Lina Marsso

Radu Mateescu

Ioannis Parissis

Wendelin Serwe

Asynchronous Testing of Synchronous Components in GALS Systems

published or not. The documents may come L'archive ouverte pluridisciplinaire

Introduction

A reactive system controls its environment by observing it (via input sensors) and modifying it (via output commands) to obtain the desired behavior. A simple example is the control of the room temperature by commanding a heater. The synchronous approach [START_REF] Halbwachs | Synchronous Programming of Reactive Systems[END_REF] to reactive systems programming supposes that the system operates triggered by a clock, such that at each clock instant the system instantaneously computes the outputs from the inputs and its internal state. The simplicity of this abstraction is the reason for the success of the synchronous approach, which has been widely used for over two decades for the design and analysis of safety critical systems in various application domains (e.g., avionics, railway transportation, nuclear plants, etc.).

However, modern complex systems, such as autonomous cars or the Internet of Things, are increasingly large and distributed, consisting of multiple components that execute independently and interact with each other. As the assumption of a global clock is less realistic, these systems are better described as GALS (Globally Asynchronous, Locally Synchronous) [START_REF] Chapiro | Globally-Asynchronous Locally-Synchronous Systems[END_REF][START_REF] Teehan | A Survey and Taxonomy of GALS Design Styles[END_REF], i.e., composed of concurrent synchronous reactive systems interacting with each other asynchronously, Institute of Engineering Univ. Grenoble Alpes by means of message passing with non-zero communication delays. For instance, in an autonomous car, the perception devices (radar, lidar, cameras, etc.) and the engine controls are separate components, located in various places of the car, operating independently and connected through communication links. Each of these components might be considered and implemented as a synchronous reactive system, but the complete autonomous car is rather a GALS system. Notice that the GALS approach allows the smooth integration and reuse of existing and time-proven synchronous components when designing new systems that no longer fit into the framework of synchronous programming.

GALS systems are intrinsically complex, and the simultaneous presence of synchronous and asynchronous aspects makes their development and debugging difficult. Hence, to ensure their functional correctness and reliability, it is necessary to follow a rigorous design approach, based on formal methods and assisted by efficient validation and verification tools. Such design approaches and tools exist for the separate modeling and analysis of synchronous or asynchronous parts of a GALS system, but their integration can further improve the effective design of a GALS system.

In this paper we propose a testing methodology for GALS systems integrating: [START_REF] Behrmann | Uppaal: Present and Future[END_REF] synchronous and asynchronous concurrent models, (2) functional unit testing and behavioral conformance testing, and (3) various formal methods and their tool equipments. The idea is to exploit the information gathered by the analysis of a globally asynchronous system to automate and finely tune the analysis of its individual synchronous components. First, we model the GALS system in GRL (GALS Representation Language) [START_REF] Jebali | Formal Modelling and Verification of GALS systems using GRL and CADP[END_REF][START_REF] Jebali | Formal Framework for Modelling and Verifying Globally Asynchronous Locally Synchronous Systems[END_REF], a formal language connected to the CADP verification toolbox3 [START_REF] Garavel | CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes[END_REF] for asynchronous systems. Using CADP, we validate the asynchronous aspects of the GRL model, e.g., by checking temporal logic formulas expressing desired (global) correctness properties. Next, we use TESTOR [START_REF] Marsso | TESTOR: A Modular Tool for On-the-Fly Conformance Test Case Generation[END_REF] to automatically generate conformance tests, which can be used to assess whether an actual implementation of the GALS system conforms to the GRL model. Then, we project such a conformance test on a synchronous component C and translate it automatically into a scenario (i.e., input constraints in Lutin [START_REF] Raymond | Lutin: a language for specifying and executing reactive scenarios[END_REF] and an oracle in Lustre [START_REF] Halbwachs | The synchronous dataflow programming language Lustre[END_REF]), required to automate the testing of C using Lurette [START_REF] Jahier | Case studies with Lurette V2[END_REF], the test generation tool of the Lustre V6 toolbox4 [START_REF] Halbwachs | The synchronous dataflow programming language Lustre[END_REF][START_REF] Raymond | Lutin: a language for specifying and executing reactive scenarios[END_REF]. Because these scenarios are automatically generated from the GRL model of the GALS system, they correspond by construction to relevant (and often complex) executions of the synchronous component.

We illustrate our approach on a simple, but relevant example, namely an autonomous car, which has to reach a destination, following roads on a map, in the presence of moving obstacles. The car is modeled as a GALS system, comprising synchronous components for perception, decision, and action.

The remainder of the paper is organized as follows. In Section 2, we introduce the formal GRL model of an autonomous car. In Section 3, we describe the application of analysis techniques for asynchronous systems to the overall GALS system, in particular model checking and conformance test generation. In Section 4, we recall techniques for the functional testing of synchronous components. In Section 5, we present the main contribution of this paper, namely the integration of asynchronous conformance testing with automated synchronous testing to improve the latter. In Section 6, we compare our approach to existing GALS validation approaches. Finally, in Section 7 we give concluding remarks and suggest future research directions.

GRL Model of an Autonomous Car

To illustrate our approach, we consider the behavioral model of a (simplified) autonomous car interacting with its physical environment, i.e., a given set of moving obstacles (pedestrians, cyclists, other cars, etc.) evolving with the car on a (geographical) map. To limit the complexity, each obstacle executes a fixed number of random or statically chosen movements. The autonomous car itself consists of four synchronous components:

(i) a GPS keeps the current position of the car updated, (ii) a radar detects the presence of the obstacles close to the car and builds a perception grid summarizing information about perceived obstacles, (iii) a decision (or trajectory) controller computes an itinerary from the current position to the destination, avoiding streets containing obstacles, and (iv) an action controller commands the engine and direction to follow the itinerary computed by the decision controller, using the perception grid built by the radar to avoid collisions.

These four components communicate in various ways:

the GPS sends the current position to the decision controller upon request, the radar periodically sends the perception grid to the action controller, and the action controller requests a new itinerary from the decision controller.

GRL (GALS Representation Language) [START_REF] Jebali | Formal Modelling and Verification of GALS systems using GRL and CADP[END_REF][START_REF] Jebali | Formal Framework for Modelling and Verifying Globally Asynchronous Locally Synchronous Systems[END_REF] is a formal language designed to model GALS systems. It integrates the synchronous reactive model underlying dataflow languages and the asynchronous interleaving semantics of concurrency underlying process algebras. Figure 1 shows the architecture of our GRL model of the autonomous car. Each synchronous component (ACTION, RADAR, DECISION, and GPS) is represented in GRL as a block, depicted as a (light blue) rectangle with solid border in Figure 1. These blocks exchange data via asynchronous communication media (POSITION, PATH, CURRENT_GRID), each of which is represented in GRL as a medium, depicted as a (pink) ellipse with dashed border in Figure 1.

The interaction between blocks also respects constraints (MAP_MANAGEMENT), each one being represented in GRL as an environment, depicted as a (light pink) ellipse with thick dashed border in Figure 1. The overall model of the car is represented in GRL as a system, which describes the composition and interactions of blocks, media, and environments. In the sequel, we present excerpts of a block, a medium, and an environment of our GRL model (1271 lines). 5The map is represented as a directed graph, in which edges correspond to streets and nodes correspond to crossroads; for simplicity, we assume that the car or an obstacle occupies a street completely (a longer street can be represented by several edges in the graph). A set of functions is defined to explore this graph, to compute itineraries, etc. The GRL model is instantiated by providing global constants encoding the map, the initial position and destination of the car, and the set of obstacles with their initial positions and lists of movements.

A GRL block defines the deterministic code executed by the synchronous component at each activation (i.e., clock instant). For instance, the radar of our autonomous car is modeled by the GRL block RADAR, which has a static variable previous_grid to keep track of the perception grid computed during the previous activation. This grid is considered to be initially empty (i.e., it has the value Grid (NIL)). At each activation, the radar receives the current positions of the car and all the obstacles as input from the environment (in parameter POSITIONS). 6 It then computes the current perception grid indicating, for each possible direction the car might take, whether at least radar_visibility steps are free of any obstacle. If there is a change between previous_grid and grid, both the variable previous_grid and the output CURRENT are updated; otherwise the output is set to the particular value already_sent indicating that the grid did not change. At the end of the activation, the computed grid is sent to the connected medium (send parameter CURRENT). A GRL medium enables (asynchronous) interaction between synchronous blocks. Explicitly representing media makes it possible to finely model a large panel of behaviors (i.e., message buffering, message loss, nondeterminism, etc.). A medium is connected to each block by at most two channels, called receive and send channels. Note that a receive channel corresponds to the reception of some value in a variable prefixed by "?". Each channel has an associated Boolean condition (tested with a when clause), stating whether a message is available. For instance, the following GRL medium CURRENT_GRID enables the block RADAR to send the current perception grid (via the receive channel INPUT) to the block ACTION (via the send channel OUTPUT); the transmission takes place only when the perception grid has not already been sent. A GRL environment provides blocks with inputs and receives their outputs. Block activations are particular inputs, enabling an environment to precisely control the activations of synchronous blocks, e.g., to control the relative clock speeds and/or drifts. The following fragment of the GRL environment MAP_MANAGEMENT ensures that: (1) the positions of the car (map.c) and obstacles (grid) are shared with the block RADAR (by sending this information to RADAR as input POSITIONS); (2) this information is updated when the car or the obstacles move (by receiving these moves from blocks ACTION and RADAR as outputs CAR_MOVE and OBSTACLE_MOVE, respectively); and (3) the blocks are only activated as long as the car neither arrived at destination, nor crashed. Note that an environment may be nondeterministic, e.g., it may contain nondeterministic choices, modelled in GRL using the select statement. GRL defines the semantics of a GALS system as an LTS (Labeled Transition System), whose states represent the memories of all blocks, media, and environments of the system [START_REF] Jebali | Formal Framework for Modelling and Verifying Globally Asynchronous Locally Synchronous Systems[END_REF]Chapter 4]. The initial state is the initial memory, in which each static variable has its (mandatory) initial value. Each transition going out of a state corresponds to the atomic execution of a block, which consists in reading the values of input and receive channels, executing the code of that block activation, and producing the values for the outputs and send channels of the block. The transition is labeled with all these values, and its target state corresponds to the updated memories of the participating components, i.e., the block and its connected mediums and environments. Thus, the atomic executions of synchronous blocks are interleaved in the LTS, which reflects the GALS nature of the system.

For technical reasons, we rely in this paper on the semantics of GRL as induced by the current translation-based implementation of GRL (see below). In this semantics [START_REF] Jebali | Formal Framework for Modelling and Verifying Globally Asynchronous Locally Synchronous Systems[END_REF]Chapter 5], the execution of a synchronous block activation is split into an input transition followed by an output transition. These two transitions are executed atomically, i.e., without interleaving of any other transitions corresponding to an activation of another block.

Model Checking and Conformance Test Generation

When considering a complete GALS system from the outside, all parts based on the synchronous programming paradigm are hidden. Thus, the overall GALS system is amenable for classic analysis techniques developed for asynchronous systems. GRL is equipped with the GRL2LNT [START_REF] Jebali | Formal Modelling and Verification of GALS systems using GRL and CADP[END_REF][START_REF] Jebali | Formal Framework for Modelling and Verifying Globally Asynchronous Locally Synchronous Systems[END_REF] translator to LNT [START_REF] Garavel | From LOTOS to LNT[END_REF], the modern formal modeling language recommended as input for the CADP verification toolbox [START_REF] Garavel | CADP 2011: A Toolbox for the Construction and Analysis of Distributed Processes[END_REF]. Using GRL2LNT and CADP, for a map (with 22 streets and 8 crossroads) and two obstacles, each with a first random movement and a second statically chosen movement, we generated (in about 4 minutes on a standard laptop) the LTS corresponding to our GRL autonomous car model (3, 568, 781 states and 5, 619, 802 transitions; 287, 103 states and 406, 780 transitions after strong bisimulation minimization).

Model Checking

We first validated our GRL model by checking several safety and liveness properties characterizing the correct behavior of the autonomous car. We expressed the properties in MCL [START_REF] Mateescu | A Model Checking Language for Concurrent Value-Passing Systems[END_REF], which is the data-handling, action-based, branchingtime temporal logic of the on-the-fly model checker of CADP. For simplicity, we describe here the properties in natural language, only giving and commenting the MCL code of the first one to illustrate the flavor. 5 -The position of the car is correctly updated after any movement of the car. This safety property specifies that on all transition sequences, an update of the car position (action "UPDATE_POSITION ?current_street", where current_street is the street on which the car is) followed by a car movement (action "CAR_MOVE ?control", where control is a movement command) must be followed by an update of the car position consistent with current_street, control, and the map. This can be expressed in MCL using the necessity modality below, which forbids the transition sequences containing inconsistent position updates: The values of the current position, movement, and new position of the car present on the actions UPDATE_POSITION and CAR_MOVE are captured in the variables current_street, control, and new_street of the corresponding action predicates (surrounded by { }) and reused in the where clause of the last action predicate. The predicate Consistent_Move defines all valid combinations for current_street, control, and new_street allowed by the map.

[
-A same message from one of the autonomous car components must be considered only once. For instance, the radar should not send twice the same perception grid, i.e., two successive occurrences of action SEND_CURRENT_GRID must carry different values of the grid, reflecting the changes in perception due to obstacle or car movements. -Inevitably (by avoiding the non-progressing iterations of the synchronous blocks), the system should reach a state where either the car arrived, a collision occurred between the car and an obstacle, or all obstacles finished their list of movements.

Conformance Test Generation

Conformance testing aims at establishing whether an SUT (System Under Test) conforms to a formal model, i.e., whether the SUT is an implementation of the model. For concurrent asynchronous systems, both the formal model and the SUT are represented as IOLTSs (Input-Output LTSs), i.e., LTSs whose actions are separated into controllable inputs and observable outputs, even if the IOLTS of the SUT is not necessarily known. A popular relation used for conformance testing is ioco [START_REF] Tretmans | Conformance Testing with Labelled Transition Systems: Implementation Relations and Test Generation[END_REF], which specifies that an SUT conforms to a model if after executing each trace of the model, the SUT exhibits only the outputs and quiescences (i.e., deadlocks, outputlocks, and livelocks) allowed by the model. A classical conformance testing approach consists in deriving from the formal model a suite of test cases, which are then executed on the SUT to check the conformance using black-box testing techniques. This approach is based on the hypothesis of synchronous communication between tester and SUT; adaptations are required if this hypothesis is not satisfied (e.g., in the case of remote interaction using buffered channels) [START_REF] Noroozi | Synchrony and asynchrony in conformance testing[END_REF][START_REF] Graf-Brill | Model-Based Testing for Asynchronous Systems[END_REF]. To focus the testing process and help the test-case extraction, test purposes are used to describe the goal states, i.e., those states of the model to be reached during execution of the test case on the SUT. Executing a test case may produce one of three possible verdicts: pass when a goal state has been reached, fail when the observed behavior of the SUT is not conform to the model, and inconclusive if the goal states become unreachable. The online-testing tool TESTOR [START_REF] Marsso | TESTOR: A Modular Tool for On-the-Fly Conformance Test Case Generation[END_REF] is capable of extracting controllable test cases on the fly. Concretely, starting from the GRL model of a GALS system, a description of the input actions, and a test purpose, TESTOR explores the model and generates automatically a set of test cases or a complete test graph (CTG) [START_REF] Jard | Tgv: Theory, principles and algorithms -a tool for the automatic synthesis of conformance test cases for non-deterministic reactive systems[END_REF] to be executed on a physical implementation of the system. Intuitively, a CTG denotes a set of traces containing visible actions and quiescence that should be executable by the SUT to assess its conformance with the model and a test purpose. The quiescence is represented in the CTG as self-loops labeled by a special output action δ on the quiescent states. TESTOR handles possibly nondeterministic models and ensures by construction that the complete test graph provides only inputs that allow to reach a goal state (if possible).

For the GRL model of the autonomous car (see Section 2), the only controllable inputs are the movements of obstacles; the observable outputs make it possible to study the behavior of the car. An example test purpose (T 2) is to specify the situation where a collision occurs between a car and an obstacle. The test purpose is expressed as an LTS (in the AUT format), where a transition representing the collision (action COLLISION) should lead to a goal state, i.e,, having an outgoing transition labelled by an ACCEPT action. We also defined four other examples of test purposes (T 1, T 3, T 4, and T 5) constraining the car and obstacles interaction on the map. For these test purposes, TESTOR generates the complete test graphs in less than a minute (see Table 1).

Testing Techniques for Synchronous Components

Functional testing of a reactive system requires to provide a sequence of inputs and observe the corresponding sequence of outputs. In general, the previously observed outputs must be taken into account when computing the next input, so as to provide the reactive system with a realistic behavior of the physical environment the reactive system is controlling. Furthermore, the decision about success or failure of a test also requires the sequence of (input, output) pairs, because the reactive system might change its function to adapt to its environment. Hence, testing a reactive system requires specific techniques and tool support to automate the testing process [START_REF] Jahier | Engineering functional requirements of reactive systems using synchronous languages[END_REF].

In this section, we briefly present the testing tool Lurette [START_REF] Jahier | Case studies with Lurette V2[END_REF] for synchronous programs. Using formal specifications of the input constraints and an oracle, Lurette automates both, the generation of appropriate inputs for the SUT and the decision about the test result. Lurette takes three inputs:

(i) a specification in Lutin [START_REF] Raymond | Lutin: a language for specifying and executing reactive scenarios[END_REF] to dynamically constrain the inputs; (ii) an oracle in Lustre [START_REF] Halbwachs | The synchronous dataflow programming language Lustre[END_REF] implementing the test decision; and (iii) some parameters controlling the execution and the coverage-computation of the generated and executed input sequences.

Lurette interacts with the SUT, generates the input sequences with their corresponding outputs in a file, and displays the test decisions. We illustrate the usage of Lurette to test an implementation of a radar in the C language, which might be a part of an implementation of our GALS autonomous car example described in Section 2. Usually, a radar builds an occupancy grid with respect to its position (this grid reflects the visibility of the radar); in an autonomous car, the position of the radar is the position of the car. To simplify, in our example, the radar takes as input the position of the car and the obstacles (provided by the GRL environment on channel POSITIONS), and the radar outputs the perception grid (sent to the medium CURRENT_GRID).

As in Section 3, we consider a fixed instance with two obstacles (leo and lilly). Testing the synchronous radar component consists in providing a sequence of inputs and observing the generated sequence of outputs. Each of the radar's inputs (position of the car and the obstacles) can take one out of the 21 streets of the map, yielding 21 3 possible inputs. Fortunately, not all sequences of these inputs are realistic, because the car is not flying and has to respect the constraints of the map. However, relevant tests of the radar should include situations where the radar detects obstacles.

The input constraints for the radar should enforce that the positions of the car and the obstacles evolve in a realistic manner, i.e., respecting the map. The following Lutin code corresponds to a simple scenario, where the car starts on street 9 and possibly moves to street 12, and lilly (respectively, leo) appears on street 5 (respectively, street 14) and moves back and forth to street 12 (respectively, street 11). This scenario can be described by an automaton with five states and seven transitions; the corresponding constraints on the inputs of the radar can be encoded in Lutin as a node input_constraints with four outputs (the three inputs of the radar plus the state s of the automaton). Although simple, the scenario covers the apparition and movement of obstacles, and the case where the perception grid should remain unchanged. At each iteration, Lurette generates inputs by executing one transition of the Lutin node. Note that if the input values are not explicitly constrained in the Lutin specification, random numbers will be generated. Although larger and more complex scenarios can be written manually, this task is tedious and errorprone, in particular due to the representation of street names by natural numbers (the input language of Lutin supports only Boolean and numerical types), and may easily introduce redundant definitions or equivalent states.

The role of oracles is to determine whether the generated outputs are correct or not. An oracle should contain all possible pairs of inputs with the corresponding expected outputs, and signal an error for each unexpected output.

In addition to checking correctness, Lurette supports additional Boolean outputs (called coverage variables) to measure coverage. While testing the SUT, Lurette records the coverage variables that were at least once true, and com-putes the ratio of covered versus uncovered variables. This information is stored in a file, and updated by any subsequent run of Lurette for the same SUT, input constraints, and oracle.

A small example of an oracle for the previous scenario is given by the following Lustre node oracle, describing the expected output (perception grid) for each given input vector (the positions of the car and obstacles). As the Lutin node, the oracle takes, besides the inputs and outputs of the radar, as input also the state s to keep track of the evolution (according to the same small automaton mentionned previously). The oracle outputs the verdict res, i.e., whether the observed outputs are those expected for the state and the inputs. For instance, in state 3, lilly (in street 12) and leo (in street 11) should both be detected by the car (in street 9), whereas they should not be detected in the initial state. The oracle also computes two coverage variables pass and blocked: the former measures the coverage of state 2 (representing the situation where the car arrives at destination and all obstacles appeared), and the latter measures the coverage of the situation where the car is blocked by the obstacles. Even more than for the Lutin constraints, manually deriving the oracle is complicated, mainly due to the dependency on the map and the necessity to enumerate all possible movements. For instance, to detect the already_sent, one should manually follow the scenario's evolution. Because one can easily forget some cases, an automated generation of these input constraints and the oracle is more convenient, as we illustrate in the next section.

Test Projection and Exploration

Each synchronous component of a GALS system is constrained by the other synchronous components, communication media, and environments present in the system. In this section we explicitly exploit these constraints to improve the unit testing of a synchronous component taken separately.

The idea is to automatically derive inputs for synchronous testing tools by projecting the complete test graph generated for the entire GALS system on the inputs and outputs of the synchronous component. In this way, the inputs provided to the synchronous component are realistic and relevant, because they are chosen according to possible execution scenarios of the overall GALS system. Furthermore, the synchronous tests generated in this way contain all possible inputs leading to the goals of test purposes (e.g., a possible input leading to collision in the case of T 2).

Figure 2 gives an overview of the approach. In a first step, a conformance complete test graph for the overall GALS system is projected on the synchronous component C to be tested, resulting in a test graph for C. In a second step, this test graph is translated and renamed to be compatible with the synchronous testing tool Lurette. In the last step, the test graph is explored (using XTL [START_REF] Mateescu | XTL: A Meta-Language and Tool for Temporal Logic Model-Checking[END_REF] scripts), generating the input constraints and the oracle for testing C separately. In the remainder of this section, we present the approach in more detail, illustrating how it improves the testing of the radar of our autonomous car example.

Test Graph Projection

Projecting a complete test graph CTG on a synchronous component C consists in hiding all transitions labeled with an action that is neither an input nor an output of C, and reducing the resulting graph for weak trace equivalence, yielding the projected test graph CTG C . The reduction removes all internal transitions (created by the hiding), so that all actions of CTG C are either an input or an output of C. A precondition for a successful projection is that all inputs and outputs of C, as well as the verdict transitions, are present and visible in CTG. Notice that projecting onto the interface of C enables synchronous interaction between the tester and an SUT of C, avoiding all issues related to the asynchronous communication [START_REF] Noroozi | Synchrony and asynchrony in conformance testing[END_REF][START_REF] Graf-Brill | Model-Based Testing for Asynchronous Systems[END_REF] present in the GALS model.

In the example of the autonomous car, the radar takes as input the positions of the car and of the obstacles. The positions of the obstacles are also a controllable input of the overall GALS system (see Section 3). But the position of the car is computed by the scenario depending on the output of another synchronous component, namely the action controller. The output of the radar is the perception grid, which is, inside the GALS system, sent to the action controller. Hiding, in the complete test graph CTG, all transitions but those corresponding to these inputs and outputs, and reducing the result with respect to weak trace equivalence yields the LTS CTG RADAR . Columns 6 & 7 of Table 1 give the number of states and transitions of CTG RADAR for the five test purposes considered.

Translating and Renaming

Because some of the data types used in the GALS model might not be exactly the same as those supported by the synchronous testing tools, a preliminary step is the conversion of the values present on the transition labels of CTG C , for instance by applying appropriate renaming rules. Null values have been added, in order to transform non scalar data on transitions into variable names and values tuples of constant length. We defined a generic format for the exploration tools to work properly. Each input transition is renamed into "INPUT !s1 !v1 ... !sm !vm", where s i is the name of the input and v i its value; each output transition is similarly renamed into "OUTPUT !s1 !v1 ... !sn !vn". For instance, the projected complete test graph CTG RADAR contains non-scalar data structures, in particular, the perception grid computed by the radar is represented as a list and streets are identified by their names (i.e., character strings). To be usable with the synchronous test generator Lurette [START_REF] Jahier | Case studies with Lurette V2[END_REF], these lists need to be transformed into tuples of constant length, and the street names need to be translated into the corresponding (numeric) constants.

Test Graph Exploration

By construction, the projected CTG C is an LTS describing the interaction with the SUT, and as such contains both, the sequence of inputs for the SUT and the verdict concerning the test outcome (i.e., the test oracle). Because the test inputs and oracle should be provided to Lurette using two different languages (Lutin for the input constraints and Lustre for the oracle), two explorations of (the renamed) CTG C are required.

The input constraints are generated by encoding CTG C as a possibly nondeterministic node in Lutin with the XTL [START_REF] Mateescu | XTL: A Meta-Language and Tool for Temporal Logic Model-Checking[END_REF] script extract constraints (87 lines). This node has the same inputs as C and an additional input variable s corresponding to the current state of CTG C , initialized to the initial state. The main loop of the node contains a nondeterministic choice, with a branch for each transition in CTG C . A branch corresponding to a transition T is executed if s is equal to the source state of T , and as result of execution it sets s to the target state of T . A branch for an output transition specifies that the inputs are kept unchanged, which corresponds to the behavior expected for the special output transition δ on quiescent states. A branch for an input transition updates the corresponding inputs. A branch for a verdict transition (i.e., a pass or inconclusive self-loop on a state of CTG C), resets the variable s to the initial state of the CTG, thus avoiding to generate the same inputs (as a selfloop would) and covering faster the whole CTG. Thus, the Lutin node describes exactly the set of input sequences contained in CTG C .

An input of the radar is a new position of the car and the obstacles (lilly and leo). Because the exploration takes into account all transitions of CTG RADAR , the generated Lutin node incorporates all evolutions of the car and the obstacles that are relevant for the considered test purpose. The generated Lutin nodes are quite long (see Table 1) and complex, because they contain nondeterministic choices, induced by the random movements of the obstacles. Writing similar Lutin nodes by hand would probably have been difficult and error-prone.

Because a synchronous block C is executed atomically, i.e., not interleaved with other synchronous components, a sequence of input transitions for C is immediately followed by the expected sequence of output transitions. Because the target state s of the last transition in such a sequence of inputs is also the source state of the first transition in the sequence of outputs, we call such a state s a corner state. For the radar, the sequence of input transitions corresponding to new positions of the car or the obstacles is followed by an output transition corresponding to the expected perception grid. The oracle is generated with the XTL script extract oracle (263 lines), by encoding CTG C as a deterministic node in Lustre, which, to each corner state and its set of inputs/outputs, associates a Boolean verdict, indicating whether the outputs are the expected ones. This node is also defined for the verdict states of CTG C . For a pass (respectively, fail) verdict it always returns true (respectively, false). For an inconclusive verdict it returns true iff the outputs are unchanged. In order to observe the coverage of the generated tests, for each verdict state (pass and inconclusive) and each other state of the CTG, a coverage variable is introduced in the Lustre node generated for the oracle. These coverage variables are true if at least one of the executions passed by the corresponding state of the CTG (see Section 4). node oracle (s, car, lilly, leo, perception_leo, perception_lilly: int) returns (res, pass, inconclusive, s0, ... s86: bool); let res = true -> (if s = 6 then (car = 11 and lilly = 13 and leo = 6 and perception_lilly = 13 and perception_leo = 2000) ...); pass = false -> if s = 83 then true else pre pass; inconclusive = false -> if s = 7 then true else pre inconclusive; s0 = false -> if s = 0 then true else pre s0; ... s86 = false -> if s = 86 then true else pre s86; ... The generated oracles are quite long (see Table 1) and complex, because they contain all oracle verdicts and coverage criteria. For each of the five test purposes, we executed the generated scenarios on the radar SUT using Lurette (the last columns of Table 1 indicate the time and memory consumed by the overall testing process). This enabled us to discover (and fix) a mistake in the SUT related to the incorrect management of the special value already_sent.

Related Work

Similar to our approach, test purposes for sub-systems can be obtained by projecting symbolic executions of the overall system [START_REF] Faivre | Symbolic Model Based Testing for Component Oriented Systems[END_REF]. A major difference of our approach is that we handle GALS systems (rather than systems homogeneously modeled by IOSTSs), requiring to integrate various formal methods and tools.

The differences between testing synchronous and asynchronous systems in terms of test-suite length, abstraction level, mutation score, non-determinism, and suitability for real-time systems are discussed in [START_REF] Lorber | It's about Time -Model-Based Mutation Testing for Synchronous and Asynchronous Timed Systems[END_REF]Chap. 12]. This analysis enabled to improve the overall testing of a GALS system by taking advantage of the synchronous properties of the components (using a two-level approach combining an overall asynchronous automaton with a dedicated synchronous automaton creating the link to the concrete implementation). In our setting, these properties are taken care of directly by the GRL semantics.

Milner's proposal [START_REF] Milner | Calculi for Synchrony and Asynchrony[END_REF] to encode asynchronism in a synchronous process calculus has been used to specify GALS systems using synchronous programming approaches [START_REF] Halbwachs | Synchronous Modelling of Asynchronous Systems[END_REF][START_REF] Guernic | POLYCHRONY for system design[END_REF][START_REF] Mousavi | Modeling and Validating Globally Asynchronous Design in Synchronous Frameworks[END_REF][START_REF] Halbwachs | Simulation and verification of asynchronous systems by means of a synchronous model[END_REF]]. Here we follow the opposite way, by specifying the global aspects of a GALS system in an asynchronous language, which enables us to take advantage of the existing tools for asynchronous systems and to leverage them to improve the testing of the synchronous components.

Following a bottom-up approach [START_REF] Günther | On the formal verification of systems of synchronous software components[END_REF], which manually defines contracts for the synchronous components (to be verified locally, for instance using SCADE [START_REF] Berry | SCADE: Synchronous design and validation of embedded control software[END_REF]), the overall GALS system can be verified by translating the network of component contracts and verification properties into Promela (for verification with SPIN [START_REF] Holzmann | The SPIN Model Checker: Primer and Reference Manual[END_REF]) or timed automata (for timing analysis with UPPAAL [START_REF] Behrmann | Uppaal: Present and Future[END_REF]). Our approach is top-down and completely automatic, deriving test cases for the synchronous components from a model of the overall GALS system.

A graphical tool set [START_REF] Ramesh | A Toolset for Modelling and Verification of GALS Systems[END_REF], based on the specification of the synchronous components as communicating reactive state machines, translates the system and its properties specified as observers into Promela for verification with SPIN. This tool set focuses on the verification of the overall GALS system, whereas we aim at improving the unit testing of the synchronous components.

Encapsulating synchronous components makes the overall GALS system amenable for analysis with asynchronous verification tools. This approach has been followed for a combination of the synchronous language SAM, the asynchronous language LNT, and the CADP toolbox [START_REF] Garavel | Verification of GALS Systems by Combining Synchronous Languages and Process Calculi[END_REF], and a combination of the synchronous language SIGNAL, the asynchronous language Promela, and the model checker SPIN [START_REF] Doucet | A Verification Approach for GALS Integration of Synchronous Components[END_REF]. Compared to these two approaches, we retain a finer modeling of the synchronous components in the overall GALS system and consider the verification of both, the overall GALS system and its synchronous components. Our approach to derive synchronous test scenarios might be adaptable to these language combination techniques.

Focusing on communication media for GALS hardware circuits, the asynchronous connections between synchronous blocks can be encoded into variants of Petri nets dedicated to the analysis of hardware circuits [START_REF] Burns | A Structured Visual Approach to GALS Modeling and Verification of Communication Circuits[END_REF]. On the contrary, our approach targets the test of synchronous components of more generic GALS systems, relying on less precise models of the communication signals.

Conclusion

We presented an automatic approach integrating both asynchronous and synchronous testing tools to derive complex, but relevant unit test cases for the synchronous components of a GALS system. From a formal model of the system in GRL [START_REF] Jebali | Formal Modelling and Verification of GALS systems using GRL and CADP[END_REF] and a test purpose, the conformance testing tool TESTOR [START_REF] Marsso | TESTOR: A Modular Tool for On-the-Fly Conformance Test Case Generation[END_REF] automatically generates a complete test graph [START_REF] Jard | Tgv: Theory, principles and algorithms -a tool for the automatic synthesis of conformance test cases for non-deterministic reactive systems[END_REF] capturing the asynchronous behavior of the system relevant to the test purpose. Such a complete test graph is then projected on a synchronous component C and explored using XTL [START_REF] Mateescu | XTL: A Meta-Language and Tool for Temporal Logic Model-Checking[END_REF] scripts to provide a synchronous test scenario (input constraints in Lutin [START_REF] Raymond | Lutin: a language for specifying and executing reactive scenarios[END_REF] and an oracle in Lustre [START_REF] Halbwachs | The synchronous dataflow programming language Lustre[END_REF]) required to test C with the Lurette tool [START_REF] Jahier | Case studies with Lurette V2[END_REF]. All these steps have been automated in an SVL [START_REF] Garavel | SVL: a Scripting Language for Compositional Verification[END_REF] script. The approach substantially relieves the burden of handcrafting these test scenarios, because, by construction, the derived scenarios constrain the inputs provided to C to relevant values, covering a test purpose, which might arise during the execution of the GALS system. We illustrated the approach on an autonomous car example.

As future work, we plan to consider the behavioral coverage of GALS systems, which can be achieved by identifying a test suite (ideally as small as possible) covering the whole state space of a GALS system. Such a test suite could be generated by deriving purposes from the action-based, branching-time temporal properties of the model (similar to [START_REF] Falcone | More testable properties[END_REF] in the state-based, linear-time setting), by synthesizing purposes according to behavioral coverage criteria [START_REF] Taylor | Structural testing of concurrent programs[END_REF], or by constructing a complete test suite for a fault domain of the GALS system [START_REF] Da Silva Simão | Generating Complete and Finite Test Suite for ioco: Is It Possible?[END_REF].

Fig. 1 .

 1 Fig. 1. Architecture of the GRL model of an autonomous car

 node input_constraints () returns (car, leo, lilly, s: int) = let not_visible: int = 2000 in (* initial state: car on street 9 and no visible obstacles *) car = 9 and lilly = not_visible and leo = not_visible and s = 0 fby loop { | (* s = 0 -> car on street 9, lilly on street 5, leo on street 14, s = 1 *) (pre s = 0) and car = 9 and lilly = 5 and leo = 14 and s = 1 | (* s = 0 -> car on street 12, lilly on street 5, leo on street 14, s = 2 *) (pre s = 0) and car = 12 and lilly = 5 and leo = 14 and s = 2 | (* s = 1 -> car on street 9, leo on street 11, lilly on street 12, s = 3 *) (pre s = 1) and car = 9 and lilly = 12 and leo = 11 and s = 3 | (* s = 1 -> car on street 12, leo on street 11, lilly on street 5, s = 4 *) (pre s = 1) and car = 12 and lilly = 5 and leo = 11 and s = 4 | (* s = 2 -> car on street 12, leo on street 11, lilly on street 5, s = 4 *) (pre s = 2) and car = 12 and lilly = 5 and leo = 11 and s = 4 | (* s = 3 -> car on street 12, leo on street 14, lilly on street 18, s = 1 *) (pre s = 3) and car = 9 and lilly = 5 and leo = 14 and s = 1 | (* s = 4 -> car on street 12, leo on street 14, lilly on street 5, s = 2 *) (pre s = 4) and car = 12 and lilly = 5 and leo = 14 and s = 2 }

 const invisible = 2000, already_sent = 3000; node oracle (s, car, lilly, leo, perception_leo, perception_lilly: int) returns (res, pass, blocked: bool); let res = true -> ((* lilly and leo are visible from the street 9 *) (s = 0 and car = 9 and lilly = invisible and leo = invisible and perception_lilly = invisible and perception_leo = invisible) or (* the perception did not change, it is already sent *) (s = 1 and car = 9 and lilly = 5 and leo = 14 and perception_lilly = already_sent and perception_leo = already_sent) or (* leo and lilly are visible from the street 9 *) (s = 3 and car = 9 and lilly = 12 and leo = 11 and perception_lilly = 12 and perception_leo = 11) or ...); (* true if the car reached the destination (state 2) *) pass = false -> if s = 2 then true else pre pass; (* true, if the car is blocked by the obstacles *) blocked = false -> if s = 3 then true else pre pass; tel

Fig. 2 .

 2 Fig. 2. Overview of the derivation of synchronous test scenarios by projection and exploration of an asynchronous complete test graph CTG

Table 1 .

 1 Sizes and run-time performance for the tests generated for the test purposes

		TP	CTG	CTG RADAR constraints oracle time mem.
		states trans. states trans. states trans. (Lutin) (Lustre) (s) (MB)
	T 1	5	4 15,466 29,665	89 281	286	295 29 200
	T 2	4	3 102,985 211,455 584 3617	3622	1916 1237 231
	T 3	5	4 15,444 29,957	83 258	263	282 26 200
	T 4	5	4 2,278 4,959 218 1119	1124	557 86 193
	T 5	5	5 21,930 42,788 105 356	361	344 36 201

http://cadp.inria.fr

http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v6/

The complete GRL model, test purpose, the MCL properties, SVL and XTL scripts, and other resources related to the example are available as a demo in the GRL distribution at http://convecs.inria.fr/software/grl.

Currently, for the interaction between a block and an environment, GRL requires to wrap several inputs or outputs into a single structured input or output.

Acknowledgements. This work was supported by the Région Auvergne-Rhône-Alpes within the ARC6 programme.