
HAL Id: hal-02394935
https://hal.science/hal-02394935v2

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Homogenization of parabolic problems with dynamical
boundary conditions of reactive-diffusive type in

perforated media
María Anguiano

To cite this version:
María Anguiano. Homogenization of parabolic problems with dynamical boundary conditions of
reactive-diffusive type in perforated media. Journal of Applied Mathematics and Mechanics /
Zeitschrift für Angewandte Mathematik und Mechanik, 2020, 100 (10), �10.1002/zamm.202000088�.
�hal-02394935v2�

https://hal.science/hal-02394935v2
https://hal.archives-ouvertes.fr


Homogenization of parabolic problems with dynamical boundary

conditions of reactive-diffusive type in perforated media

Maŕıa ANGUIANO1

Abstract

This paper deals with the homogenization of the reaction-diffusion equations in a domain containing
periodically distributed holes of size ε, with a dynamical boundary condition of reactive-diffusive type, i.e.,
we consider the following nonlinear boundary condition on the surface of the holes

∇uε · ν + ε
∂uε

∂t
= ε δ∆Γuε − ε g(uε),

where ∆Γ denotes the Laplace-Beltrami operator on the surface of the holes, ν is the outward normal to the
boundary, δ > 0 plays the role of a surface diffusion coefficient and g is the nonlinear term. We generalize
our previous results (see [3]) established in the case of a dynamical boundary condition of pure-reactive type,
i.e., with δ = 0. We prove the convergence of the homogenization process to a nonlinear reaction-diffusion
equation whose diffusion matrix takes into account the reactive-diffusive condition on the surface of the holes.

AMS classification numbers: 35B27, 35K57

Keywords: Homogenization, perforated media, reaction-diffusion systems, dynamical boundary con-

ditions, surface diffusion

1 Introduction and setting of the problem

In the context of reaction-diffusion equations, dynamical boundary conditions have been rigorously derived in
Gal and Shomberg [11] based on first and second thermodynamical principles and their physical interpretation
was also given in Goldstein [12]. It is worth emphasizing that the derivation in [11] obtains the dynamical
boundary condition of reactive-diffusive type both as a sufficient and necessary condition for thermodynamic
processes which incorporate thermodynamic sources located along the boundary, and in which the second law
plays a crucial role, while in [12] it has been introduced only as a sufficient condition.

In particular, a dynamical boundary condition of reactive-diffusive type accounts for (see [12, Section 3]) a heat
source on the boundary that can depend on the heat flow along the boundary, the heat flux across the boundary
and the temperature at the boundary. Consider the reaction-diffusion equation, with dynamical boundary
condition of reactive-diffusive type, provides, in addition to classical bulk diffusion, a diffusion mechanism present
along the boundary. A typical example in the theory of heat conduction (see [11] for more details) arises when
a given body is in perfect thermal contact with a sufficiently thin metal sheet, possibly of different material and
completely insulating the internal body from external contact, say, a well-stirred hot or cold fluid.

In a recent article (see [3]) we addressed the problem of the homogenization of the reaction-diffusion equations
with a dynamical boundary condition of pure-reactive type in a domain perforated with holes. The present article
is devoted to the generalization of that previous study to the case of a dynamical boundary condition of reactive-
diffusive type, i.e., we add to the dynamical boundary condition a Laplace-Beltrami correction term. Let us
introduce the model we will be involved with in this article.

1Departamento de Análisis Matemático. Facultad de Matemáticas. Universidad de Sevilla, 41012 Sevilla (Spain) anguiano@us.es
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The geometrical setting. Let Ω be a bounded connected open set in RN (N ≥ 2), with smooth enough
boundary ∂Ω. Let us introduce a set of periodically distributed holes. As a result, we obtain an open set Ωε,
where ε represents a small parameter related to the characteristic size of the holes.

Let Y = [0, 1]N be the representative cell in RN and F an open subset of Y with smooth enough boundary
∂F , such that F̄ ⊂ Y . We denote Y ∗ = Y \ F̄ . For k ∈ ZN and ε ∈ (0, 1], each cell Yk,ε = ε k + ε Y is
similar to the unit cell Y rescaled to size ε and Fk,ε = ε k + ε F is similar to F rescaled to size ε. We denote
Y ∗k,ε = Yk,ε \ F̄k,ε. We denote by Fε the set of all the holes contained in Ω, i.e. Fε = ∪k∈K{Fk,ε : F̄k,ε ⊂ Ω},
where K := {k ∈ ZN : Yk,ε ∩ Ω 6= ∅}.

Let Ωε = Ω\F̄ε. By this construction, Ωε is a periodically perforated domain with holes of the same size as
the period. Remark that the holes do not intersect the boundary ∂Ω. Let ∂Fε = ∪k∈K{∂Fk,ε : F̄k,ε ⊂ Ω}. So

∂Ωε = ∂Ω ∪ ∂Fε.

Position of the problem. The prototype of the parabolic initial-boundary value problems that we consider in
this article is 

∂uε
∂t
−∆uε + κuε = 0 in Ωε × (0, T ),

∇uε · ν + ε
∂uε
∂t

= ε δ∆Γuε − ε g(uε) on ∂Fε × (0, T ),

uε = 0, on ∂Ω× (0, T ),
uε(x, 0) = u0

ε(x), for x ∈ Ωε,
uε(x, 0) = ψ0

ε(x), for x ∈ ∂Fε,

(1)

where uε = uε(x, t), x ∈ Ωε, t ∈ (0, T ) and T > 0. The first equation states the law of standard diffusion in Ωε,
∆ = ∆x denotes the Laplacian operator with respect to the space variable and κ > 0 is a given constant. The
boundary equation (1)2 is multiplied by ε to compensate the growth of the surface by shrinking ε, where the
value of uε is assumed to be the trace of the function uε defined for x ∈ Ωε, ∆Γ denotes the Laplace-Beltrami
operator on ∂Fε, ν denotes the outward normal to ∂Fε, and δ > 0 is a given constant. The term ∇uε · ν
represents the interaction domain-boundary, while δ∆Γ stands for a boundary diffusion. We assume that the
function g ∈ C (R) is given, and satisfies that there exist constants q ≥ 2, α1 > 0, α2 > 0, β > 0, and l > 0, such
that

α1 |s|q − β ≤ g(s)s ≤ α2 |s|q + β, for all s ∈ R, (2)

(g(s)− g(r)) (s− r) ≥ −l (s− r)2
, for all s, r ∈ R. (3)

Finally, we also assume that
u0
ε ∈ L2 (Ω) , ψ0

ε ∈ L2 (∂Fε) , (4)

are given, and we suppose that
|u0
ε|2Ωε + ε|ψ0

ε |2∂Fε ≤ C, (5)

where C is a positive constant, and we denote by | · |Ωε and | · |∂Fε the norm in L2(Ωε) and L2(∂Fε), respectively.

Depending of δ, two classes of boundary conditions are modeled by (1). For δ > 0, we have boundary
conditions of reactive-diffusive type, and for δ = 0 the boundary conditions are purely reactive. In [3], we consider
the homogenization of the problem (1) with δ = 0 and we obtain rigorously a nonlinear parabolic problem with
zero Dirichlet boundary condition and with extra-terms coming from the influence of the dynamical boundary
conditions as the homogenized model. Though the results of the present article are similar to those of [3], the
generalization of their proof is not trivial. Some new technical results are required in order to carry out the
machinery of [3]. Due to the presence of Laplace-Beltrami operator in the boundary condition, the variational
formulation of the reaction-diffusion equation is different that in [3]. We have to work in the space

Wδ =
{

(v, γ0(v)) ∈ H1(Ωε)×H1(∂Fε)
}
, δ > 0, (6)

where γ0 denotes the trace operator v 7→ v|∂Ωε , and where we define by H1(∂Fε) the completion of C1(∂Fε)
with respect to the induced norm by the inner product

((φ, ψ))∂Fε :=

∫
∂Fε

φψ dσ + δ

∫
∂Fε

∇Γφ · ∇Γψdσ, ∀φ, ψ ∈ C1(∂Fε),
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where ∇Γ denotes the tangential gradient on ∂Fε and dσ denotes the natural volume element on ∂Fε. The
estimates of [3] did not allow to cover this case and new estimates are needed to deal with problem (1). In order
to prove estimates in H2-norm, we have to combine estimates for general elliptic boundary value problems with
interpolation properties of Sobolev spaces (see Lemma 4.2). On the other hand, in order to pass to the limit,
as ε → 0, for the term which involves the tangential gradient ∇Γ we make use of a convergence result based
on a technique introduced by Vanninathan [20] for the Steklov problem which transforms surface integrals into
volume integrals. This convergence result can be used taking into account the estimates in H2-norm. Several
technical results are merely quoted, and we refer [3] for their proof. We present here a new result concerning the
local problem, which involves the orthogonal projection (denoted by PΓ), the tangential gradient (denoted by
∇Γ) and the tangential divergence (denoted by divΓ) on the boundary of the unit cell. More precisely, using the
so-called energy method introduced by Tartar [19] and considered by many authors (see, for instance, Cioranescu
and Donato [5]), we prove the following:

Theorem 1.1 (Main Theorem). Under the assumptions (2)–(3) and (5), assume that g ∈ C1(R), the exponent
q satisfies that

2 ≤ q < +∞ if N = 2 and 2 ≤ q ≤ 2N − 2

N − 2
if N > 2, (7)

and (u0
ε, ψ

0
ε) ∈ Wδ ∩ (Lq (Ωε)× Lq (∂Fε)). Let (uε, ψε) be the unique solution of the problem (1), where ψε(t) =

γ0(uε(t)) a.e. t ∈ (0, T ]. Then, as ε→ 0, we have

ũε(t)→ u(t) strongly in L2(Ω), ∀t ∈ [0, T ],

where ·̃ denotes the extension to Ω× (0, T ) and u is the unique solution of the following problem

(
|Y ∗|
|Y |

+
|∂F |
|Y |

)
∂u

∂t
− div (Q∇u) +

|Y ∗|
|Y |

κu+
|∂F |
|Y |

g(u) = 0, in Ω× (0, T ),

u(x, 0) = u0(x), for x ∈ Ω,

u = 0, on ∂Ω× (0, T ).

(8)

The homogenized matrix Q = ((qi,j)), 1 ≤ i, j ≤ N , which is symmetric and positive-definite, is given by

qi,j =
1

|Y |

(∫
Y ∗

(ei +∇ywi) · (ej +∇ywj) dy + δ

∫
∂F

(PΓei +∇Γwi) · (PΓej +∇Γwj) dσ(y)

)
, (9)

where wi ∈ Hper/R, 1 ≤ i ≤ N , is the unique solution of the cell problem
−divy (ei +∇ywi) = 0, in Y ∗,

(ei +∇ywi) · ν = δ divΓ (PΓei +∇Γwi) , on ∂F,

wi is Y − periodic.

(10)

Here, ei is the i element of the canonical basis in RN and Hper is the space of functions from H := {v ∈ H1(Y ∗) :
v|∂F ∈ H1(∂F )} which are Y -periodic.

Remark 1.2. Note that in the case δ = 0 (i.e., in the absence of a surface diffusion coefficient), the homogenized
equation (8) is exactly the equation obtained in [3].

Remark 1.3. An example of a function g ∈ C1(R), satisfying (2)-(3), is a odd degree polynomial,

g(s) =

2k+1∑
j=0

cj s
j ,

where c2k+1 > 0. The typical case is g(s) = s3 − s.

3
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The homogenization of problems which involve the Laplace-Beltrami operator has been considered in recent
articles.

In particular, in the context of periodic homogenization based on the periodic unfolding method, in [13] Graf
and Peter extend the existing convergence results for the boundary periodic unfolding operator to gradients
defined on manifolds. These results are then used to homogenize a system of five coupled reaction-diffusion
equations, three of which include diffusion described by the Laplace-Beltrami operator and four of which consider
a particular nonlinearity.

In [1], Amar and Gianni state a new property of the unfolding operator regarding the unfolded tangential
gradient. This property is used to homogenize a differential system of linear equations in two disjoint conductive
phases with a linear dynamical boundary condition which involves the Laplace-Beltrami operator in the sepa-
rating interface. An error estimate for this model, under extra regularity assumptions on the data, can be found
in Amar and Gianni [2].

More recently, in [9], Gahn derives some general two-scale compactness results for coupled bulk-surface
problems and applies these results to an elliptic problem with a non-dynamical boundary condition, which
involves the Laplace-Beltrami operator, in a multi-component domain.

However, to our knowledge, there does not seem to be in the literature any study on the homogenization of
parabolic models associated with nonlinear dynamical boundary conditions, which involves the Laplace-Beltrami
operator, in a periodically perforated domain, as we consider in this article.

The article is organized as follows. In Section 2, we introduce suitable functions spaces for our considerations.
Especially, we consider some fundamentals from differential geometry as the tangential gradient and the tangential
divergence. To prove the main result, in Section 3 we prove the existence and uniqueness of solution of (1), a
priori estimates are established in Section 4 and some compactness results are proved in Section 5. Finally, the
proof of Theorem 1.1 is established in Section 6.

2 Functional setting

Notation. We denote by (·, ·)Ωε (respectively, (·, ·)∂Fε) the inner product in L2(Ωε) (respectively, in L2(∂Fε)),
and by |·|Ωε (respectively, |·|∂Fε) the associated norm. We also denote by (·, ·)Ωε the inner product in (L2(Ωε))

N .

If r 6= 2, we will also denote by (·, ·)Ωε (respectively, (·, ·)∂Fε) the duality product between Lr
′
(Ωε) and Lr(Ωε)

(respectively, the duality product between Lr
′
(∂Fε) and Lr(∂Fε)). We will denote by |·|r,Ωε (respectively |·|r,∂Fε)

the norm in Lr(Ωε) (respectively in Lr(∂Fε)).

We denote by (·, ·)Ω the inner product in L2(Ω), and by |·|Ω the associated norm. If r 6= 2, we will also denote

by (·, ·)Ω the duality product between Lr
′
(Ω) and Lr(Ω). We will denote by | · |r,Ω the norm in Lr(Ω).

By ‖·‖Ωε we denote the norm in H1 (Ωε), which is associated to the inner product

((u, v))Ωε := (u, v)Ωε
+ (∇u,∇v)Ωε , ∀u, v ∈ H1(Ωε),

and by || · ||Ωε,T we denote the norm in L2(0, T ;H1(Ωε)). By ‖·‖Ω we denote the norm in H1 (Ω), by || · ||Ω,T we
denote the norm in L2(0, T ;H1(Ω)) and, if r 6= 2, we denote by | · |r,Ω,T the norm in Lr(0, T ;Lr(Ω)).

We denote by γ0 the trace operator u 7→ u|∂Ωε , which belongs to L(H1(Ωε), H
1/2(∂Ωε)).

We introduce, for any s > 1, the space Hs(Ωε), which is naturally embedded in H1(Ωε), and it is a Hilbert
space equipped with the norm inherited, which we denote by || · ||Hs(Ωε).

Moreover, we denote by Hr
∂Ω(Ωε) and Hr

∂Ω(∂Ωε), for r ≥ 0, the standard Sobolev spaces which are closed
subspaces ofHr(Ωε) andHr(∂Ωε), respectively, and the subscript ∂Ω means that, respectively, traces or functions
in ∂Ωε, vanish on this part of the boundary of Ωε, i.e.

Hr
∂Ω(Ωε) = {v ∈ Hr(Ωε) : γ0(v) = 0 on ∂Ω},
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and
Hr
∂Ω(∂Ωε) = {v ∈ Hr(∂Ωε) : v = 0 on ∂Ω}.

Analogously, for r ≥ 2, we denote

Lr∂Ω(∂Ωε) := {v ∈ Lr(∂Ωε) : v = 0 on ∂Ω}.

Let us notice that, in fact, we can consider the given ψ0
ε as an element of L2

∂Ω(∂Ωε).

Let us consider the space
Hq := Lq (Ωε)× Lq∂Ω (∂Ωε) , ∀q ≥ 2,

with the natural inner product ((v, φ), (w,ϕ))Hq = (v, w)Ωε + ε(φ, ϕ)∂Fε , which in particular induces the norm
|(·, ·)|Hq given by

| (v, φ) |qHq = |v|qq,Ωε + ε|φ|qq,∂Fε , (v, φ) ∈ Hq.

For the sake of clarity, we shall omit to write explicitly the index q if q = 2, so we denote by H the Hilbert space

H := L2 (Ωε)× L2
∂Ω (∂Ωε) .

For functions u ∈ H1
∂Ω(Ωε) which satisfy ∆u ∈ L2

∂Ω(Ωε), we have∫
Ωε

∆u vdx = −
∫

Ωε

∇u · ∇vdx+

∫
∂Fε

∇u · νvdσ(x), ∀v ∈ H1
∂Ω(Ωε).

Tangential gradient and Laplace-Beltrami operator. We recall here, for the reader’s convenience, some
well-known facts on the tangential gradient ∇Γ and the Laplace-Beltrami operator ∆Γ. We refer to Sokolowski
and Zolesio [17] for more details and proofs.

Let S be a smooth surface with normal unit vector ν. For every v ∈ (L2(S))N , we can define an element
PΓv ∈ (L2(S))N such that PΓv · ν = 0 a.e. on S, where PΓ(y) for y ∈ S is the orthogonal projection on the
tangent space at y ∈ S, i.e., it holds that

PΓ(y)v(y) = v(y)− (v(y) · ν(y)) ν(y) for a.e. y ∈ S.

Let φ ∈ C1(S), there exist a tubular neighborhood U of S and an extension φ̃ ∈ C1(U) of φ. We define the
tangential gradient of φ on S by

∇Γφ := PΓ∇φ̃ = ∇φ̃− (∇φ̃ · ν)ν on S.

We emphasize that this definition is independent of the chosen extension of φ.

Let Φ ∈ (C1(S))N , then there exists an extension Φ̃ ∈ (C1(U))N (U as above a suitable neighborhood of S)
and we define the tangential divergence of Φ on S by

divΓΦ := ∇Γ · Φ := ∇ · Φ̃−DΦ̃ν · ν on S,

where DΦ̃ is the Jacobi-matrix of Φ̃.

Now, we consider the surface ∂Fε. First, an equivalent definition of the Sobolev space H1(∂Fε) on ∂Fε is
given. We introduce the inner product

((φ, ψ))∂Fε := (φ, ψ)∂Fε + δ(∇Γφ,∇Γψ)∂Fε , ∀φ, ψ ∈ C1(∂Fε), δ ≥ 0,

and denote by || · ||∂Fε the induced norm. The Sobolev space H1(∂Fε) is the closure of the space C1(∂Fε) with
respect to the norm induced by the inner product. Therefore, the space C1(∂Fε) is dense by definition in the
space H1(∂Fε). An equivalent definition of H1(∂Fε) can be given via local coordinates or distributional meaning,
see, for instance, Strichartz [18]. We denote by || · ||∂Fε,T the norm in L2(0, T ;H1(∂Fε)).
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By definition, for every φ ∈ H1(∂Fε) there exists ∇Γφ ∈ L2(∂Fε) with ∇Γφ ·ν = 0 a.e. on ∂Fε, the tangential
gradient in the distributional sense.

We introduce, for any s > 1, the space Hs(∂Fε), which is naturally embedded in H1(∂Fε), equipped with
the norm inherited, which we denote by || · ||Hs(∂Fε).

For all ψ ∈ H1(∂Fε) and v ∈ (C1(∂Fε))
N such that v · ν = 0 a.e. on ∂Fε, we have the Stokes formula (see

[17, Proposition 2.58]) ∫
∂Fε

∇Γψ · v dσ = −
∫
∂Fε

ψdivΓv dσ. (11)

Let h ∈ H2(∂Fε), then we have ∇Γh ∈ H1(∂Fε) such that ∇Γh · ν = 0 a.e. on ∂Fε. The Laplace-Beltrami
operator ∆Γ on ∂Fε is defined as follows

∆Γh = divΓ (∇Γh) ∀h ∈ H2(∂Fε).

Hence ∆Γh ∈ L2(∂Fε), and from (11) it follows that the element ∆Γh ∈ L2(∂Fε) is uniquely determined by the
integral identity ∫

∂Fε

∆Γhψ dσ = −
∫
∂Fε

∇Γh · ∇ψdσ ∀ψ ∈ H1(∂Fε). (12)

If ψ ∈ H1(∂Fε), then there exists (see [17, Chapter 2, Section 2.20]) an element ϑ ∈ H3/2(Ωε), the extension of
ψ, and

ϑ|∂Fε = ψ, furthermore ∇ϑ · ν = 0 on ∂Fε. (13)

Therefore ∇ϑ = ∇Γψ on ∂Fε. It should be noted that on the right-hand side of (12) there is the scalar product
of vector fields ∇Γh and ∇Γψ tangent to ∂Fε.

On the other hand, if ψ is a smooth function defined in an open neighbourhood of ∂Fε in Ω, then (see [17,
Chapter 2, Section 2.20])

∇Γh · (∇ψ|∂Fε) = ∇Γh · ∇Γψ

because of
(∇ψ · νν) · ∇Γh = 0.

Hence, if ψ is the restriction to ∂Fε of a given function ψ defined in Ω, then∫
∂Fε

∆Γhψ dσ = −
∫
∂Fε

∇Γh · ∇ψdσ ∀ψ ∈ H2(Ω). (14)

The space Wδ. We now introduce, as anticipated in the introduction, the space Wδ given in (6) (see [10,
Subsection 2.2] for more details). Let V δ∂Ω, δ ≥ 0, be the completion of C1(Ωε) in the norm

||u||2V δ∂Ω
:=

∫
Ωε

(
|u(x)|2 + |∇u(x)|2

)
dx+ ε

∫
∂Fε

(
|u(x)|2 + δ|∇Γu(x)|2

)
dσ(x).

Note that for any f ∈ V δ∂Ω, we have f ∈ H1
∂Ω(Ωε) so that f∂Fε makes sense in the trace sense. The space V δ∂Ω is

topologically isomorphic to H1(Ωε)×H1
∂Ω(∂Ωε) if δ > 0, and V 0

∂Ω = H1
∂Ω(Ωε).

For all δ ≥ 0, we define the linear space

Wδ :=
{

(v, γ0(v)) : v ∈ V δ∂Ω

}
.

We emphasize that Wδ is not a product space as V δ∂Ω. Clearly, Wδ ⊂ H densely since the trace operator
acting on function H1(Ωε) and into H1/2(∂Ωε) is bounded and onto, and Wδ is a Hilbert space with respect to
the inner product inherited from V δ∂Ω, δ ≥ 0. Thus, by definition we can identify

Wδ =
{

(v, γ0(v)) ∈ H1(Ωε)×H1
∂Ω(∂Ωε)

}
, for each δ > 0,

where
‖(v, γ0(v))‖2Wδ

:= ‖v‖2Ωε + ε ‖γ0(v)‖2∂Fε ,
and

W0 =
{

(v, γ0(v)) ∈ H1(Ωε)×H1/2
∂Ω (∂Ωε)

}
.

6
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3 Existence and uniqueness of solution

Along this paper, we shall denote by C different constants which are independent of ε. We state in this section
a result on the existence and uniqueness of solution of problem (1). First, we observe that it is easy to see from
(2) that there exists a constant C > 0 such that

|g(s)| ≤ C
(

1 + |s|q−1
)
, for all s ∈ R. (15)

Definition 3.1. A weak solution of (1) is a pair of functions (uε, ψε), satisfying

uε ∈ C([0, T ];L2(Ωε)), ψε ∈ C([0, T ];L2
∂Ω(∂Ωε)), for all T > 0, (16)

uε ∈ L2(0, T ;H1(Ωε)), for all T > 0, (17)

ψε ∈ L2(0, T ;H1
∂Ω(∂Ωε)) ∩ Lq(0, T ;Lq∂Ω(∂Ωε)), for all T > 0, (18)

γ0(uε(t)) = ψε(t), a.e. t ∈ (0, T ], (19)
d

dt
(uε(t), v)Ωε + ε

d

dt
(ψε(t), γ0(v))∂Fε + (∇uε(t),∇v)Ωε + κ(uε(t), v)Ωε

+ε δ(∇Γψε(t),∇Γγ0(v))∂Fε + ε (g(ψε(t)), γ0(v))∂Fε = 0

in D′(0, T ), for all v ∈ H1(Ωε) such that γ0(v) ∈ H1
∂Ω(∂Ωε) ∩ Lq∂Ω(∂Ωε),

(20)

uε(0) = u0
ε, and ψε(0) = ψ0

ε . (21)

We have the following result.

Theorem 3.2. Under the assumptions (2)–(3) and (4), there exists a unique solution (uε, ψε) of the problem
(1). Moreover, this solution satisfies the energy equality

1

2

d

dt

(
|(uε(t), ψε(t))|2H

)
+ |∇uε(t)|2Ωε + κ|uε(t)|2Ωε + ε δ|∇Γψε(t)|2∂Fε + ε (g(ψε(t)), ψε(t))∂Fε = 0, (22)

a.e. t ∈ (0, T ).

Proof. On the space Wδ we define a continuous symmetric linear operator Aδ : Wδ →W ′δ, given by

〈Aδ((v, γ0(v))), (w, γ0(w))〉 = (∇v,∇w)Ωε + κ(v, w)Ωε + ε δ(∇Γγ0(v),∇Γγ0(w))∂Fε , (23)

for all (v, γ0(v)), (w, γ0(w)) ∈Wδ.

We observe that Aδ is coercive. In fact, for all (v, γ0(v)) ∈Wδ, we have

〈Aδ ((v, γ0(v))) , (v, γ0(v))〉+ |(v, γ0(v))|2H ≥ min {1, κ} ‖v‖2Ωε + ε δ|∇Γγ0(v)|2∂Fε + |v|2Ωε + ε|γ0(v)|2∂Fε
≥ min {1, κ} ‖(v, γ0(v))‖2Wδ

.

Let us denote
V1 = Wδ, A1 = Aδ, V2 = L2 (Ωε)× Lq∂Ω (∂Ωε) , A2 (v, φ) = (0, ε g(φ)).

From (15) one deduces that A2 : V2 → V ′2 .

With this notation, and denoting V = V1 ∩ V2, p1 = 2, p2 = q, ~uε = (uε, ψε), one has that (16)–(21) is
equivalent to

~uε ∈ C([0, T ];H), ~uε ∈
2⋂
i=1

Lpi(0, T ;Vi), for all T > 0, (24)

7
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(~uε)
′(t) +

2∑
i=1

Ai(~uε(t)) = 0 in D′(0, T ;V ′), (25)

~uε(0) = (u0
ε, ψ

0
ε). (26)

Applying a slight modification of [14, Chapter 2,Theorem 1.4], it is not difficult to see that problem (24)–(26)
has a unique solution. Moreover, ~uε satisfies the energy equality

1

2

d

dt
|~uε(t)|2H +

2∑
i=1

〈Ai(~uε(t)), ~uε(t)〉i = 0 a.e. t ∈ (0, T ),

where 〈·, ·〉i denotes the duality product between V ′i and Vi. This last equality turns out to be just (22).

4 A priori estimates

In this section we obtain some energy estimates for the solution of (1). By (22) and taking into account (2), we
have

d

dt

(
|(uε(t), ψε(t))|2H

)
+ 2 min {1, κ} ‖uε(t)‖2Ωε + 2εδ|∇Γψε(t)|2∂Fε + 2α1ε |ψε(t)|qq,∂Fε ≤ 2βε |∂Fε|, (27)

where |∂Fε| denotes the measure of ∂Fε.

Observe that the number of holes is given by

N(ε) =
|Ω|

(2ε)N
(1 + o(1)) ,

then using the change of variable

y =
x

ε
, dσ(y) = ε−(N−1)dσ(x),

we can deduce

|∂Fε| = N(ε)|∂Fk,ε| = N(ε)εN−1|∂F | ≤ C

ε
. (28)

Let us denote

G(s) :=

∫ s

0

g(r)dr.

Then, there exist positive constants α̃1, α̃2, and β̃ such that

α̃1|s|q − β̃ ≤ G(s) ≤ α̃2|s|q + β̃ ∀s ∈ R. (29)

We observe that the linear term ∆Γuε in the boundary condition is coercive, so that this term is of no real
significance to the energy estimates and only enhances the regularity of the solution.

Lemma 4.1. Under the assumptions (2)–(3) and (5), assume that g ∈ C1(R). Then, for any initial condition
(u0
ε, ψ

0
ε) ∈Wδ ∩Hq, there exists a constant C independent of ε, such that the solution (uε, ψε) of the problem (1)

satisfies
‖uε‖Ωε,T ≤ C, sup

t∈[0,T ]

‖uε(t)‖Ωε ≤ C, ‖u′ε‖Ωε,T ≤ C,
√
ε ‖γ0(u′ε)‖∂Fε,T ≤ C, (30)

√
ε|ψε(t)|∂Fε ≤ C, |u′ε(t)|Ωε ≤ C,

√
ε|γ0(u′ε(t))|∂Fε ≤ C, (31)

for all t ∈ (0, T ).

8
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Proof. Taking into account (28) in (27), in particular, we obtain

d

dt

(
|(uε(t), ψε(t))|2H

)
+ 2 min {1, κ} ‖uε(t)‖2Ωε ≤ C. (32)

Integrating between 0 and t and taking into account (5), we obtain the first estimate in (30) and the fist estimate
in (31).

Now, if we want to take the inner product in (1) with u′ε, we need that u′ε ∈ L2(0, T ;H1(Ωε)) with γ0(u′ε) ∈
L2(0, T ;H1

∂Ω(∂Ωε)) ∩ Lq(0, T ;Lq∂Ω(∂Ωε)). However, we do not have it for our weak solution. Therefore, we use
the Galerkin method in order to prove, rigorously, new a priori estimates for uε.

Let us observe that the space H1(Ωε) × H1
∂Ω(∂Ωε) is compactly imbedded in H, and therefore, for the

symmetric and coercive linear continuous operator Aδ : Wδ → W ′δ, where Aδ is given by (23), there exists a
non-decreasing sequence 0 < λ1 ≤ λ2 ≤ . . . of eigenvalues associated to the operator Aδ with limj→∞ λj = ∞,
and there exists a Hilbert basis of H, {(wj , γ0(wj)) : j ≥ 1}⊂ D(Aδ), with span{(wj , γ0(wj)) : j ≥ 1} densely
embedded in Wδ, such that

Aδ((wj , γ0(wj))) = λj(wj , γ0(wj)) ∀j ≥ 1.

Taking into account the above facts, we denote by

(uε,m(t), γ0(uε,m(t))) = (uε,m(t; 0, u0
ε, ψ

0
ε), γ0(uε,m(t; 0, u0

ε, ψ
0
ε)))

the Galerkin approximation of the solution (uε(t; 0, u0
ε, ψ

0
ε), γ0(uε(t; 0, u0

ε, ψ
0
ε))) to (1) for each integer m ≥ 1,

which is given by

(uε,m(t), γ0(uε,m(t))) =

m∑
j=1

δεmj(t)(wj , γ0(wj)), (33)

and is the solution of

d

dt
((uε,m(t), γ0(uε,m(t))), (wj , γ0(wj)))H + 〈Aδ((uε,m(t), γ0(uε,m(t)))), (wj , γ0(wj))〉

+ε(g(γ0(uε,m(t))), γ0(wj))∂Fε = 0, j = 1, . . . ,m, (34)

with initial data
(uε,m(0), γ0(uε,m(0))) = (u0

ε,m, γ0(u0
ε,m)), (35)

where
δεmj(t) = (uε,m(t), wj)Ωε + (γ0(uε,m(t)), γ0(wj))∂Fε ,

and (u0
ε,m, γ0(u0

ε,m)) ∈ span{(wj , γ0(wj)) : j = 1, . . . ,m} converge (when m→∞) to (u0
ε, ψ

0
ε) in a suitable sense

which will be specified below.

Let (u0
ε, ψ

0
ε) ∈Wδ∩Hq. For all m ≥ 1, since span{(wj , γ0(wj)) : j ≥ 1} is densely embedded in Wδ∩Hq, there

exists (u0
ε,m, γ0(u0

ε,m)) ∈ span{(wj , γ0(wj)) : 1 ≤ j ≤ m}, such that the sequence {(u0
ε,m, γ0(u0

ε,m))} converges to
(u0
ε, ψ

0
ε) in Wδ and in Hq. Then, in particular we know that there exists a constant C such that

||(u0
ε,m, γ0(u0

ε,m))||Wδ
≤ C, |(u0

ε,m, γ0(u0
ε,m))|Hq ≤ C. (36)

For each integer m ≥ 1, we consider the sequence {(uε,m(t), γ0(uε,m(t)))} defined by (33)-(35) with these initial
data.

Multiplying by the derivative δ′εmj in (34), and summing from j = 1 to m, we obtain

|(u′ε,m(t), γ0(u′ε,m(t)))|2H +
1

2

d

dt
(〈Aδ((uε,m(t), γ0(uε,m(t)))), (uε,m(t), γ0(uε,m(t)))〉)

+ε(g(γ0(uε,m(t))), γ0(u′ε,m(t)))∂Fε = 0. (37)

9
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We observe that

(g(γ0(uε,m(t))), γ0(u′ε,m(t)))∂Fε =
d

dt

∫
∂Fε

G(γ0(uε,m(t)))dσ(x).

Then, integrating (37) between 0 and t, taking into account the definition of Aδ and (28)-(29), we obtain∫ t

0

|(u′ε,m(s), γ0(u′ε,m(s)))|2Hds+ |∇uε,m(t)|2Ωε + κ|uε,m(t)|2Ωε + ε δ|∇Γγ0(uε,m(t))|2∂Fε

+2α̃1ε|γ0(uε,m(t))|q∂Fε ≤ max{1, κ}‖(u0
ε,m, γ0(u0

ε,m))‖2Wδ
+ 2α̃2|(u0

ε,m, γ0(u0
ε,m))|qHq + 4β̃C,

for all t ∈ (0, T ), and we can deduce∫ t

0

|(u′ε,m(s), γ0(u′ε,m(s)))|2Hds+ min {1, κ, 2α̃1}||(uε,m(t), γ0(uε,m(t)))||2Wδ

≤ C
(

1 + ‖(u0
ε,m, γ0(u0

ε,m))‖2Wδ
+ |(u0

ε,m, γ0(u0
ε,m))|qHq

)
, (38)

for all t ∈ (0, T ). Taking into account (36) in (38), we have proved that the sequence {(uε,m, γ0(uε,m))} is
bounded in C([0, T ];Wδ), and {(u′ε,m, γ0(u′ε,m))} is bounded in L2(0, T ;H), for all T > 0.

If we work with the truncated Galerkin equations (33)-(35) instead of the full PDE, we note that the calcu-
lations of the proof of (32) can be following identically to show that {uε,m} is bounded in L2(0, T ;H1(Ωε)), for
all T > 0.

Moreover, taking into account the uniqueness of solution to (1) and using Aubin-Lions compactness lemma
(e.g., cf. Lions [14]), it is not difficult to conclude that the sequence {uε,m} converges weakly in L2(0, T ;H1(Ωε))
to the solution uε to (1). Since the inclusion H1(Ωε) ⊂ L2(Ωε) is compact and uε ∈ C([0, T ];L2(Ωε)), it follows
using [16, Lemma 11.2] that the second estimate in (30) is proved.

On the other hand, we note that, under the condition (3), we have that

g′(s) ≥ −l ∀s ∈ R. (39)

Observe that as we are assuming that g ∈ C1(R), we can differentiate with respect to time in (34), and then,
multiplying by the derivative δ′εmj and summing from j = 1 to m, we obtain

1

2

d

dt
|(u′ε,m(t), γ0(u′ε,m(t)))|2H +

〈
Aδ((u

′
ε,m(t), γ0(u′ε,m(t)))), (u′ε,m(t), γ0(u′ε,m(t)))

〉
= −ε(g′(γ0(uε,m(t)))γ0(u′ε,m(t)), γ0(u′ε,m(t)))∂Fε .

Then, using the definition of Aδ and (39), we have

d

dt
|(u′ε,m(t), γ0(u′ε,m(t)))|2H + 2|∇u′ε,m(t)|2Ωε + 2κ|u′ε,m(t)|2Ωε + 2ε δ|∇Γγ0(u′ε,m(t))|2∂Fε ≤ 2lε|γ0(u′ε,m(t))|2∂Fε ,

and we can deduce

d

dt
|(u′ε,m(t), γ0(u′ε,m(t)))|2H + 2min {1, κ}||u′ε,m(t)||2Ωε + 2ε

(
|γ0(u′ε,m(t))|2∂Fε + δ|∇Γγ0(u′ε,m(t))|2∂Fε

)
≤ 2ε(l + 1)|γ0(u′ε,m(t))|2∂Fε .

Then, we obtain

d

dt
|(u′ε,m(t), γ0(u′ε,m(t)))|2H + 2min {1, κ}||(u′ε,m(t), γ0(u′ε,m(t)))||2Wδ

≤ 2(l + 1)|(u′ε,m(t), γ0(u′ε,m(t)))|2H . (40)

Integrating between r and t, we obtain

|(u′ε,m(t), γ0(u′ε,m(t)))|2H + 2min {1, κ}
∫ t

r

||(u′ε,m(s), γ0(u′ε,m(s)))||2Wδ
ds

≤ |(u′ε,m(r), γ0(u′ε,m(r)))|2H+2(l + 1)

∫ t

r

|(u′ε,m(s), γ0(u′ε,m(s)))|2Hds,

10
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for all 0 ≤ r ≤ t. Now, integrating with respect to r between 0 and t,

t|(u′ε,m(t), γ0(u′ε,m(t)))|2H+ 2min {1, κ}
∫ t

0

||(u′ε,m(s), γ0(u′ε,m(s)))||2Wδ
ds

≤ (2l + 3)

∫ t

0

|(u′ε,m(s), γ0(u′ε,m(s)))|2Hds,

for all t ∈ (0, T ), which, jointly with (38), yields that∫ t

0

||(u′ε,m(s), γ0(u′ε,m(s)))||2Wδ
ds ≤ C

(
1 + ‖(u0

ε,m, γ0(u0
ε,m))‖2Wδ

+ |(u0
ε,m, γ0(u0

ε,m))|qHq
)
, (41)

and using (36) we have proved that the sequence {(u′ε,m, γ0(u′ε,m))} is bounded in L2(0, T ;Wδ), for all T > 0.
Then, the sequence {(u′ε,m, γ0(u′ε,m))} converges weakly in L2(0, T ;Wδ) to (u′ε, γ0(u′ε)), for all T > 0, and using
the lower-semicontinuity of the norm and (41), we get

||u′ε||2Ωε,T + ε||γ0(u′ε)||2∂Fε,T ≤ lim inf
m→∞

(
||u′ε,m||2Ωε,T + ε||γ0(u′ε,m)||2∂Fε,T

)
≤ C lim inf

m→∞

(
1 + ‖(u0

ε,m, γ0(u0
ε,m))‖2Wδ

+ |(u0
ε,m, γ0(u0

ε,m))|qHq
)

= C
(

1 + ‖(u0
ε, ψ

0
ε)‖2Wδ

+ |(u0
ε, ψ

0
ε)|qHq

)
,

which, jointly with (u0
ε, ψ

0
ε) ∈Wδ ∩Hq, implies the last two estimates in (30).

On the other hand, for any τ > 0 and t > τ , integrating (40), in particular, we have

|(u′ε,m(r), γ0(u′ε,m(r)))|2H ≤ |(u′ε,m(θ), γ0(u′ε,m(θ)))|2H+2(l + 1)

∫ t

τ/2

|(u′ε,m(s), γ0(u′ε,m(s)))|2Hds,

for all τ/2 ≤ θ ≤ r ≤ t. Now, integrating with respect to θ between τ/2 and r,

(r − τ/2)|(u′ε,m(r), γ0(u′ε,m(r)))|2H ≤ (2(l + 1)(t− τ/2) + 1)

∫ t

τ/2

|(u′ε,m(s), γ0(u′ε,m(s)))|2Hds,

for all 0 < τ/2 ≤ r ≤ t < T , and, in particular

|(u′ε,m(r), γ0(u′ε,m(r)))|2H ≤ 2τ−1 (2(l + 1)(T − τ/2) + 1)

∫ t

0

|(u′ε,m(s), γ0(u′ε,m(s)))|2Hds,

for all r ∈ [τ, t], which, jointly with (38), yields that

|(u′ε,m(r), γ0(u′ε,m(r)))|2H ≤ C
(

1 + ‖(u0
ε,m, γ0(u0

ε,m))‖2Wδ
+ |(u0

ε,m, γ0(u0
ε,m))|qHq

)
, (42)

for all r ∈ (0, T ). Using (36) we have proved that the sequence {(u′ε,m, γ0(u′ε,m))} is bounded in C([0, T ];H).
Then, the sequence {(u′ε,m(r), γ0(u′ε,m(r)))} converges weakly in H to (u′ε(r), γ0(u′ε(r))), for all r ∈ [0, T ], and
using the lower-semicontinuity of the norm and (42), we get

|u′ε(r)|2Ωε + ε|γ0(u′ε(r))|2∂Fε ≤ lim inf
m→∞

(
|u′ε,m(r)|2Ωε + ε|γ0(u′ε,m(r))|2∂Fε

)
≤ C lim inf

m→∞

(
1 + ‖(u0

ε,m, γ0(u0
ε,m))‖2Wδ

+ |(u0
ε,m, γ0(u0

ε,m))|qHq
)

= C
(

1 + ‖(u0
ε, ψ

0
ε)‖2Wδ

+ |(u0
ε, ψ

0
ε)|qHq

)
,

which, jointly with (u0
ε, ψ

0
ε) ∈Wδ ∩Hq, implies the last two estimates in (31).

In the following result, we enhance the regularity of the solution.
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Lemma 4.2. Assume the assumptions in Lemma 4.1. Then, for any initial condition (u0
ε, ψ

0
ε) ∈Wδ ∩Hq, there

exists a constant C independent of ε, such that the solution uε of the problem (1) satisfies

‖uε(t)‖H2(Ωε)
≤ C, (43)

for all t ∈ (0, T ).

Proof. In order to obtain the estimates for the H2-norm, we rewrite (for every fixed t) problem (1) as a second-
order nonlinear elliptic boundary value problem:

−∆uε + κuε = h1(t) := −∂uε
∂t

in Ωε,

−ε δ∆Γuε + ε λuε +∇uε · ν + ε g(uε) = ε h2(t) := −ε∂uε
∂t

+ ελuε on ∂Fε,

uε = 0 on ∂Ω,

(44)

where λ is some positive constant.

We multiply the first equation of (44) scalarly in L2(Ωε) by uε, we integrate by parts and using (2), we have

|∇uε|2Ωε + κ|uε|2Ωε + ε δ|∇Γγ0(uε)|2∂Fε + ε λ|γ0(uε)|2∂Fε + ε α1|uε|qq,∂Fε ≤ (h1, uε)Ωε + ε(h2, γ0(uε))∂Fε + ε β|∂Fε|. (45)

Using Young’s inequality, we obtain

(h1, uε)Ωε ≤ |h1|Ωε |uε|Ωε ≤
1

2κ
|h1|2Ωε +

κ

2
|uε|2Ωε ,

and

(h2, γ0(uε))∂Fε ≤ |h2|∂Fε |γ0(uε)|∂Fε ≤
1

2λ
|h2|2∂Fε +

λ

2
|γ0(uε)|2∂Fε ,

and by (45), using (28), we can deduce, in particular, that there exists a positive constant C such that

||uε||Ωε ≤ C
(
1 + |h1|Ωε +

√
ε|h2|∂Fε

)
. (46)

Using now the estimates for general elliptic boundary value problems (see [15, Chaper 2, Remark 7.2]) to the
first equation of (44) with s = 2, m = 1 and j = 0, we have

||uε||H2(Ωε) ≤ C
(
|h1|Ωε + ||εγ0(uε)||H3/2(∂Fε)

)
. (47)

Analogously, applying this estimate to the second equation in (44) and taking into account (28) and (39), we
deduce

||εγ0(uε)||H2(∂Fε) ≤ C (1 + ε|h2|∂Fε + |∂νuε|∂Fε) , (48)

where by ∂νuε we denote ∇uε · ν. Taking into account (48) in (47), we can deduce

||uε||H2(Ωε) ≤ C (1 + |h1|Ωε + ε|h2|∂Fε + |∂νuε|∂Fε) . (49)

By the Trace Theorem in H7/4(Ωε) (see [15, Chapter 1, Theorem 9.4]), we have

|∂νuε|∂Fε ≤ C||uε||H7/4(Ωε),

and by interpolation inequality (see [15, Chapter 1, Remark 9.1]) with s1 = 1, s2 = 2 and θ = 3/4, we can
deduce

|∂νuε|∂Fε ≤ C||uε||
1/4
Ωε
||uε||3/4H2(Ωε)

.

12



Maŕıa Anguiano

By Young’s inequality, with the conjugate exponents 4 and 4/3, we get

|∂νuε|∂Fε ≤ C ||uε||Ωε + c ||uε||H2(Ωε), (50)

where the positive constant c can be arbitrarily small. Then, taking into account (50) in (49), we have

||uε||H2(Ωε) ≤ C (1 + |h1|Ωε + ε|h2|∂Fε + ||uε||Ωε) ,

and using (46), we can deduce the following estimate for the H2-norm

||uε||H2(Ωε) ≤ C
(
1 + |h1|Ωε +

√
ε|h2|∂Fε

)
. (51)

According to the second estimate in (31), we have

|h1|Ωε ≤ C, (52)

and by the first and third estimates in (31), we can deduce

√
ε|h2|∂Fε ≤ C. (53)

Finally, taking into account (52)-(53) in (51), we obtain (43).

The extension of uε to the whole Ω× (0, T ): since the solution uε of the problem (1) is defined only in
Ωε × (0, T ), we need to extend it to the whole Ω × (0, T ) to be able to state the convergence result. In order
to do that, we use the well-known extension result given by Cioranescu and Saint Jean Paulin [7]. Taking into
account Lemma 4.1, the following result is a direct consequence of results contained in [3, Corollary 4.8].

Corollary 4.3. Assume the assumptions in Lemma 4.1. Then, there exists an extension ũε of the solution uε
of the problem (1) into Ω× (0, T ), such that

‖ũε‖Ω,T ≤ C, |ũε|q,Ω,T ≤ C, (54)

sup
t∈[0,T ]

‖ũε(t)‖Ω ≤ C, (55)

|ũ′ε|q,Ω,T ≤ C, (56)

where the constant C does not depend on ε.

5 A compactness result

In this section, we obtain some compactness results about the behavior of the sequence ũε satisfying the a priori
estimates given in Corollary 4.3.

By χΩε we denote the characteristic function of the domain Ωε. Due to the periodicity of the domain Ωε,
from Theorem 2.6 in Cioranescu and Donato [6] one has, for ε→ 0, that

χΩε
∗
⇀
|Y ∗|
|Y |

weakly-star in L∞(Ω), (57)

where the limit is the proportion of the material in the cell Y .

Let ξε be the gradient of uε in Ωε × (0, T ) and let us denote by ξ̃ε its extension with zero to the whole of
Ω× (0, T ), i.e.

ξ̃ε =

{
ξε in Ωε × (0, T ),
0 in (Ω \ Ωε)× (0, T ).

(58)

13
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Proposition 5.1. Under the assumptions in Lemma 4.1, there exists a function u ∈ L2(0, T ;H1
0 (Ω))∩

Lq(0, T ;Lq(Ω)) (u will be the unique solution of the limit system (8)) and a function ξ ∈ L2(0, T ;L2(Ω)) such
that, at least after extraction of a subsequence, we have the following convergences for all T > 0,

ũε(t) ⇀ u(t) weakly in H1
0 (Ω), ∀t ∈ [0, T ], (59)

ũε(t)→ u(t) strongly in L2(Ω), ∀t ∈ [0, T ], (60)

ξ̃ε ⇀ ξ weakly in L2(0, T ;L2(Ω)), (61)

ξ̃ε ⇀ ξ weakly in L2(Ω), ∀t ∈ [0, T ], (62)

where ξ̃ε is given by (58).

Let q be the exponent satisfying (7). Let q̄ > 1 given by

q̄ ∈ (1, 2) if N = 2, q̄ =
2N

(N − 2)(q − 2) +N
if N > 2.

Then, we have the following convergences for all T > 0,

g(ũε(t))→ g(u(t)) strongly in Lq̄(Ω), ∀t ∈ [0, T ], (63)

g(ũε(t)) ⇀ g(u(t)) weakly in W 1,q̄
0 (Ω), ∀t ∈ [0, T ]. (64)

Proof. By (54), we observe that the sequence {ũε} is bounded in the spaces L2(0, T ;H1
0 (Ω))∩Lq(0, T ;Lq(Ω)), for

all T > 0. Let us fix T > 0. Then, there exists a subsequence {ũε′} ⊂ {ũε} and function u ∈ L2(0, T ;H1
0 (Ω)) ∩

Lq(0, T ;Lq(Ω)) such that

ũε′ ⇀ u weakly in L2(0, T ;H1
0 (Ω)), (65)

ũε′ ⇀ u weakly in Lq(0, T ;Lq(Ω)). (66)

By the estimate (55), for each t ∈ [0, T ], we have that {ũε(t)} is bounded in H1
0 (Ω), and since we have (65), we

can deduce (59). By (59) and Rellich-Kondrachov Theorem, we obtain (60).

From the first estimate in (30) and (58), we have |ξ̃ε|Ω,T ≤ C, and hence, up a sequence, there exists
ξ ∈ L2(0, T, L2(Ω)) such that

ξ̃ε′′ ⇀ ξ weakly inL2(0, T ;L2(Ω)), (67)

and we have (61). In order to prove (62), we observe that by the estimate (55), for each t ∈ [0, T ], we have that
ξ̃ε is bounded in L2(Ω), and since we have (67), we can deduce (62).

By the arbitrariness of T > 0, all the convergences are satisfied, as we wanted to prove.

Now, we analyze the convergences for the nonlinear term g. By Rellich-Kondrachov Theorem, we have the
compact embedding H1

0 (Ω) ⊂ Lr(Ω) for all r ∈ [2, 2?), where

2? =

{
2N
N−2 if N > 2,

+∞ if N = 2.

By the estimate (55), for each t ∈ [0, T ], we have that {ũε(t)} is bounded in H1
0 (Ω). Then, the compact

embedding H1
0 (Ω) ⊂ Lr(Ω) for all r ∈ [2, 2?), implies that it is precompact in Lr(Ω) for all r ∈ [2, 2?).

By the estimate (56), we see that the sequence {ũ′ε} is bounded in Lr(0, T ;Lr(Ω)), for all T > 0 and for all
r ∈ [2, 2?). Then, we have that ũε(t) : [0, T ] −→ Lr(Ω) is an equicontinuous family of functions.

Then, applying the Ascoli-Arzelà Theorem, we deduce that {ũε(t)} is a precompact sequence in C([0, T ];Lr(Ω))
for all r ∈ [2, 2?). Hence, since we have (66) for all q ≥ 2, we can deduce that

ũε′ → u strongly in C([0, T ];Lr(Ω)), (68)
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for all r ∈ [2, 2?).

We separate the cases N > 2 and N = 2.

Case 1: N > 2. Since

2?

q̄
=

(N − 2)(q − 2) +N

N − 2
= q − 1 +

2

N − 2
> q − 1,

there exists r ∈ [2, 2?) such that r
q̄ ≥ q − 1 and

|g(s)| ≤ C
(

1 + |s|q−1
)
≤ C

(
1 + |s|

r
q̄

)
.

Then, applying Theorem 2.4 in [8] for G(x, v) = g(v), t = q̄ and r ∈ [2, 2?) such that r
q̄ ≥ q − 1, we have that

the map v ∈ Lr(Ω) 7→ g(v) ∈ Lq̄(Ω) is continuous in the strong topologies. Then, taking into account (68), we
get (63).

Finally, we prove (64). First, we observe that it is easy to see from (2) that there exists a constant C > 0
such that

|g′(s)| ≤ C
(

1 + |s|q−2
)
.

Then, we get ∫
Ω

∣∣∣∣ ∂g∂xi (ũε(t))
∣∣∣∣q̄ dx ≤ C

∫
Ω

(
1 + |ũε(t)|(q−2)q̄

) ∣∣∣∣∂ũε(t)∂xi

∣∣∣∣q̄ dx (69)

≤ C

(
1 +

(∫
Ω

|ũε(t)|(q−2)q̄γdx

)1/γ
)(∫

Ω

|∇ũε(t)|q̄ηdx
)1/η

,

where we took γ and η such that q̄η = 2, 1/γ + 1/η = 1 and (q − 2)q̄γ = 2?. Note that from here we get

q̄ =
2N

(N − 2)(q − 2) +N
.

Observe that q̄ > 1. Indeed,

q ≤ 2N − 2

N − 2
=

N

N − 2
+ 1 <

N

N − 2
+ 2⇒ (N − 2)(q − 2) +N < 2N ⇒ 2N

(N − 2)(q − 2) +N
> 1.

Then, we have ∫
Ω

∣∣∣∣ ∂g∂xi (ũε(t))
∣∣∣∣q̄ dx ≤ C

(
1 + |ũε|2

?/γ
2?,Ω

)
|∇ũε|2/ηΩ ,

and taking into account the continuous embedding H1
0 (Ω) ⊂ L2?(Ω) and (55), we get

|∇g(ũε(t))|q̄,Ω ≤ C. (70)

Then, from (63) and (70), we can deduce (64).

Case 2: N = 2. We consider s ∈ [2q − 2,+∞) and

q̄ =
2s

2(q − 2) + s
. (71)

Since
s

q̄
=

2(q − 2) + s

2
= q − 1 +

s− 2

2
≥ q − 1,

15
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we have
|g(s)| ≤ C

(
1 + |s|q−1

)
≤ C

(
1 + |s|

s
q̄

)
.

Then, applying Theorem 2.4 in [8] for G(x, v) = g(v), t = q̄ and r = s, we have that the map v ∈ Ls(Ω) 7→
g(v) ∈ Lq̄(Ω) is continuous in the strong topologies. Then, taking into account (68), we get (63).

Finally, we prove (64). In (69) we took γ and η such that q̄η = 2, 1/γ + 1/η = 1 and (q − 2)q̄γ = s. Note
that from here we get q̄ given by (71).

Observe that q̄ ∈ (1, 2). Indeed, taking into account that
1

q̄
=
q − 2

s
+

1

2
, we can deduce

2q − 2 ≤ s < +∞⇒ 0 <
1

s
≤ 1

2q − 2
⇒ 1

2
<

1

q̄
≤ q − 2

2q − 2
+

1

2
⇒ 2(2q − 2)

2(q − 2) + 2q − 2
≤ q̄ < 2,

and using that 2(2q−2)
2(q−2)+2q−2 > 1, we have that q̄ ∈ (1, 2).

Then, we have ∫
Ω

∣∣∣∣ ∂g∂xi (ũε(t))
∣∣∣∣q̄ dx ≤ C

(
1 + |ũε|s/γs,Ω

)
|∇ũε|2/ηΩ ,

and taking into account the continuous embedding H1
0 (Ω) ⊂ Ls(Ω) and (55), we get

|∇g(ũε(t))|q̄,Ω ≤ C. (72)

Then, from (63) and (72), we can deduce (64).

Because we have the linear term ∆Γuε in the boundary condition, in order to pass to the limit in the integral
which involves this term, we need the following result.

Proposition 5.2. Under the assumptions in Lemma 4.2, there exists a function ξ ∈ L2(0, T ;H1(Ω)) such that
for all T > 0,

ξ̃ε ⇀ ξ weakly in H1(Ω), ∀t ∈ [0, T ], (73)

where ξ̃ε is given by (58).

Proof. From the estimate (43) and (58), we have ||ξ̃ε||Ω ≤ C. Then, we see that the sequence {ξ̃ε} is bounded
in H1(Ω), and hence, up to a subsequence and by (62), we can deduce (73).

6 Homogenized model: proof of the main Theorem

In this section, we identify the homogenized model.

We multiply system (1) by a test function v ∈ D(Ω), integrating by parts and taking into account (14) and
(58), we have

d

dt

(∫
Ω

χΩε ũε(t)vdx

)
+ ε

d

dt

(∫
∂Fε

γ0(uε(t))vdσ(x)

)
+

∫
Ω

ξ̃ε · ∇vdx+ κ

∫
Ω

χΩε ũε(t)vdx

+ε δ

∫
∂Fε

∇Γγ0(uε(t)) · ∇vdσ(x) + ε

∫
∂Fε

g(γ0(uε(t)))vdσ(x) = 0,

in D′(0, T ).
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Maŕıa Anguiano

We consider ϕ ∈ C1
c ([0, T ]) such that ϕ(T ) = 0 and ϕ(0) 6= 0. Multiplying by ϕ and integrating between 0

and T , we have

−ϕ(0)

(∫
Ω

χΩε ũε(0)vdx

)
−
∫ T

0

d

dt
ϕ(t)

(∫
Ω

χΩε ũε(t)vdx

)
dt

−εϕ(0)

(∫
∂Fε

γ0(uε(0))vdσ(x)

)
− ε

∫ T

0

d

dt
ϕ(t)

(∫
∂Fε

γ0(uε(t))vdσ(x)

)
dt

+

∫ T

0

ϕ(t)

∫
Ω

ξ̃ε · ∇vdxdt+ κ

∫ T

0

ϕ(t)

∫
Ω

χΩε ũε(t)vdxdt (74)

+ε δ

∫ T

0

ϕ(t)

∫
∂Fε

∇Γγ0(uε(t)) · ∇vdσ(x)dt+ ε

∫ T

0

ϕ(t)

∫
∂Fε

g(γ0(uε(t)))vdσ(x)dt = 0.

For the sake of clarity, we split the proof in three parts. Firstly, we pass to the limit, as ε→ 0, in (74) in order
to get the limit equation satisfied by u. Secondly we identify ξ making use of the solutions of the cell-problems
(10), and finally we prove that u is uniquely determined.

Step 1. In order to pass to the limit, as ε→ 0, we reason as in [3, Theorem 6.1] for all the terms except the
term which involves the tangential gradient ∇Γ. Exactly, for the integrals on Ω we only require to use Proposition
5.1 and the convergence (57) and for the integrals on the boundary of the holes we make use of a convergence
result based on a technique introduced by Vanninathan [20] for the Steklov problem which transforms surface
integrals into volume integrals, which was already used as a main tool to homogenize the non homogeneous
Neumann problem for the elliptic case by Cioranescu and Donato [5]. For the term which involves the tangential
gradient, we also use this technique together with Proposition 5.2.

By Definition 3.2 in Cioranescu and Donato [5], let us introduce, for any h ∈ Ls′(∂F ), 1 ≤ s′ ≤ ∞, the linear
form µεh on W 1,s

0 (Ω) defined by

〈µεh, ϕ〉 = ε

∫
∂Fε

h
(x
ε

)
ϕ(x)dσ(x), ∀ϕ ∈W 1,s

0 (Ω),

with 1/s+ 1/s′ = 1. It is proved in Lemma 3.3 in Cioranescu and Donato [5] that

µεh → µh strongly in (W 1,s
0 (Ω))′, (75)

where 〈µh, ϕ〉 = µh

∫
Ω

ϕ(x)dx, with

µh =
1

|Y |

∫
∂F

h(y)dσ(y).

In the particular case in which h ∈ L∞(∂F ) or even when h is constant, we have

µεh → µh strongly in W−1,∞(Ω).

We denote by µε1 the above introduced measure in the particular case in which h = 1. Notice that in this case
µh becomes µ1 = |∂F |/|Y |.

For the term which involves the tangential gradient, we proceed as follows. Taking into account (13), there
exists an element ϑε ∈ H3/2(Ωε), the extension of γ0(uε(t)), such that ∇ϑε = ∇Γγ0(uε(t)) on ∂Fε. Then, we
can deduce

ε

∫
∂Fε

∇Γγ0(uε(t)) · ∇vdσ(x) = ε

∫
∂Fε

∇ϑε · ∇vdσ(x) = 〈µε1, ξ̃ε · ∇v〉,
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where ξ̃ε is given by (58). Note that using (75) with s = 2 and taking into account (73), we can deduce, for
ε→ 0,

ε

∫
∂Fε

∇Γγ0(uε(t)) · ∇vdσ(x) = 〈µε1, ξ̃ε · ∇v〉 → µ1

∫
Ω

ξ · ∇vdx =
|∂F |
|Y |

∫
Ω

ξ · ∇vdx, ∀v ∈ D(Ω),

which integrating in time and using Lebesgue’s Dominated Convergence Theorem, gives

ε

∫ T

0

ϕ(t)

∫
∂Fε

∇Γγ0(uε(t)) · ∇vdσ(x)dt→ |∂F |
|Y |

∫ T

0

ϕ(t)

(∫
Ω

ξ · ∇vdx
)
dt. (76)

Therefore, using the proof of the main Theorem in [3] and (76), we pass to the limit, as ε→ 0, in (74), and we
obtain

−ϕ(0)

(
|Y ∗|
|Y |

+
|∂F |
|Y |

)(∫
Ω

u(0)vdx

)
−
(
|Y ∗|
|Y |

+
|∂F |
|Y |

)∫ T

0

d

dt
ϕ(t)

(∫
Ω

u(t)vdx

)
dt

+

∫ T

0

ϕ(t)

∫
Ω

ξ · ∇vdxdt+ κ
|Y ∗|
|Y |

∫ T

0

ϕ(t)

∫
Ω

u(t)vdxdt

+δ
|∂F |
|Y |

∫ T

0

ϕ(t)

∫
Ω

ξ · ∇vdxdt+
|∂F |
|Y |

∫ T

0

ϕ(t)

∫
Ω

g(u(t))vdxdt = 0.

Hence, ξ verifies(
|Y ∗|
|Y |

+
|∂F |
|Y |

)
∂u

∂t
−
(

1 + δ
|∂F |
|Y |

)
divξ +

|Y ∗|
|Y |

κu+
|∂F |
|Y |

g(u) = 0, in Ω× (0, T ). (77)

Step 2. It remains now to identify ξ. We shall make use of the solutions of the cell problems (10). For any
fixed i = 1, ..., N , let us define

Ψiε(x) = ε
(
wi

(x
ε

)
+ yi

)
∀x ∈ Ωε, (78)

where y = x/ε.

By periodicity
Ψ̃iε ⇀ xi weakly in H1(Ω),

where ·̃ denotes the extension to Ω given by Cioranescu and Saint Jean Paulin [7]. Then, by Rellich-Kondrachov
Theorem, we can deduce

Ψ̃iε → xi strongly in L2(Ω). (79)

Let ∇Ψiε be the gradient of Ψiε in Ωε. Denote by ∇̃Ψiε the extension by zero of ∇Ψiε inside the holes. From
(78), we have

∇̃Ψiε = ˜∇y(wi + yi) = ∇̃ywi(y) + eiχY ∗ ,

and taking into account [4, Corollary 2.10], we have

∇̃Ψiε ⇀
1

|Y |

∫
Y ∗

(ei +∇ywi(y)) dy weakly in L2(Ω). (80)

Due to that wi ∈ Hper \ R (see [9, Theorem 4.1]), let ∇Γγ0(Ψiε) be the tangential gradient of γ0(Ψiε) on ∂Fε

and we denote by µεh the above introduced linear form in the particular case in which h
(x
ε

)
= ∇Γγ0(Ψiε(x)).

From (78), we have
∇Γγ0(Ψiε) = PΓei +∇Γwi(y),
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where PΓei is defined on ∂F and the tangential gradient of wi is given by

∇Γwi := PΓ∇yw̃i = ∇yw̃i − (∇yw̃i · ν)ν on ∂F,

where w̃i is an extension of wi.

In this case, µh becomes

µh =
1

|Y |

∫
∂F

(PΓei +∇Γwi(y)) dσ(y).

Then, using (75), we obtain

ε

∫
∂Fε

∇Γγ0(Ψiε(x))ϕ(x)dσ(x) = 〈µεh, ϕ〉 → 〈µh, ϕ〉 = µh

∫
Ω

ϕ(x)dx, ∀ϕ ∈W 1,s
0 (Ω). (81)

On the other hand, it is not difficult to see that Ψiε satisfies{ −div (∇Ψiε) = 0, in Ωε,

∇Ψiε · ν = ε δ divΓ (∇ΓΨiε) , on ∂Fε.
(82)

Let v ∈ D(Ω). Multiplying the first equation in (82) by vuε, integrating by parts over Ωε and taking into account
(14), we get

− ε δ

∫
∂Fε

∇Γγ0(Ψiε) · ∇v γ0(uε)dσ(x)− ε δ
∫
∂Fε

∇Γγ0(Ψiε) · ∇Γγ0(uε)vdσ(x) (83)

=

∫
Ωε

∇Ψiε · ∇v uεdx+

∫
Ωε

∇Ψiε · ∇uεvdx.

On the other hand, we multiply system (1) by the test function vΨiε, integrating by parts over Ωε and taking
into account (14), we obtain

d

dt

(∫
Ω

χΩε ũεvΨ̃iεdx

)
+ ε

d

dt

(∫
∂Fε

γ0(uε)vγ0(Ψiε)dσ(x)

)
+

∫
Ωε

∇uε · ∇vΨiεdx+

∫
Ωε

∇uε · ∇Ψiεvdx

+κ

∫
Ω

χΩε ũεvΨ̃iεdx+ ε δ

∫
∂Fε

∇Γγ0(uε) · ∇v γ0(Ψiε)dσ(x) + ε δ

∫
∂Fε

∇Γγ0(uε) · ∇Γγ0(Ψiε)vdσ(x)

+ε

∫
∂Fε

g(γ0(uε))vγ0(Ψiε)dσ(x) = 0,

in D′(0, T ).

Using (83), we have

d

dt

(∫
Ω

χΩε ũεvΨ̃iεdx

)
+ ε

d

dt

(∫
∂Fε

γ0(uε)vγ0(Ψiε)dσ(x)

)
+

∫
Ωε

∇uε · ∇vΨiεdx−
∫

Ωε

∇Ψiε · ∇v uεdx

−ε δ
∫
∂Fε

∇Γγ0(Ψiε) · ∇v γ0(uε)dσ(x) + κ

∫
Ω

χΩε ũεvΨ̃iεdx+ ε δ

∫
∂Fε

∇Γγ0(uε) · ∇v γ0(Ψiε)dσ(x)

+ε

∫
∂Fε

g(γ0(uε))vγ0(Ψiε)dσ(x) = 0,

in D′(0, T ).
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We consider ϕ ∈ C1
c ([0, T ]) such that ϕ(T ) = 0 and ϕ(0) 6= 0. Multiplying by ϕ and integrating between 0

and T , we have

−ϕ(0)

(∫
Ω

χΩε ũε(0)vΨ̃iεdx

)
−
∫ T

0

d

dt
ϕ(t)

(∫
Ω

χΩε ũε(t)vΨ̃iεdx

)
dt (84)

−εϕ(0)

(∫
∂Fε

γ0(uε(0))vγ0(Ψiε)dσ(x)

)
− ε

∫ T

0

d

dt
ϕ(t)

(∫
∂Fε

γ0(uε(t))vγ0(Ψiε)dσ(x)

)
dt

+

∫ T

0

ϕ(t)

∫
Ω

ξ̃ε · ∇vΨ̃iεdxdt−
∫ T

0

ϕ(t)

∫
Ω

∇̃Ψiε · ∇v ũεdxdt

−ε δ
∫ T

0

ϕ(t)

∫
∂Fε

∇Γγ0(Ψiε) · ∇v γ0(uε)dσ(x)dt+ κ

∫ T

0

ϕ(t)

∫
Ω

χΩε ũεvΨ̃iεdxdt

+ε δ

∫ T

0

ϕ(t)

∫
∂Fε

∇Γγ0(uε) · ∇v γ0(Ψiε)dσ(x)dt

+ε

∫ T

0

ϕ(t)

∫
∂Fε

g(γ0(uε))vγ0(Ψiε)dσ(x)dt = 0.

Now, we have to pass to the limit, as ε → 0. We will focus on the terms which involve the gradient and the
tangential gradient. Taking into account (79), we reason as in [3, Theorem 6.1] for the others terms.

Firstly, using (62), (79) and Lebesgue’s Dominated Convergence Theorem, we have∫ T

0

ϕ(t)

∫
Ω

ξ̃ε · ∇vΨ̃iεdxdt→
∫ T

0

ϕ(t)

∫
Ω

ξ · ∇v xidxdt,

and by (60), (80) and Lebesgue’s Dominated Convergence Theorem, we obtain∫ T

0

ϕ(t)

∫
Ω

∇̃Ψiε · ∇v ũεdxdt→
1

|Y |

∫ T

0

ϕ(t)

∫
Ω

(∫
Y ∗

(ei +∇ywi) dy
)
· ∇v udxdt.

On the other hand, using (59) and (81), we can deduce

ε δ

∫
∂Fε

∇Γγ0(Ψiε) · ∇v γ0(uε)dσ(x)→ δ

|Y |

∫
Ω

(∫
∂F

(PΓei +∇Γwi) dσ(y)

)
· ∇v udx,

which integrating in time and by Lebesgue’s Dominated Convergence Theorem, we obtain

ε δ

∫ T

0

ϕ(t)

∫
∂Fε

∇Γγ0(Ψiε) · ∇v γ0(uε)dσ(x)dt→ δ

|Y |

∫ T

0

ϕ(t)

∫
Ω

(∫
∂F

(PΓei +∇Γwi) dσ(y)

)
· ∇v udxdt.

Similarly to the proof of (76) together with (79), we have

ε δ

∫ T

0

ϕ(t)

∫
∂Fε

∇Γγ0(uε) · ∇v γ0(Ψiε)dσ(x)dt→ δ
|∂F |
|Y |

∫ T

0

ϕ(t)

∫
Ω

ξ · ∇v xidxdt.
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Therefore, when we pass to the limit in (84), we obtain

−ϕ(0)

(
|Y ∗|
|Y |

+
|∂F |
|Y |

)(∫
Ω

u(0)vxidx

)
−
(
|Y ∗|
|Y |

+
|∂F |
|Y |

)∫ T

0

d

dt
ϕ(t)

(∫
Ω

u(t)vxidx

)
dt

+

∫ T

0

ϕ(t)

∫
Ω

ξ · ∇v xidxdt−
1

|Y |

∫ T

0

ϕ(t)

∫
Ω

(∫
Y ∗

(ei +∇ywi) dy
)
· ∇v udxdt

− δ

|Y |

∫ T

0

ϕ(t)

∫
Ω

(∫
∂F

(PΓei +∇Γwi) dσ(y)

)
· ∇v udxdt+ κ

|Y ∗|
|Y |

∫ T

0

ϕ(t)

∫
Ω

uvxidxdt

+δ
|∂F |
|Y |

∫ T

0

ϕ(t)

∫
Ω

ξ · ∇v xidxdt+
|∂F |
|Y |

∫ T

0

ϕ(t)

∫
Ω

g(u(t))vxidxdt = 0.

Using Green’s formula and equation (77), we have

−
∫ T

0

ϕ(t)

∫
Ω

ξ · ∇xi vdxdt+
1

|Y |

∫ T

0

ϕ(t)

∫
Ω

(∫
Y ∗

(ei +∇ywi) dy
)
· ∇u vdxdt

+
δ

|Y |

∫ T

0

ϕ(t)

∫
Ω

(∫
∂F

(PΓei +∇Γwi) dσ(y)

)
· ∇u vdxdt− δ |∂F |

|Y |

∫ T

0

ϕ(t)

∫
Ω

ξ · ∇xi vdxdt = 0.

The above equality holds true for any v ∈ D(Ω) and ϕ ∈ C1
c ([0, T ]). This implies that

−
(

1 + δ
|∂F |
|Y |

)
ξ · ∇xi +

1

|Y |

(∫
Y ∗

(ei +∇ywi) dy
)
· ∇u+

δ

|Y |

(∫
∂F

(PΓei +∇Γwi) dσ(y)

)
· ∇u = 0,

in Ω× (0, T ). We conclude that (
1 + δ

|∂F |
|Y |

)
divξ = div (Q∇u) , (85)

where Q = ((qij)), 1 ≤ i, j ≤ N , is given by

qij =
1

|Y |

(∫
Y ∗

(ei +∇ywi) · ej dy + δ

∫
∂F

(PΓei +∇Γwi) · PΓej dσ(y)

)
.

Observe that if we multiply system (10) by the test function wj , integrating by parts over Y ∗, we obtain∫
Y ∗

(ei +∇ywi) · ∇ywjdy + δ

∫
∂F

(PΓei +∇Γwi) · ∇Γwjdσ(y) = 0,

then we conclude that qij is given by (9).

Step 3. Finally, thanks to (77) and (85), we observe that u satisfies the first equation in (8). A weak solution
of (8) is any function u, satisfying

u ∈ C([0, T ];L2 (Ω)), for all T > 0,

u ∈ L2(0, T ;H1
0 (Ω)) ∩ Lq(0, T ;Lq (Ω)), for all T > 0,(

|Y ∗|
|Y |

+
|∂F |
|Y |

)
d

dt
(u(t), v) + (Q∇u(t),∇v) +

|Y ∗|
|Y |

κ(u(t), v) +
|∂F |
|Y |

(g(u(t)), v) = 0, in D′(0, T ),

for all v ∈ H1
0 (Ω) ∩ Lq(Ω), and

u(0) = u0.

Due to that the homogenized matrix Q is positive-definite (see [9, Theorem 4.1]), applying a slight modification
of [14, Chapter 2,Theorem 1.4], we obtain that the problem (8) has a unique solution, and therefore Theorem
1.1 is proved.
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Remark 6.1. It is worth remaking that if we consider a nonlinear term f(uε) in the first equation in (1) which

satisfies the same assumptions as g, we obtain Theorem 1.1 with an additional term
|Y ∗|
|Y |

f(u) in the first equation

in (8).
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