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A B S T R A C T

Objective: Lipid peroxidation constitutes a molecular mechanism involved in early Alzheimer Disease (AD)
stages, and artificial neural network (ANN) analysis is a promising non-linear regression model, characterized by
its high flexibility and utility in clinical diagnosis. ANN simulates neuron learning procedures and it could
provide good diagnostic performances in this complex and heterogeneous disease compared with linear re-
gression analysis. Design and Methods: In our study, a new set of lipid peroxidation compounds were determined
in urine and plasma samples from patients diagnosed with early Alzheimer Disease (n=70) and healthy controls
(n=26) by means of ultra-performance liquid chromatography coupled with tandem mass-spectrometry. Then,
a model based on ANN was developed to classify groups of participants. Results: The diagnostic performances
obtained using an ANN model for each biological matrix were compared with the corresponding linear re-
gression model based on partial least squares (PLS), and with the non-linear (radial and polynomial) support
vector machine (SVM) models. Better accuracy, in terms of receiver operating characteristic-area under curve
(ROC-AUC), was obtained for the ANN models (ROC-AUC 0.882 in plasma and 0.839 in urine) than for PLS and
SVM models. Conclusion: Lipid peroxidation and ANN constitute a useful approach to establish a reliable di-
agnosis when the prognosis is complex, multidimensional and non-linear.

1. Introduction

Alzheimer disease (AD) early diagnosis constitutes a subject of great
concern, since AD is the main cause of dementia in the world, and it
causes great burden on patients and families/care providers, as well as
high social and economic impact [1]. In addition, there is a lack of
effective therapeutic targets as well as non-invasive and cost-effective
molecular diagnostic models, probably due to incomplete under-
standing of the AD pathophysiological mechanisms.

Nowadays, both the onset and development of AD have been linked
to lipid peroxidation mechanisms given the high lipid composition,
high metabolic activity and high oxygen consumption of the brain
[2–4]. In fact, previous studies based on lipid peroxidation improved
the understanding of pathophysiological mechanisms underlying AD,
and also established new biomarkers for diagnosis, prognosis and
therapeutic purposes [5]. Specifically, different isoprostanoids have
been determined in cerebrospinal fluid samples (CSF) [6,7], plasma and
serum [8], and in urine samples [9,10], showing correlation with early

AD. These compounds can be classified depending on the modified lipid
from which they derived. Thus, isoprostanes/isofurans are produced
from arachidonic acid oxidation (all tissues), neuroprostanes/neuro-
furans from docosahexanoic acid oxidation (brain grey matter), and di-
homo-isoprostanes/di-homo-isofurans from adrenic acid oxidation
(brain white matter) [11]. In this sense, although some potential bio-
markers have been identified, they have not been clinically validated
[12,13]. In addition, some predictive models, mainly based on linear
regression, have been developed [14,15], but the complexity of AD
physiopathology could demand non-linear regression models to obtain
satisfactory diagnostic results.

Artificial neural network (ANN) constitutes a promising statistical
tool since it is flexible and can model highly non-linear systems, in
which the relationships between variables are unknown or very com-
plex [16–18]. The ANN models simulate the learning process carried
out by the neurons, establishing connections among different variables,
and allowing a complex data analysis through mathematical functions
[17]. Neurons are placed in several layers (input, hidden, output) in the
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ANN. Specifically, the predictor variables are in the input layer, and the
response variables are in the output layer. Then, some connections,
similar to those in synapses, are established among the variables by
means of different mathematical functions (hyperbolic, sigmoid…), and
different coefficients are assigned to these interactions in order to im-
prove the model's classification ability [19]. In this sense, ANN analysis
is based on supervised learning which has the advantage of being tol-
erant with the highly complex and noisy data obtained from biological
samples [17]. ANN analysis has also some disadvantages, namely the
inability to exactly reproduce the same model due to the complex
learning processes involved in the models' development [16], as well as
the fact of being considered a “black box” by some authors [17].

Nowadays, there is an increasing body of research applying ANN
analysis to clinical diagnosis, since it allows to establish complex in-
teractions among variables involved in some multifactorial pathologies
[20]. In fact, recent studies have provided satisfactory diagnostic results
in different clinical areas [21–25]. However, few studies have com-
pared the clinical predictive capacity of ANN models with linear re-
gression models, and better results, in terms of accuracy, seem to be
obtained from ANN analysis [26,27]. Among ANN studies focusing on
early AD diagnosis, most of them were based on neurophysiological
signals (electroencephalogram, neurofibrillary tangles) [28] or image
tests [29–32], requiring high cost and highly specialized staff to inter-
pret the results. Other ANN models based on neuropsychological tests
and clinical variables predicted brain AD characteristic lesions (amyloid
plaques, neurofibrillary tangles) [33], as well as mild cognitive im-
pairment in elderly individuals [25,26]. Nevertheless, some neu-
ropsychological tests are influenced by the patients' educational level,
since high educational level could mask cognitive alteration and very
low educational level (illiteracy) prevents the neuropsychological eva-
luation. An ANN model based on Raman spectroscopy in serum was
employed to discriminate among AD patients, healthy individuals, and
other types of dementias; however, this expensive equipment is not
available in the clinical practice [34]. Moreover, some ANN models
have also been developed using different biomarkers in blood, such as
glucose and apolipoprotein E genotype as AD risk factors [35,36]. To
our knowledge, ANN analysis has not ever been assessed as an early AD
detection model from lipid peroxidation compounds, which are de-
termined by validated analytical methods in plasma or urine samples.

The aim of this study was to develop and evaluate ANN models, in
terms of complex disease diagnostic performance, comparing them with
other linear and non-linear models. For this, a new set of lipid perox-
idation biomarkers was determined in urine and plasma samples from
well-defined mild cognitive-impairment due to AD patients and healthy
participants.

2. Materials and methods

2.1. Patients and samples

Urine and plasma samples were collected from participants re-
cruited in the University and Polytechnic Hospital La Fe (Valencia,
Spain). They were classified as mild cognitive impairment due to
Alzheimer's disease (MCI-AD, n=70) and healthy control participants
(n=26) based on neuropsychological tests, structural neuroimaging,
and CSF biomarkers (β-amyloid, total Tau, phosphorylated Tau) [37].
The study protocol was approved by the Ethics Committee (CEIC) of the
Health Research Institute La Fe (Valencia, Spain), and informed consent
was obtained from all the participants.

2.2. Analytical method

The samples were processed as indicated in previous studies, where
the corresponding sample treatment procedures were optimized [9,38].
Thereafter, the samples were injected into the chromatographic system
(UPLC-MS/MS) following previously validated analytical methods

whose chromatographic and detection conditions were described in
previous works [9,38]. Finally, the levels of a new set of lipid perox-
idation biomarkers (isoprostanes, neuroprostanes, dihomoisoprostanes,
isofurans, neurofurans, dihomoisofurans) were obtained.

2.3. Statistical analysis

Different regression models, based on linear discriminant analysis
(partial least squares, PLS) and non-linear discriminant analysis (sup-
port vector machine, SVM; artificial neural networks, ANN), have been
developed from lipid peroxidation compounds levels determined in
urine and plasma samples from healthy and MCI-AD participants. Each
model was trained and tested multiple times, and the diagnostic per-
formance obtained for each model was evaluated.

The PLS analysis was carried out with the Unscrambler software
version 7.6 (Camo, Woodbridge, USA), the SVM analysis with radial
and polynomial kernel functions was carried out with IBM SPSS
Modeler software version 1.0 (IBM, New York, USA) and the ANN
analysis was carried out with SPSS software version 20.0 (SPSS, Inc.,
Chicago, IL, USA). These statistical multivariate models were developed
for each sample matrix that was analyzed.

The PLS models were constructed from 24 independent variables
(22 lipid peroxidation compounds, gender and age) as predictor vari-
ables, 1 dependent variable (participant group (MCI-AD/healthy con-
trol)) and 5 principal components. All variables were normalized, and a
random cross validation (one left out) was carried out.

The SVM models with radial and polynomial kernel functions were
developed from 24 independent variables (22 lipid peroxidation ana-
lytes, gender and age) and 1 dependent variable (participant group
(MCI-AD/healthy control)). The dataset was randomly divided into
training sample (70%), testing sample (15%) and validating sample
(15%). The parameters utilized were detention criteria of 1.0E−3,
regularization parameter (C) of 10, precision of regression of 0.1, and
the kernel functions employed were radial basis function (gamma (γ) of
0.1) and polynomial function (γ of 1).

The ANN models were constructed from the 24 independent vari-
ables (gender and age as factors, 22 analytes as covariables), and 1
dependent variable (participant group (MCI-AD/healthy control)). In
the first step, the dataset was randomly divided into training sample
(70%), testing sample (15%) and validating sample (15%) [18], before
model development. The training sample is used to train the network in
several iterations improving the ANN performance. Then, the optimum
values of weights and biases are determined, and the ANN performance
is examined in the testing sample. The feedforward architecture was
based on the predictors function Multilayer Perceptron (MPL), as
training algorithm, that minimizes the prediction error of outputs, and
the form of this function consists of input, hidden and output layers, but
the number of neurons in each layer as well as the number of layers
depend on the complexity of the studied system. The automatic archi-
tecture selection builds a network with one hidden layer, and the
number of units in the hidden layer was tested between 1 and 50, 1 unit
being the optimum number. The transfer functions for the hidden and
output layers were hyperbolic tangent and normalized exponential
function, respectively. These functions have the following forms:

= = +(x) tanh (x) (e e )/(e e )x x x x

= = …(x ) exp.(x )/ exp(x ), for j 1, , k (dimensions)k k j j

In this sense, a three-layer 24-1-1-feed-forward propagation ANN
model was trained and developed from 24 predictor variables (age,
gender, lipid peroxidation compounds).

Regarding the training type, it was in batch, and the optimization
algorithm to estimate the synaptic weights was based on scaled con-
jugate gradient including an initial lambda and an initial sigma values
of 0.0000005 and 0.00005, respectively, as initial values for the
weights and biases to optimize them in successive iterations.
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2.4. Diagnostic performance evaluation

Under the previously indicated specifications, several ANN models
were developed in each biological matrix, and the averages of them
were considered as the most reliable corresponding models.

For diagnostic performance evaluation of the models PLS, SVM with
polynomial and radial kernel functions, and ANN, receiver operating
characteristic (ROC) curves were constructed from their corresponding
validation results, indicating the area under the curve (AUC)-ROC as a
parameter that represents the accuracy of each model. For the PLS
model, it consisted of cross validation leaving one out, while for the
SVM and ANN models, validation consisted of using data sets randomly
divided. The corresponding area under the curve (AUC, 95% confidence
interval (CI)), and the optimum cut-off value (the highest sum of sen-
sitivity and specificity) were determined for each model in the predic-
tion of AD. Finally, the diagnostic indices (sensitivity, specificity, po-
sitive likelihood ratio (LR+), negative likelihood ratio (LR−),
diagnostic odds ratio (DOR)) were calculated. For all analysis, a
p < .05 was considered to indicate a statistically significant difference.

3. Results

3.1. Demographic, clinical and analytical variables

The demographic and clinical variables for each group of partici-
pants are described in Table 1. All of them showed a non-normal dis-
tribution, so medians were compared between groups by means of
Mann Whitney test for numerical variables, and Chi-square and Fisher
exact tests for categorical variables. The clinical variables (Repeatable
Battery for the Assessment of Neuropsychological Status (RBANS),
Clinical Dementia Rating (CDR), Functional Activities Questionnaire
(FAQ), Mini-Mental State Examination (MMSE), cerebrospinal fluid
(CSF) β-amyloid, CSF total-Tau and CSF phosphorylated-Tau) showed
statistically significant differences between MCI-AD and healthy control
groups. On the other hand, demographic variables did not present
statistically significant differences between both groups except of
gender and age, so these variables were taken into account in the
subsequent analyses.

The concentrations obtained for each analytical variable (22 ana-
lytes) in both matrices (urine, plasma) are summarized in Table 2. As
we can see, statistically significant differences between groups were
obtained for 17-epi-17-F2t-dihomo-IsoP in urine samples, and for 15(R)-
15-F2t-IsoP, PGF2α, 4(RS)-4-F4t-NeuroP, ent-7(RS)-7-F2t-dihomo-IsoP,
17-epi-17-F2t-dihomo-IsoP, isoprostanes, isofurans, neuroprostanes and
neurofurans in plasma samples.

3.2. Multivariate statistical models

In this work we developed different multivariate models in order to
improve the diagnostic utility of lipid peroxidation products from
plasma and urine samples [9,38], since they do not have a high diag-
nostic capacity individually. For this, different multivariate models
based on linear and non-linear regression were developed for each kind
of biological sample and they were compared in terms of diagnostic
performance.

First, PLS linear regression models were developed. For PLS in
urine, in Fig. 1 we can see that the MCI-AD group showed higher levels
for the compounds 15(R)-15-F2t-IsoP, 2,3-dinor-15-epi-15-F2t-IsoP,
4(RS)-4-F4t-NeuroP, ent-7 (RS)-7-F2t-dihomo-IsoP, 17-epi-17-F2t-di-
homo-IsoP, 10-epi-10-F4t-NeuroP, 17-F2t-dihomo-IsoP and neurofurans,
as well as higher age and female proportion (Fig. 1a). However, the
healthy participants are grouped on the left side of the score plot
(Fig. 1b) because they showed lower levels for the previous compounds.
Similarly, for PLS in plasma, in Fig. 2 we can see that the MCI-AD group
showed higher levels for the compounds 15(R)-15-F2t-IsoP, 4(RS)-4-F4t-
NeuroP, neuroprostanes, isoprostanes, ent-7(RS)-7-F2t-dihomo-IsoP,

neurofurans and isofurans, as well as higher age and female proportion
(Fig. 2a). However, the healthy individuals are grouped in the left side
of the score plot (Fig. 2b) due to their lower levels for the previous
compounds.

Secondly, SVM models with radial and polynomial kernel functions
were developed from results in plasma and urine samples. Non linear
functions were used in order to obtain a better classification of the
participants.

Thirdly, non-linear regression models based on ANN were devel-
oped for urine and plasma samples in order to classify the two groups of
participants. As shown in Fig. 3, 22 analytes, gender and age were in-
cluded in the input layer. For the hidden and output layers, the transfer
functions were hyperbolic tangent and normalized exponential func-
tions, respectively.

3.3. Diagnostic performance for the statistical multivariate developed
models

The diagnostic performance of each model was estimated from the
corresponding ROC curves (Fig. 4). In urine samples, the ANN model
provided an AUC of 0.839 (CI 95%, 0.746–0.933), while for the PLS
model it was 0.653 (CI 95%, 0.526–0.780), and for the SVM models it

Table 1
Demographic and clinical variables of the studied population.

Variable MCI-AD
(n=70)

Healthy control
(n=26)

P-value

Gender (Female, n (%)) 41 (58.6%) 9 (34.6%) 0.037⁎

Age (Median, (IQR)) 70 (68–74) 66 (62–70) 0.044⁎

Depression (Yes, n (%)) 9 (13%) 5 (19%) 0.566
Anxiety (Yes, n (%)) 6 (9%) 2 (8%) 0.629
Studies levels

(n (%))
Primary 28 (40%) 16 (61%) 0.173
Secondary 20 (29%) 3 (12%)
Academic 22 (31%) 7 (27%)

Smoking status (smoker or former
smoker) (n (%))

50 (71%) 13 (50%) 0.124

Alcohol consumption (yes, n (%)) 12 (17%) 2 (8%) 0.307
Medications (n,

(%))
None 15 (22%) 8 (31%) 0.269
psychotropic drugs 3 (4%) 2 (8%)
Antihypertensive 10 (14%) 7 (27%)
Statins 12 (17%) 3 (11%)
Two or more 30(43%) 6 (23%)

Comorbidity (n,
(%))

None 18 (26%) 10 (39%) 0.071
Dyslipemia 18 (26%) 3 (11%)
Hypertension 10 (14%) 7 (27%)
Heart disease 0 (0%) 1 (4%)
Two or more 24 (34%) 5 (19%)

RBANS-DM1 42 (40–49) 100 (90–106) 0.000⁎

CDR2 0.5 (0.5–1) 0 (0–0) 0.000⁎

FAQ3 7 (2−13) 0 (0–0) 0.000⁎

MMSE4 25 (19–29) 24 (21–27) 0.000⁎

CSF5 β-amyloid (pgmL−1) 597
(445–687)

1186
(1033–1403)

0.000⁎

CSF t-Tau6 (pgmL−1) 572
(396–857)

202 (139–320) 0.000⁎

CSF p-Tau7 (pgmL−1) 88 (72–111) 49 (35–67) 0.000⁎

IQR: Interquartile range.
Data were expressed as median (interquartile range (IQR)) for non-parametric
continuous variables, and number of cases (percentages) for categorical cases.
The statistical calculations to compare between the two groups employed
Mann-Whitney test, Chi-Square test and Fisher exact test, respectively.

1 RBANS-DM, Repeatable Battery for the Assessment of Neuropsychological
Status- Delayed Memory (Standard Score; cut-off point < 85).

2 CDR, Clinical Dementia Rating, values: 0, 0.5, 1, 2.
3 FAQ, Functional Activities Questionnaire (Direct Score; cut-off point > 9).
4 MMSE, Minimental State Examination.
5 CSF, Cerebrospinal fluid.
6 t-Tau, total-Tau.
7 p-Tau, phosphorylated-Tau.
⁎ p < .05.
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was 0.644 (CI 95%, 0.539–0.749) with the polynomial function and
0.659 (CI 95%, 0.558–0.759) with the radial function. Similarly, in
plasma samples, the ANN model provided an AUC of 0.882 (CI 95%,
0.814–0.949), while for PLS it was 0.765 (CI 95%, 0.633–0.868), and
for SVM models it was 0.817 (CI 95%, 0.712–0.922) with the poly-
nomial function and 0.827 (CI 95%, 0.739–0.915) with the radial
function. Therefore, ANN models provided better diagnostic accuracy
than PLS and SVM models in both matrices. Moreover, plasma matrix
showed higher diagnostic accuracy than urine.

From the estimated optimal cut-off values, the diagnostic indices in
the prediction of early AD were calculated for each developed model in
plasma and urine samples (Table 3). For urine, the ANN model provided
a sensitivity of 80.9%, while its specificity was 76.9%. In addition, DOR
value for ANN model in urine revealed that there was strong association
between the model results and the AD occurrence. Regarding the ANN
model in plasma samples, it provided a sensitivity of 88.2%, while its
specificity was 76.9%. This model also showed an elevated DOR value
that supported its diagnostic value. DOR values were quite similar
among plasma models, but ANN model showed better accuracy (AUC-
ROC 0.882) than PLS (AUC-ROC 0.765) and SVM (AUC-ROC 0.827).
Moreover, ANN model showed better sensitivity and a satisfactory
balance between sensitivity and specificity. ANN model showed better
balance, obtaining a higher number of participants correctly classified.
By contrast, PLS model showed high specificity but low sensitivity,
classifying the AD participants as healthy subjects; while SVM model
showed high sensitivity but low specificity, classifying the healthy
subjects as AD patients. In general, for both matrices, the PLS model
was the most specific, the SVM model was the most sensitive, and the
ANN model showed the best balance of sensitivity/specificity.

4. Discussion

Some of the analytes studied in this work showed statistically sig-
nificant differences, such as 17-epi-17-F2t-dihomo-IsoP in urine samples,
and 15(R)-15-F2t-IsoP, PGF2α, 4(RS)-4-F4t-NeuroP, ent-7(RS)-7-F2t-

dihomo-IsoP, 17-epi-17-F2t-dihomo-IsoP, isoprostanes, isofurans, neu-
roprostanes and neurofurans in plasma samples. Nevertheless, each
analyte individually did not provide a reliable AD diagnosis. In con-
trast, a multivariate model based on ANN showed better accuracy than
PLS and SVM models, and analytes from plasma samples were more
useful than those in urine samples to achieve a reliable AD diagnosis.

Some studies found lipid peroxidation products as biomarkers for
AD diagnosis, and most of them were based on individual biomarkers,
such as lipid peroxidation end products [39] or TBARS [40]. However,
multivariate models could reflect the oxidative stress status of patients
better, showing superior diagnostic indices and higher accuracy. Spe-
cifically, a previous work developed an ANN model based on different
AD risk factors studied the predictive value of these factors [35]. It
showed high capacity to integrate different data and achieve a general
evaluation. Other developed ANN models to diagnose AD or MCI were
based on image, genetics, neuropsychology or other biomarkers
[25,41], but the present study is the first one using lipid peroxidation
compounds as biomarkers. In general, previous studies based on ANN
showed model accuracies around 90%, similar to our results. Also, PLS
models have been developed for AD diagnosis. They were mainly based
on gene expression and neuroimaging [42–44], but none of them was
based on our set of lipid peroxidation products. In addition, a previous
study for MCI diagnosis compared PLS model to other statistical tests,
such as Random Forest showing the higher PLS diagnostic power [45].

The diagnostic indices obtained for each model in the present study
indicated that the ANN model in both matrices showed a satisfactory
accuracy (> 80%). In addition, the plasma ANN model showed, in
general, better diagnostic indices than the urine model, corroborating
previous studies in the literature [46,47]. Specifically, the ANN model
based on the plasma levels of lipid peroxidation products showed high
DOR value, sensitivity, and accuracy, as well as, satisfactory specificity,
so it is considered a reliable diagnostic model. In this sense, Quintana
et al. also found that ANN models showed better discriminant capacity
than linear models in AD diagnosis [26]. AD is a complex disease
process in which multiple factors are involved and that could be the

Table 2
Concentrations determined by UPLC-MS/MS for each analyte in plasma and urine samples from MCI-AD and healthy control participants.

Analyte Plasma (nmol L−1) Urine (ngmg creatinine −1)

MCI-AD (n= 70) Healthy control (n= 26) P-value MCI-AD (n=70) Healthy control (n=26) P-value

Median quartile Median quartile Median quartile Median quartile

1st 3rd 1st 3rd 1st 3rd 1st 3rd

15(R)-15-F2t-IsoP 0.30 0.23 0.46 0.20 0.15 0.26 0.000⁎ 0.69 0.47 1.42 0.71 0.49 1.00 0.830
PGE2 0.05 0.00 0.13 0.05 0.00 0.10 0.520 1.93 0.43 3.48 1.85 0.92 4.62 0.615
2,3-dinor-15-epi-15-F2t-IsoP 0.00 0.00 0.03 0.00 0.00 0.00 0.067 0.73 0.49 1.22 0.65 0.47 1.12 0.458
15-keto-15-E2t-IsoP 0.15 0.00 0.35 0.13 0.04 0.27 0.874 0.92 0.51 1.46 0.88 0.52 1.65 0.644
15-keto-15-F2t-IsoP 0.23 0.09 0.35 0.23 0.14 0.28 0.599 0.79 0.16 1.85 1.52 0.60 2.20 0.094
15-E2t-IsoP 0.26 0.12 0.43 0.19 0.09 0.28 0.320 0.18 0.05 1.29 0.19 0.06 0.76 0.830
5-F2t-IsoP 0.78 0.40 1.26 0.99 0.73 1.23 0.362 2.66 1.61 4.85 2.70 1.77 3.85 0.817
15-F2t-IsoP 0.02 0.01 0.04 0.02 0.02 0.03 0.638 0.01 0.00 0.02 0.01 0.00 0.02 0.113
PGF2α 0.51 0.24 0.76 0.74 0.48 0.94 0.008⁎ 3.67 2.69 7.90 2.98 2.34 4.98 0.295
4(RS)-4-F4t-NeuroP 1.14 0.96 1.33 1.03 0.00 1.13 0.003⁎ 0.91 0.67 1.40 0.72 0.50 1.05 0.051
1a,1b-dihomo-PGF2α 0.00 0.00 0.00 0.00 0.00 0.00 0.784 1.26 0.61 2.35 1.63 1.01 2.32 0.232
10-epi-10-F4t-NeuroP 0.08 0.03 0.15 0.09 0.03 0.14 0.731 0.03 0.00 0.06 0.01 0.00 0.04 0.094
14(RS)-14-F4t-NeuroP 0.53 0.06 1.03 0.60 0.00 1.74 0.671 1.22 0.76 2.38 1.37 0.78 1.98 0.837
ent-7(RS)-7-F2t-dihomo-IsoP 0.10 0.05 0.15 0.05 0.04 0.08 0.002⁎ 0.32 0.13 0.60 0.29 0.21 0.39 1.000
17-F2t-dihomo-IsoP 0.00 0.00 0.00 0.00 0.00 0.00 0.555 0.08 0.00 0.36 0.10 0.00 0.23 0.625
17-epi-17-F2t-dihomo-IsoP 0.03 0.00 0.05 0.00 0.00 0.01 0.015⁎ 0.01 0.00 0.06 0.00 0.00 0.00 0.019⁎

17(RS)-10-epi-SC-Δ15-11-dihomo-IsoF 0.00 0.00 0.00 0.00 0.00 0.00 0.164 0.03 0.00 0.11 0.05 0.02 0.08 0.330
7(RS)-ST-Δ8-11-dihomo-IsoF 0.04 0.03 0.08 0.09 0.02 0.16 0.067 0.00 0.00 0.02 0.00 0.00 0.03 0.849
Neurofuransa 0.09 −0.05 0.17 −0.10 −0.15 0.07 0.000⁎ 3.13 1.76 6.62 4.15 2.51 5.95 0.356
Isofuransa 0.09 0.07 0.12 0.07 0.06 0.09 0.013⁎ 4.36 2.53 7.25 4.29 3.37 9.64 0.343
Neuroprostanesa −0.22 −0.70 0.19 −0.65 −0.76 −0.48 0.010⁎ 3.52 2.25 4.97 3.77 2.02 6.17 0.650
Isoprostanesa 0.30 0.22 0.39 0.20 0.17 0.27 0.000⁎ 6.20 3.82 12.37 7.30 4.67 11.45 0.491

⁎ p < .05.
a Total parameters results expressed as intensity of signal units in plasma and as signal units mg−1 creatinine in urine.
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reason why non-linear regression models showed a better predictive
capacity than those models based on linear regression [35].

Regarding the biological matrix, the proposed ANN diagnostic
model in plasma samples constitutes a promising minimally invasive
approach that could avoid, in some cases, the current diagnostic
methods, which involve invasive sampling and expensive techniques
[48]. In this sense, the ANN models have a satisfactory diagnostic ca-
pacity, and they are able to classify the participants into healthy and
MCI-AD with high accuracy in both matrices as an early screening tool.

5. Conclusion

The non-linear regression model based on ANN explained the non-
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linear relationship between the levels of lipid peroxidation compounds
and the diagnosis of a complex pathophysiological process, such as AD,
constituting a promising screening approach. Specifically, the devel-
oped ANN model in plasma samples showed high accuracy and suitable
diagnostic indices in early AD prediction. Nevertheless, further research
will need to be carried out to clinically validate this diagnostic model.
This approach constitutes a significant advance in early AD diagnosis,
using minimally invasive sampling techniques, and offers important
economic cost reduction for the public health system.

Funding

This work was supported by the Instituto de Salud Carlos III (Miguel
Servet I Project (CP16/00082)) (Spanish Ministry of Economy and
Competitiveness, and European Regional Development Fund).

Declaration of Competing Interest

None.

Acknowledgement

CC-P acknowledges a “Miguel Servet I” Grant (CP16/00082) from
the Instituto Carlos III (ISCIII, Spanish Ministry of Economy and
Competitiveness). CP-B acknowledges a pre-doctoral Grant (associated

to “Miguel Servet” project CP16/00082) from the ISCIII (Spanish
Ministry of Economy, Industry and Competitiveness).

The authors are grateful for the professional English language
editing to Mr. Arash Javadinejad, English Instructor and Publication
Editor at the Instituto de Investigación Sanitaria La Fe, Valencia, Spain.

References

[1] M. Prince, E. Albanese, M. Guerchet, M. Prina, World Alzheimer Report 2014:
Dementia and Risk Reduction an Analysis of Protective and Modifiable Factors,
(2014).

[2] W. Huang, X. Zhang, W.W. Chen, Role of oxidative stress in Alzheimer's disease,
Biomed. Rep. 4 (2016) 519–522.

[3] R. Sultana, M. Perluigi, D. Allan Butterfield, Lipid peroxidation triggers neurode-
generation: a redox proteomics view into the Alzheimer disease brain, Free Radic.
Biol. Med. 62 (2013) 157–169.

[4] Z. Chen, C. Zhong, Oxidative stress in Alzheimer's disease, Neurosci. Bull. 30 (2014)
271–281.

[5] C. Peña-Bautista, M. Baquero, M. Vento, C. Cháfer-Pericás, Free radicals in
Alzheimer's disease: lipid peroxidation biomarkers, Clin. Chim. Acta 491 (2019)
85–90.

[6] M. Czerska, M. Zieliński, J. Gromadzińska, Isoprostanes - a novel major group of
oxidative stress markers, Int. J. Occup. Med. Environ. Health 29 (2016) 179–190.

[7] T.J. Montine, E.R. Peskind, J.F. Quinn, A.M. Wilson, K.S. Montine, D. Galasko,
Increased cerebrospinal fluid F2-isoprostanes are associated with aging and latent
Alzheimer's disease as identified by biomarkers, NeuroMolecular Med. 13 (2011)
37–43.

[8] F.B. Sirin, D. Kumbul Doğuç, H. Vural, I. Eren, I. Inanli, R. Sütçü, N. Delibaş, Plasma
8-isoPGF2α and serum melatonin levels in patients with minimal cognitive im-
pairment and Alzheimer disease, Turk. J. Med. Sci. 45 (2015) 1073–1077.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Se
ns

iti
vi

ty

1-Specificity 

ANN URINE

PLS URINE

ANN PLASMA

PLS PLASMA

Fig. 4. Receiver operating Characteristic curves for PLS and ANN models in plasma and urine samples.

Table 3
Diagnostic indices for each developed statistical model in the prediction of MCI-AD from lipid peroxidation compounds determined in urine and plasma samples.

Urine Plasma

PLS ANN SVM PLS ANN SVM

Radial Polynomial Radial Polynomial

AUC (CI 95%) 0.653
(0.526–0.780)

0.839
(0.746–0.933)

0.659
(0.558–0.759)

0.644
(0.539–0.749)

0.765
(0.663–0.868)

0.882
(0.814–0.949)

0.827
(0.739–0.915)

0.817
(0.712–0.922)

Sensitivity (%,
CI 95%)

63.2 (51.4–73.7) 80.9 (70.0–88.5) 92.9 (68.5–98.7) 92.3 (66.7–98.6) 50.7 (39.2–62.2) 88.2 (78.5–93.9) 92.3 (66.7–98.6) 100.0 (77.2–100)

Specificity (%,
CI 95%)

70.8 (50.8–85.1) 76.9 (57.9–89.0) 11.1 (2.0–43.5) 37.5 (13.7–69.4) 96.2 (81.1–99.3) 76.9 (57.9–89.0) 50.0 (21.5–78.5) 25.0 (7.1–59.1)

LR+ (CI 95%) 2.17 (1.13–4.15) 3.50 (1.72–7.14) 1.04 (0.80–1.37) 1.48 (0.84–2.58) 13.19
(1.90–91.40)

3.82 (1.89–7.75) 1.85 (0.91–3.76) 1.33 (0.89–1.99)

LR- (CI 95%) 0.52 (0.36–0.74) 0.25 (0.15–0.41) 0.64 (0.07–6.06) 0.21 (0.03–1.49) 0.51 (0.40–0.66) 0.15 (0.08–0.30) 0.15 (0.02–1.08) –
DOR (CI 95%) 4.18

(1.52–11.46)
14.10
(4.72–42.13)

1.63
(0.09–29.78)

7.20
(0.60–87.02)

25.74
(3.30–200.67)

25.00
(7.73–80.81)

12.0
(1.02–141.34)

–

PLS, partial least squares; ANN, artificial neural network; SVM, support vector machine; AUC, area under the curve; LR+, positive likelihood ratio; LR-, negative
likelihood ratio; CI, confidence interval; DOR, diagnostic odds ratio.

C. Peña-Bautista, et al. Clinical Biochemistry 72 (2019) 64–70

69

http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0005
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0005
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0005
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0010
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0010
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0015
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0015
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0015
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0020
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0020
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0025
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0025
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0025
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0030
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0030
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0035
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0035
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0035
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0035
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0040
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0040
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0040
camille
Rectangle



[9] A. García-Blanco, C. Peña-Bautista, C. Oger, C. Vigor, J.M. Galano, T. Durand,
N. Martín-Ibáñez, M. Baquero, M. Vento, C. Cháfer-Pericás, Reliable determination
of new lipid peroxidation compounds as potential early Alzheimer Disease bio-
markers, Talanta. 184 (2018) 193–201.

[10] S. Hartmann, T.B. Ledur Kist, A review of biomarkers of Alzheimer's disease in
noninvasive samples, Biomark. Med 12 (2018) 677–690.

[11] L. Roberts, J.P. Fessel, The biochemistry of the isoprostane, neuroprostane, and
isofuran pathways of lipid peroxidation, Chem. Phys. Lipids 128 (2004) 173–186.

[12] B. Olsson, R. Lautner, U. Andreasson, A. Öhrfelt, E. Portelius, M. Bjerke, M.H.C. er
Rosén, C. Olsson, G. Strobel, E. Wu, K. Dakin, M. Petzold, K. Blennow,
H. Zetterberg, CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a
systematic review and meta-analysis, Lancet 15 (2016) 473–484.

[13] R. Wurtman, Biomarkers in the diagnosis and management of Alzheimer's disease,
Metabolism 64 (2015) S47–S50.

[14] C. Ibáñez, C. Simó, P.J. Martín-Álvarez, M. Kivipelto, B. Winblad, A. Cedazo-
Mínguez, A. Cifuentes, Toward a predictive model of Alzheimer's disease progres-
sion using capillary electrophoresis-mass spectrometry metabolomics, Anal. Chem.
84 (2012) 8532–8540.

[15] A. Alexiou, V.D. Mantzavinos, N.H. Greig, M.A. Kamal, A Bayesian model for the
prediction and early diagnosis of Alzheimer's disease, Front. Aging Neurosci. 31
(2017) 69–77.

[16] B. Dębska, B. Guzowska-Świder, Application of artificial neural network in food
classification, Anal. Chim. Acta 705 (2011) 283–291.

[17] D. Zafeiris, S. Rutella, G.R. Ball, An artificial neural network integrated pipeline for
biomarker discovery using Alzheimer's disease as a case study, Comput. Struct.
Biotech. J. 16 (2018) 77–87.

[18] A. Alibakshi, Strategies to develop robust neural network models: prediction of
flash point as a case study, Anal. Chim. Acta 1026 (2018) 69–76.

[19] L.A. Berrueta, R.M. Alonso-Salces, K. Héberger, Supervised pattern recognition in
food analysis, J. Chromatogr. A 1158 (2007) 196–214.

[20] W.D. Hong, X.R. Chen, S.Q. Jin, Q.K. Huang, Q.H. Zhu, J.Y. Pan, Use of an artificial
neural network to predict persistent organ failure in patients with acute pancrea-
titis, Clinics (Sao Paulo) 68 (2013) 27–31.

[21] J. Yazdani Charati, G. Janbabaei, N. Alipour, S. Mohammadi, S. Ghorbani
Gholiabad, A. Fendereski, Survival prediction of gastric cancer patients by Artificial
Neural Network model, Gastroenterol. Hepatol. Bed. Bench. 11 (2018) 110–117.

[22] L. He, H. Li, S.K. Holland, W. Yuan, M. Altaye, N.A. Parikh, Early prediction of
cognitive deficits in very preterm infants using functional connectome data in an
artificial neural network framework, Neuroimage Clin. 18 (2018) 290–297.

[23] D. Devikanniga, R. Joshua Samuel Raj, Classification of osteoporosis by artificial
neural network based on monarch butterfly optimisation algorithm, Healthc.
Technol. Lett. 5 (2018) 70–75.

[24] A. Catic, L. Gurbeta, A. Kurtovic-Kozaric, S. Mehmedbasic, A. Badnjevic,
Application of Neural Networks for classification of Patau, Edwards, Down, Turner
and Klinefelter Syndrome based on first trimester maternal serum screening data,
ultrasonographic findings and patient demographics, BMC Med. Genet. 11
(2018) 19.

[25] A.J.C.C. Lins, M.T.C. Muniz, A.N.M. Garcia, A.V. Gomes, R.M. Cabral, C.J.A. Bastos-
Filho, Using artificial neural networks to select the parameters for the prognostic of
mild cognitive impairment and dementia in elderly individuals, Comput. Methods
Prog. Biomed. 152 (2017) 93–104.

[26] M. Quintana, J. Guàrdia, G. Sánchez-Benavides, M. Aguilar, J.L. Molinuevo,
A. Robles, M.S. Barquero, C. Antúnez, C. Martínez-Parra, A. Frank-García,
M. Fernández, R. Blesa, J. Peña-Casanova, Neuronorma Study Team, Using artificial
neural networks in clinical neuropsychology: high performance in mild cognitive
impairment and Alzheimer's disease, J. Clin. Exp. Neuropsychol. 34 (2012)
195–208.

[27] G. Li, X. Zhou, J. Liu, Y. Chen, H. Zhang, Y. Chen, J. Liu, H. Jiang, J. Yang, S. Nie,
Comparison of three data mining models for prediction of advanced schistosomiasis
prognosis in the Hubei provine, cPLoS Negl. Trop. Dis. 12 (2018) e0006262.

[28] E. Grossi, M.P. Buscema, D. Snowdon, P. Antuono, Neuropathological findings
processed by artificial neural networks (ANNs) can perfectly distinguish Alzheimer's
patients from controls in the Nun Study, BMC Neurol. 7 (2007) 15.

[29] F. Bertè, G. Lamponi, R.S. Calabrò, P. Bramanti, Elman neural network for the early
identification of cognitive impairment in Alzheimer's disease, Funct. Neurol. 29
(2014) 57–65.

[30] X. Deng, K. Li, S. Liu, Preliminary study on application of artificial neural network
to the diagnosis of Alzheimer's disease with magnetic resonance imaging, Chin.
Med. J. 112 (1999) 232–237.

[31] H.F. da Silva Lopes, J.M. Abe, R. Anghinah, Application of paraconsistent artificial
neural networks as a method of aid in the diagnosis of Alzheimer disease, J. Med.
Syst. 34 (2010) 1073–1081.

[32] J.M. Abe, H.F.D.S. Lopes, R. Anghinah, Paraconsistent artificial neural networks
and Alzheimer disease: a preliminary study, Dement. Neuropsychol. 1 (2007)
241–247.

[33] M. Buscema, E. Grossi, D. Snowdon, P. Antuono, M. Intraligi, G. Maurelli, R. Savarè,
Artificial neural networks and artificial organisms can predict Alzheimer pathology
in individual patients only on the basis of cognitive and functional status,
Neuroinformatics. 2 (2004) 399–416.

[34] E. Ryzhikova, O. Kazakov, L. Halamkova, D. Celmins, P. Malone, E. Molho,
E.A. Zimmerman, I.K. Lednev, Raman spectroscopy of blood serum for Alzheimer's
disease diagnostics: specificity relative to other types of dementia, J. Biophotonics 8
(2015) 584–596.

[35] M. Tabaton, P. Odetti, S. Cammarata, R. Borghi, F. Monacelli, C. Caltagirone,
P. Bossù, M. Buscema, E. Grossi, Artificial neural networks identify the predictive
values of risk factors on the conversion of amnestic mild cognitive impairment, J.
Alzheimers Dis. 19 (2010) 1035–1040.

[36] E. Grossi, A. Stoccoro, P. Tannorella, L. Migliore, F. Coppedè, Artificial neural
networks link one-carbon metabolism to gene-promoter methylation in Alzheimer's
disease, J. Alzheimers Dis. 53 (2016) 1517–1522.

[37] C.R. Jack, D.A. Bennett, K. Blennow, M.C. Carrillo, B. Dunn, S.B. Haeberlein,
D.M. Holtzman, W. Jagust, F. Jessen, J. Karlawish, E. Liu, J.L. Molinuevo,
T. Montine, C. Phelps, K.P. Rankin, C.C. Rowe, P. Scheltens, E. Siemers,
H.M. Snyder, R. Sperling, NIA-AA Research Framework: toward a biological defi-
nition of Alzheimer's disease, Alzheimers Dement. 14 (2018) 535–562.

[38] C. Peña-Bautista, C. Vigor, J.M. Galano, C. Oger, T. Durand, I. Ferrer, A. Cuevas,
R. López-Cuevas, M. Baquero, M. López-Nogueroles, M. Vento, D. Hervás, A. García-
Blanco, C. Cháfer-Pericás, Plasma lipid peroxidation biomarkers for early and non-
invasive Alzheimer Disease detection, Free Radic. Biol. Med. 124 (2018) 388–394.

[39] Z. Chmatalova, M. Vyhnalek, J. Laczo, J. Hort, R. Pospisilova, M. Pechova,
A. Skoumalova, Relation of plasma selenium and lipid peroxidation end products in
patients with Alzheimer's disease, Physiol. Res. 66 (2017) 1049–1056.

[40] M.C. Puertas, J.M. Martínez-Martos, M.P. Cobo, M.P. Carrera, M.D. Mayas,
M.J. Ramírez-Expósito, Plasma oxidative stress parameters in men and women with
early stage Alzheimer type dementia, Exp. Gerontol. 47 (2012) 625–630.

[41] J. Tang, L. Wu, H. Huang, J. Feng, Y. Yuan, Y. Zhou, P. Huang, Y. Xu, C. Yu, Back
propagation artificial neural network for community Alzheimer's disease screening
in China, Neural Regen. Res. 8 (2013) 270–276.

[42] B.B. Booij, T. Lindahl, P. Wetterberg, N.V. Skaane, S. Sæbø, G. Feten, P.D. Rye,
L.I. Kristiansen, N. Hagen, M. Jensen, K. Bårdsen, B. Winblad, P. Sharma,
A. Lönneborg, A gene expression pattern in blood for the early detection of
Alzheimer's disease, J. Alzheimers Dis. 23 (2011) 109–119.

[43] E. Konukoglu, J.P. Coutu, D.H. Salat, B. Fischl, Alzheimer's Disease Neuroimaging
Initiative (ADNI), Multivariate statistical analysis of diffusion imaging parameters
using partial least squares: application to white matter variations in Alzheimer's
disease, Neuroimage 134 (2016) 573–586.

[44] Q. Zhou, M. Goryawala, M. Cabrerizo, W. Barker, D. Loewenstein, R. Duara,
M. Adjouadi, Multivariate analysis of structural MRI and PET (FDG and 18F-AV-45)
for Alzheimer's disease and its prodromal stages, Conf. Proc. IEEE. Eng. Med. Biol.
Soc. 2014 (2014) 1051–1054.

[45] P. Wang, K. Chen, L. Yao, B. Hu, X. Wu, J. Zhang, Q. Ye, X. Guo, Alzheimer's disease
neuroimaging initiative. Multimodal classification of mild cognitive impairment
based on partial least squares, J. Alzheimers Dis. 54 (2016) 359–371.

[46] M. Toufan, H. Namdar, M. Abbasnezhad, A. Habibzadeh, H. Esmaeili, S. Yaraghi,
Z. Samani, Diagnostic values of plasma, fresh and frozen urine NT-proBNP in heart
failure patients, J. Cardiovasc. Thorac. Res. 6 (2014) 111–115.

[47] G. Schley, C. Köberle, E. Manuilova, S. Rutz, C. Forster, M. Weyand, I. Formentini,
R. Kientsch-Engel, K.U. Eckardt, C. Willam, Comparison of plasma and urine bio-
marker performance in acute kidney injury, PLoS One 10 (2015) e0145042.

[48] E.R. Peskind, R. Riekse, J.F. Quinn, J. Kaye, C.M. Clark, M.R. Farlow, C. Decarli,
C. Chabal, D. Vavrek, M.A. Raskind, D. Galasko, Safety and acceptability of the
research lumbar puncture, Alzheimer Dis. Assoc. Disord. 19 (2005) 220–225.

C. Peña-Bautista, et al. Clinical Biochemistry 72 (2019) 64–70

70

http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0045
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0045
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0045
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0045
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0050
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0050
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0055
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0055
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0060
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0060
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0060
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0060
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0065
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0065
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0070
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0070
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0070
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0070
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0075
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0075
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0075
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0080
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0080
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0085
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0085
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0085
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0090
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0090
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0095
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0095
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0100
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0100
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0100
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0105
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0105
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0105
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0110
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0110
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0110
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0115
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0115
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0115
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0120
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0120
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0120
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0120
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0120
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0125
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0125
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0125
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0125
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0130
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0130
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0130
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0130
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0130
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0130
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0135
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0135
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0135
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0140
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0140
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0140
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0145
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0145
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0145
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0150
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0150
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0150
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0155
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0155
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0155
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0160
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0160
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0160
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0165
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0165
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0165
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0165
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0170
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0170
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0170
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0170
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0175
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0175
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0175
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0175
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0180
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0180
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0180
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0185
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0185
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0185
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0185
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0185
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0190
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0190
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0190
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0190
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0195
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0195
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0195
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0200
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0200
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0200
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0205
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0205
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0205
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0210
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0210
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0210
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0210
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0215
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0215
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0215
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0215
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0220
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0220
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0220
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0220
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0225
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0225
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0225
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0230
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0230
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0230
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0235
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0235
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0235
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0240
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0240
http://refhub.elsevier.com/S0009-9120(18)31401-2/rf0240
camille
Rectangle


	Assessment of lipid peroxidation and artificial neural network models in early Alzheimer Disease diagnosis
	Introduction
	Materials and methods
	Patients and samples
	Analytical method
	Statistical analysis
	Diagnostic performance evaluation

	Results
	Demographic, clinical and analytical variables
	Multivariate statistical models
	Diagnostic performance for the statistical multivariate developed models

	Discussion
	Conclusion
	Funding
	mk:H1_14
	Acknowledgement
	References




