy density and is related to field intensity
I through P (z,t) = (1 − R − T )αe−αzI (t); for a thin film,
we can neglect the spatial dependence and assume a mean
absorbed energy density P (t) = (1 − R − T )I (t)/d (d, R,
T , are the film thickness, reflection, and transmission). The
energy density N can be calculated as the convolution between
the pump energy density and the thermalization response
function hth(t) = exp[−t/τth]H (t) [H (t) being the Heaviside
function], with τth = 1/(a + b). The values a,b can be derived
from a more sophisticated extension of TTM proposed by
Carpene.14 It is worth noting that the two approaches give
rather similar results, but the rate equation approach9 is
simpler. We obtain a = 1/2τ1, τ1 = E2

F τ0/(h̄ωa)2, and b =
1/τep, where EF is the Fermi energy, τ0 = 128

√
3π2ωp (ωp

the plasma frequency), and τep is the electron-phonon energy
relaxation time. The value of τ0 has been calculated using
the Lindhard dielectric function in the framework of Fermi
liquid theory under the random phase approximation.16 This
value turns out to be underestimated, mainly because of the
d-band screening; a more correct value can be extracted from
experimental data.16 If �Te = Te − Ta � Ta , it is possible to
consider the thermal capacity of electrons Ce = γ Te = γ T0

nearly constant: In this way the system (6) is linear and can be
solved exactly. T0 can be estimated as a mean value between the
minimum electronic temperature Ta and the maximum value,

which can be estimated by Te,max ≈
√

T 2
a + 2/γ

∫
P (t)dt . For

most metals, including Au and Ag, Cl � Ce, allowing us to
write a simple expression for �Te:

�Te =
∫

N (t − t1)
Ce + aτthCle

−t1/τ

Ce(Ce + Cl)τth

H (t1)dt1, (7)

i.e., the convolution between the energy density N and the two-
temperature system response h(t) = Ce+aτthCle

−t/τ

Ce(Ce+Cl )τth
H (t), being

τ = g−1CeCl/(Ce + Cl).
It is now possible to calculate the total response of the

extended two-temperature system as the convolution of hth

and h:

htot (t) = 1

Ce + Cl

×
[

1 − e−t/τth

+ aClττth

Ce(τ − τth)
(e−t/τ − e−t/τth )

]
H (t). (8)

This way the electronic temperature change is simply cal-
culated as the convolution between the pump and the total
response:

�Te =
∫

P (t − t1)htot (t1)dt1. (9)

Assuming a Gaussian pump P (t) = P0 exp[−2(t/τp)2] we
obtain

�Te =
√

π

2

P0τp/2

Ce + Cl

{
1 + Erf

(√
2t

τp

)

+ a
Cl

Ce

ττth

τ − τth

[
e

τ2
p

8τ2 − t
τ Erfc

(√
2

τp

(
τ 2
p

4τ
− t

))

− e

τ2
p

8τ2
th

− t
τth Erfc

(√
2

τp

(
τ 2
p

4τth

− t

))]}
. (10)

Following the same procedure a similar expression can be
obtained also for the lattice temperature variation �TL and the
nonthermalized electron energy density N .

We tested the validity of our approach by studying the
temperature changes of a thin gold film (d = 20 nm) deposited
on a sapphire substrate (ns = 1.75), after irradiation with
a pump pulse of λa = 950 nm wavelength, τp = 140 fs
duration, and F = 30 μJ/cm2 fluence. Parameters for the
TTM were taken from the literature11,14 as Ta = 300 K,
γ = 70 J m−3 K−2, Cl = 2.5 × 106 J m−3 K−1, g = 2 ×
1016 W m−3 K−1, τep = 1.4 ps, τ0 = 6.5 fs,16 EF = 7.3 eV.
It should be noted that material parameters are temperature
dependent.17 However a consistent formulation of nonlinear
phenomena within a perturbation theory implies considering
a limited range of induced temperature variations, of the
order of few tens of degrees. This allows us to approximate
all temperature-dependent parameters as constants with good
accuracy. Figure 1 shows the results of numerical solution of
Eqs. (6), of numerical solution of the Carpene model,14 and of
analytical formula (10). The agreement between the analytical
approximation and TTM is remarkable, indicating that in this
range of electronic temperature the assumption of a constant
heat capacity is reasonable. The Carpene model and TTM
give practically the same outcome for what concerns lattice
temperature, but a small discrepancy can be noticed for what
concerns the peak of the electronic temperature. This feature
is mainly due to the quite long thermalization time τth and will
produce a slightly higher estimation of the maximum dielectric
constant changes. In this figure we also show the time evolution
of the energy density stored in the nonthermalized electrons
N . It acts like a delayed effective pump for electron and lattice,
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FIG. 1. (Color online) Temperature dynamics after irradiation of
a thin gold film deposited on a sapphire substrate, from the TTM
of Eq. (6) (dashed black curves), from the Carpene model (Ref. 14)
(dotted blue curves), and from the analytical formula of Eq. (10)
(solid red curve). Inset: Zoom-in of the initial temperature dynamics;
normalized energy density stored in nonthermalized electrons (dash-
dot black curve); pump intensity profile (thin dashed green curve).
See text for parameters.

slowing the rise of �Te and �Tl . The dynamics of N is faster
than the thermalized one and it is responsible for the small and
quick dielectric permittivity changes observed when probing
in a frequency range far from interband transitions.9

Variation in electronic temperature induces variation in
the dielectric constant through interband (bound electrons)
transitions.9 Additional contributions to the change in the
dielectric constant are given by intraband transitions (which
depend on lattice temperature) and by complex dynamics of
nonthermalized electrons.18 These additional contributions are
much smaller than the former and can be resolved only in
spectral regions where interband transitions are not efficient.9

In order to obtain a reasonably simple model that however
correctly grasps all the relevant phenomena, from now on we
concentrate on interband transitions of thermalized electrons.

Energy injection from intra-band pump absorption smears
the electron distribution around EF , causing a reduction
(increase) of the occupation probability for electron states at
energy below (above) EF . As a consequence, a modulation
of interband transition probability is induced, with increased
(decreased) absorption for transitions involving final states
below (above) EF . Interband transitions in noble metals are
dominated by d-band to conduction band transitions near L

and X points in the irreducible zone of the Brillouin cell. In
the constant matrix element approximation, the variation of
the imaginary part of the interband dielectric function of gold
can be computed as follows:19

�ε2(ωb,Te) = 4π2e2

3m2ω2
b

[|PL|2�JL(ωb,Te)

+|PX|2�JX(ωb,Te)], (11)

where m is the free electron mass, PL and PX are the electric-
dipole matrix elements, and �JL and �JX are the temperature-
induced variations of the joint density of states (JDOS) for d-
band to conduction band transitions near L and X, respectively.

Such variations can be computed as19

�JL,X(ωb,Te) =
∫ E′′

L,X

E′
L,X

DL,X(E,ωb)�P (E,Te)dE, (12)

1.50 1.75 2.00 2.25 2.50 2.75 3.00

Δε
2 (

10
-2
)

Photon Energy (eV)

x 1/3

-10

-5

0

15

10

5

20

25

x 1/3

-10

-5

0

-15

10

5

-20

-25

Δε
1 

(1
0-

2 )

500

100

20

(a)

(b)

FIG. 2. (Color online) Spectral variation of the (a) imaginary
part and (b) real part of the interband dielectric function of gold
for three different values of �Te, computed from Eqs. (11)–(13).
Linearized temperature dependence provided by Eq. (13) (solid lines)
is compared with exact solution (dashed lines).

where DL,X(E,ωb) is the energy distribution of the joint
density of states (EDJDOS) of the considered transi-
tions (with respect to the energy of final state E), and
�P (E,Te) = f (E,Ta) − P (E,Te) is the temperature-induced
variation of the occupation probability for the final state
[being f (E,Te) the Fermi-Dirac function], which for small
temperature changes �Te is approximated as �P (E,Te) �
− [∂f (E,Te)/∂Te]Te=Ta

�Te. This way, Eq. (11) can be factor-
ized as

�ε2(ωb,Te) =
[
∂�ε2(ωb,Te)

∂Te

]
Te=Ta

�Te. (13)

The EDJDOS was numerically computed under parabolic
band approximation following the approach described in
Ref. 19, taking effective masses, energy gaps, dipole matrix
elements, and integration limits E′

L,X and E′′
L,X as reported

in Ref. 20. The �ε2 resulting from Eqs. (11) or (13) as
a function of photon energy for three different temperature
variations is shown in Fig. 2(a). The variation of the real
part of the interband dielectric function �ε1 computed by
Kramers-Kronig analysis of �ε2 is reported in Fig. 2(b). Note
that the approximation provided by Eq. (13) is accurate for
�Te as high as 100 K.

For a quantitative validation of our model, we computed the
transient differential reflection (transmission) �R/R (�T/T )
of the 20-nm thin gold film according to standard thin film
formulas21 and Eqs. (10)–(13). The results are reported in
Fig. 3, compared with experimental data taken from the
literature9 and full-numerical computation from the extended
TTM. The probe photon energy is chosen at the maximum
response of the thin film;9 i.e., h̄ωb = 2.48 eV for �R/R and
h̄ωb = 2.43 eV for �T/T . We found that the analytical model
is in quantitative agreement with experimental data, with only
slight deviations in the long-time range (t > 4 ps) where the
contribution from the lattice is dominant.
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By comparing Eqs. (13) and (5) taking into account Eq. (9)
the third-order nonlinear susceptibility can be finally written
as follows:

χ (3)(t) = ∂�ε

∂Te

αcnε0htot(t). (14)

With Eq. (14) at hand, we can discuss the strength of
the optical nonlinearity of gold predicted by our model.
To compare with Kerr nonlinearity of standard materials,
we consider continuous-wave pump and probe. In this case
the nonlinear response is much faster than the fields, and
the convolution reduces to the integral of χ (3)(t). Assuming
Cl � Ce we obtain

χ̂ (3)(ωb; ωa, − ωa,ωb) = ∂�ε(ωb)

∂Te

α(ωa)cn(ωa)ε0
aτthτ

Ce

(15)

(the hat is added because assuming continuous-wave fields is
equivalent to giving a frequency domain description of χ (3)).
It should be stressed that this kind of nonlinearity is strongly
dispersive, and can be assumed constant only for reasonably
band-limited pulses centered around ωa and ωb. Changing
either pump or probe frequency results in a drastic change of
χ̂ (3)(ωb), confirming that this kind of third-order nonlinearity
is not of Kerr type. To give an example of the values that χ̂ (3)

can assume, we consider an infrared pump λa = 950 nm and
visible probe λb = 500 nm, to obtain χ̂ (3)(ωb; ωa, − ωa,ωb) ≈
(−8.4 + 11i) × 10−8 esu = (−1.2 + 1.5i) × 10−15 m2/V2.
This huge value (six orders of magnitude greater than in fused
silica) is due to the resonance of the probe with interband
transitions of gold. It is worth noting that for small frequency
detuning from interband transitions χ (3) can change its sign
(see Fig. 2), whereas for large detuning its magnitude decreases
drastically.
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FIG. 3. (Color online) Transient (a) reflectivity and (b) trans-
missivity vs probe time delay, accounting for pump-probe cross-
correlation (shown as dashed green line).

To conclude, we introduced a theoretical model for the
delayed nonlinear response in optically thin noble-metal
structures. A noninstantaneous χ (3) coefficient is derived from
an extended version of the TTM and semiclassical theory of
optical transitions in solids. Our theoretical predictions turned
out to be in quantitative agreement with experimental results
from pump-probe experiments in thin gold films.
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