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Homogenization of parabolic problems with dynamical boundary conditions of reactive-diffusive type in perforated media

Introduction and setting of the problem

In the context of reaction-diffusion equations, dynamical boundary conditions have been rigorously derived in Gal and Shomberg [START_REF] Gal | Coleman-Gurtin type equations with dynamic boundary conditions[END_REF] based on first and second thermodynamical principles and their physical interpretation was also given in Goldstein [START_REF] Goldstein | Derivation and physical interpretation of general boundary conditions[END_REF]. It is worth emphasizing that the derivation in [START_REF] Gal | Coleman-Gurtin type equations with dynamic boundary conditions[END_REF] obtains the dynamical boundary condition of reactive-diffusive type both as a sufficient and necessary condition for thermodynamic processes which incorporate thermodynamic sources located along the boundary, and in which the second law plays a crucial role, while in [START_REF] Goldstein | Derivation and physical interpretation of general boundary conditions[END_REF] it has been introduced only as a sufficient condition.

In particular, a dynamical boundary condition of reactive-diffusive type accounts for (see [START_REF] Goldstein | Derivation and physical interpretation of general boundary conditions[END_REF]Section 3]) a heat source on the boundary that can depend on the heat flow along the boundary, the heat flux across the boundary and the temperature at the boundary. Consider the reaction-diffusion equation, with dynamical boundary condition of reactive-diffusive type, provides, in addition to classical bulk diffusion, a diffusion mechanism present along the boundary. A typical example in the theory of heat conduction (see [START_REF] Gal | Coleman-Gurtin type equations with dynamic boundary conditions[END_REF] for more details) arises when a given body is in perfect thermal contact with a sufficiently thin metal sheet, possibly of different material and completely insulating the internal body from external contact, say, a well-stirred hot or cold fluid.

In a recent article (see [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF]) we addressed the problem of the homogenization of the reaction-diffusion equations with a dynamical boundary condition of pure-reactive type in a domain perforated with holes. The present article is devoted to the generalization of that previous study to the case of a dynamical boundary condition of reactivediffusive type, i.e., we add to the dynamical boundary condition a Laplace-Beltrami correction term. Let us introduce the model we will be involved with in this article.

The geometrical setting. Let Ω be a bounded connected open set in R N (N ≥ 2), with smooth enough boundary ∂Ω. Let us introduce a set of periodically distributed holes. As a result, we obtain an open set Ω ε , where ε represents a small parameter related to the characteristic size of the holes.

Let Y = [0, 1] N be the representative cell in R N and F an open subset of Y with smooth enough boundary ∂F , such that F ⊂ Y . We denote Y * = Y \ F . For k ∈ Z N and ε ∈ (0, 1], each cell Y k,ε = ε k + ε Y is similar to the unit cell Y rescaled to size ε and F k,ε = ε k + ε F is similar to F rescaled to size ε. We denote Y * k,ε = Y k,ε \ Fk,ε . We denote by F ε the set of all the holes contained in Ω, i.e. F ε = ∪ k∈K {F k,ε : Fk,ε ⊂ Ω}, where K := {k ∈ Z N : Y k,ε ∩ Ω = ∅}.

Let Ω ε = Ω\ Fε . By this construction, Ω ε is a periodically perforated domain with holes of the same size as the period. Remark that the holes do not intersect the boundary ∂Ω. Let ∂F ε = ∪ k∈K {∂F k,ε : Fk,ε ⊂ Ω}. So

∂Ω ε = ∂Ω ∪ ∂F ε .
Position of the problem. The prototype of the parabolic initial-boundary value problems that we consider in this article is

                 ∂u ε ∂t -∆ u ε + κu ε = 0 in Ω ε × (0, T ), ∇u ε • ν + ε ∂u ε ∂t = ε δ∆ Γ u ε -ε g(u ε ) on ∂F ε × (0, T ), u ε = 0, on ∂Ω × (0, T ), u ε (x, 0) = u 0 ε (x), for x ∈ Ω ε , u ε (x, 0) = ψ 0 ε (x), for x ∈ ∂F ε , (1) 
where u ε = u ε (x, t), x ∈ Ω ε , t ∈ (0, T ) and T > 0. The first equation states the law of standard diffusion in Ω ε , ∆ = ∆ x denotes the Laplacian operator with respect to the space variable and κ > 0 is a given constant. The boundary equation [START_REF] Amar | Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices[END_REF] 2 is multiplied by ε to compensate the growth of the surface by shrinking ε, where the value of u ε is assumed to be the trace of the function u ε defined for x ∈ Ω ε , ∆ Γ denotes the Laplace-Beltrami operator on ∂F ε , ν denotes the outward normal to ∂F ε , and δ > 0 is a given constant. The term ∇u ε • ν represents the interaction domain-boundary, while δ∆ Γ stands for a boundary diffusion. We assume that the function g ∈ C (R) is given, and satisfies that there exist constants q ≥ 2, α 1 > 0, α 2 > 0, β > 0, and l > 0, such that

α 1 |s| q -β ≤ g(s)s ≤ α 2 |s| q + β, for all s ∈ R, (2) 
(g(s) -g(r)) (s -r) ≥ -l (s -r) 2 , for all s, r ∈ R. (3) 
Finally, we also assume that

u 0 ε ∈ L 2 (Ω) , ψ 0 ε ∈ L 2 (∂F ε ) , (4) 
are given, and we suppose that

|u 0 ε | 2 Ωε + ε|ψ 0 ε | 2 ∂Fε ≤ C, (5) 
where C is a positive constant, and we denote by

| • | Ωε and | • | ∂Fε the norm in L 2 (Ω ε ) and L 2 (∂F ε ), respectively.
Depending of δ, two classes of boundary conditions are modeled by [START_REF] Amar | Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices[END_REF]. For δ > 0, we have boundary conditions of reactive-diffusive type, and for δ = 0 the boundary conditions are purely reactive. In [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF], we consider the homogenization of the problem (1) with δ = 0 and we obtain rigorously a nonlinear parabolic problem with zero Dirichlet boundary condition and with extra-terms coming from the influence of the dynamical boundary conditions as the homogenized model. Though the results of the present article are similar to those of [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF], the generalization of their proof is not trivial. Some new technical results are required in order to carry out the machinery of [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF]. Due to the presence of Laplace-Beltrami operator in the boundary condition, the variational formulation of the reaction-diffusion equation is different that in [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF]. We have to work in the space

W δ = (v, γ 0 (v)) ∈ H 1 (Ω ε ) × H 1 (∂F ε ) , δ > 0, (6) 
where γ 0 denotes the trace operator v → v| ∂Ωε , and where we define by H 1 (∂F ε ) the completion of C 1 (∂F ε ) with respect to the induced norm by the inner product

((φ, ψ)) ∂Fε := ∂Fε φψ dσ + δ ∂Fε ∇ Γ φ • ∇ Γ ψdσ, ∀φ, ψ ∈ C 1 (∂F ε ),
where ∇ Γ denotes the tangential gradient on ∂F ε and dσ denotes the natural volume element on ∂F ε . The estimates of [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF] did not allow to cover this case and new estimates are needed to deal with problem [START_REF] Amar | Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices[END_REF]. In order to prove estimates in H 2 -norm, we have to combine estimates for general elliptic boundary value problems with interpolation properties of Sobolev spaces (see Lemma 4.2). On the other hand, in order to pass to the limit, as ε → 0, for the term which involves the tangential gradient ∇ Γ we make use of a convergence result based on a technique introduced by Vanninathan [START_REF] Vanninathan | Homogenization of eigenvalues problems in perforated domains[END_REF] for the Steklov problem which transforms surface integrals into volume integrals. This convergence result can be used taking into account the estimates in H 2 -norm. Several technical results are merely quoted, and we refer [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF] for their proof. We present here a new result concerning the local problem, which involves the orthogonal projection (denoted by P Γ ), the tangential gradient (denoted by ∇ Γ ) and the tangential divergence (denoted by div Γ ) on the boundary of the unit cell. More precisely, using the so-called energy method introduced by Tartar [START_REF] Tartar | Problèmes d'homogénéisation dans les équations aux dérivées partielles[END_REF] and considered by many authors (see, for instance, Cioranescu and Donato [START_REF] Cioranescu | Homogénéisation du problème de Neumann non homogène dans des ouverts perfores[END_REF]), we prove the following:

Theorem 1.1 (Main Theorem). Under the assumptions ( 2)-( 3) and ( 5), assume that g ∈ C 1 (R), the exponent q satisfies that

2 ≤ q < +∞ if N = 2 and 2 ≤ q ≤ 2N -2 N -2 if N > 2, (7) 
and

(u 0 ε , ψ 0 ε ) ∈ W δ ∩ (L q (Ω ε ) × L q (∂F ε )). Let (u ε , ψ ε ) be the unique solution of the problem (1), where ψ ε (t) = γ 0 (u ε (t)) a.e. t ∈ (0, T ]. Then, as ε → 0, we have ũε (t) → u(t) strongly in L 2 (Ω), ∀t ∈ [0, T ],
where • denotes the extension to Ω × (0, T ) and u is the unique solution of the following problem

           |Y * | |Y | + |∂F | |Y | ∂u ∂t -div (Q∇u) + |Y * | |Y | κu + |∂F | |Y | g(u) = 0, in Ω × (0, T ), u(x, 0) = u 0 (x), for x ∈ Ω, u = 0, on ∂Ω × (0, T ). (8) 
The homogenized matrix Q = ((q i,j )), 1 ≤ i, j ≤ N , which is symmetric and positive-definite, is given by

q i,j = 1 |Y | Y * (e i + ∇ y w i ) • (e j + ∇ y w j ) dy + δ ∂F (P Γ e i + ∇ Γ w i ) • (P Γ e j + ∇ Γ w j ) dσ(y) , (9) 
where

w i ∈ H per /R, 1 ≤ i ≤ N , is the unique solution of the cell problem          -div y (e i + ∇ y w i ) = 0, in Y * , (e i + ∇ y w i ) • ν = δ div Γ (P Γ e i + ∇ Γ w i ) , on ∂F, w i is Y -periodic. (10) 
Here, e i is the i element of the canonical basis in R N and H per is the space of functions from

H := {v ∈ H 1 (Y * ) : v| ∂F ∈ H 1 (∂F )} which are Y -periodic.
Remark 1.2. Note that in the case δ = 0 (i.e., in the absence of a surface diffusion coefficient), the homogenized equation ( 8) is exactly the equation obtained in [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF].

Remark 1.3. An example of a function g ∈ C 1 (R), satisfying (2)-(3), is a odd degree polynomial,

g(s) = 2k+1 j=0 c j s j ,
where c 2k+1 > 0. The typical case is g(s) = s 3 -s.

The homogenization of problems which involve the Laplace-Beltrami operator has been considered in recent articles.

In particular, in the context of periodic homogenization based on the periodic unfolding method, in [START_REF] Graf | Diffusion on surfaces and the boundary periodic unfolding operator with an application to carcinogenesis in human cells[END_REF] Graf and Peter extend the existing convergence results for the boundary periodic unfolding operator to gradients defined on manifolds. These results are then used to homogenize a system of five coupled reaction-diffusion equations, three of which include diffusion described by the Laplace-Beltrami operator and four of which consider a particular nonlinearity.

In [START_REF] Amar | Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices[END_REF], Amar and Gianni state a new property of the unfolding operator regarding the unfolded tangential gradient. This property is used to homogenize a differential system of linear equations in two disjoint conductive phases with a linear dynamical boundary condition which involves the Laplace-Beltrami operator in the separating interface. An error estimate for this model, under extra regularity assumptions on the data, can be found in Amar and Gianni [START_REF] Amar | Error estimate for a homogenization problem involving the Laplace-Beltrami operator[END_REF].

More recently, in [START_REF] Gahn | Multi-scale modeling of processes in porous media-coupling reaction-diffusion processes in the solid and the fluid phase and on the separating interfaces[END_REF], Gahn derives some general two-scale compactness results for coupled bulk-surface problems and applies these results to an elliptic problem with a non-dynamical boundary condition, which involves the Laplace-Beltrami operator, in a multi-component domain.

However, to our knowledge, there does not seem to be in the literature any study on the homogenization of parabolic models associated with nonlinear dynamical boundary conditions, which involves the Laplace-Beltrami operator, in a periodically perforated domain, as we consider in this article.

The article is organized as follows. In Section 2, we introduce suitable functions spaces for our considerations. Especially, we consider some fundamentals from differential geometry as the tangential gradient and the tangential divergence. To prove the main result, in Section 3 we prove the existence and uniqueness of solution of (1), a priori estimates are established in Section 4 and some compactness results are proved in Section 5. Finally, the proof of Theorem 1.1 is established in Section 6. If r = 2, we will also denote by (•, •) Ωε (respectively, (•, •) ∂Fε ) the duality product between L r (Ω ε ) and L r (Ω ε ) (respectively, the duality product between L r (∂F ε ) and L r (∂F ε )). We will denote by

Functional setting

|•| r,Ωε (respectively |•| r,∂Fε ) the norm in L r (Ω ε ) (respectively in L r (∂F ε )).
We denote by (•, •) Ω the inner product in L 2 (Ω), and by |•| Ω the associated norm. If r = 2, we will also denote by (•, •) Ω the duality product between L r (Ω) and L r (Ω). We will denote by | • | r,Ω the norm in L r (Ω).

By • Ωε we denote the norm in H 1 (Ω ε ), which is associated to the inner product

((u, v)) Ωε := (u, v) Ωε + (∇u, ∇v) Ωε , ∀u, v ∈ H 1 (Ω ε ),
and by || • || Ωε,T we denote the norm in L 2 (0, T ; H 1 (Ω ε )). By • Ω we denote the norm in H 1 (Ω), by || • || Ω,T we denote the norm in L 2 (0, T ; H 1 (Ω)) and, if r = 2, we denote by | • | r,Ω,T the norm in L r (0, T ; L r (Ω)).

We denote by γ 0 the trace operator u → u| ∂Ωε , which belongs to L(H 1 (Ω ε ), H 1/2 (∂Ω ε )).

We introduce, for any s > 1, the space H s (Ω ε ), which is naturally embedded in H 1 (Ω ε ), and it is a Hilbert space equipped with the norm inherited, which we denote by || • || H s (Ωε) .

Moreover, we denote by H r ∂Ω (Ω ε ) and H r ∂Ω (∂Ω ε ), for r ≥ 0, the standard Sobolev spaces which are closed subspaces of H r (Ω ε ) and H r (∂Ω ε ), respectively, and the subscript ∂Ω means that, respectively, traces or functions in ∂Ω ε , vanish on this part of the boundary of Ω ε , i.e.

H r ∂Ω (Ω ε ) = {v ∈ H r (Ω ε ) : γ 0 (v) = 0 on ∂Ω}, and H r ∂Ω (∂Ω ε ) = {v ∈ H r (∂Ω ε ) : v = 0 on ∂Ω}.
Analogously, for r ≥ 2, we denote

L r ∂Ω (∂Ω ε ) := {v ∈ L r (∂Ω ε ) : v = 0 on ∂Ω}.
Let us notice that, in fact, we can consider the given ψ 0 ε as an element of L 2 ∂Ω (∂Ω ε ). Let us consider the space

H q := L q (Ω ε ) × L q ∂Ω (∂Ω ε ) , ∀q ≥ 2, with the natural inner product ((v, φ), (w, ϕ)) Hq = (v, w) Ωε + ε(φ, ϕ) ∂Fε , which in particular induces the norm |(•, •)| Hq given by | (v, φ) | q Hq = |v| q q,Ωε + ε|φ| q q,∂Fε , (v, φ) ∈ H q .
For the sake of clarity, we shall omit to write explicitly the index q if q = 2, so we denote by H the Hilbert space

H := L 2 (Ω ε ) × L 2 ∂Ω (∂Ω ε ) . For functions u ∈ H 1 ∂Ω (Ω ε ) which satisfy ∆u ∈ L 2 ∂Ω (Ω ε ), we have Ωε ∆u vdx = - Ωε ∇u • ∇vdx + ∂Fε ∇u • νvdσ(x), ∀v ∈ H 1 ∂Ω (Ω ε ).
Tangential gradient and Laplace-Beltrami operator. We recall here, for the reader's convenience, some well-known facts on the tangential gradient ∇ Γ and the Laplace-Beltrami operator ∆ Γ . We refer to Sokolowski and Zolesio [START_REF] Sokolowski | Introduction to Shape Optimization[END_REF] for more details and proofs.

Let S be a smooth surface with normal unit vector ν. For every v ∈ (L 2 (S)) N , we can define an element P Γ v ∈ (L 2 (S)) N such that P Γ v • ν = 0 a.e. on S, where P Γ (y) for y ∈ S is the orthogonal projection on the tangent space at y ∈ S, i.e., it holds that

P Γ (y)v(y) = v(y) -(v(y) • ν(y)) ν(y) for a.e. y ∈ S.
Let φ ∈ C 1 (S), there exist a tubular neighborhood U of S and an extension φ ∈ C 1 (U ) of φ. We define the tangential gradient of φ on S by

∇ Γ φ := P Γ ∇ φ = ∇ φ -(∇ φ • ν)ν on S.
We emphasize that this definition is independent of the chosen extension of φ.

Let Φ ∈ (C 1 (S)) N , then there exists an extension Φ ∈ (C 1 (U )) N (U as above a suitable neighborhood of S) and we define the tangential divergence of Φ on S by

div Γ Φ := ∇ Γ • Φ := ∇ • Φ -D Φν • ν on S,
where D Φ is the Jacobi-matrix of Φ. Now, we consider the surface ∂F ε . First, an equivalent definition of the Sobolev space H 1 (∂F ε ) on ∂F ε is given. We introduce the inner product

((φ, ψ)) ∂Fε := (φ, ψ) ∂Fε + δ(∇ Γ φ, ∇ Γ ψ) ∂Fε , ∀φ, ψ ∈ C 1 (∂F ε ), δ ≥ 0,
and denote by || • || ∂Fε the induced norm. The Sobolev space H 1 (∂F ε ) is the closure of the space C 1 (∂F ε ) with respect to the norm induced by the inner product. Therefore, the space C 1 (∂F ε ) is dense by definition in the space H 1 (∂F ε ). An equivalent definition of H 1 (∂F ε ) can be given via local coordinates or distributional meaning, see, for instance, Strichartz [START_REF] Strichartz | Analysis of the Laplacian on the complete Riemannian manifold[END_REF]. We denote by || • || ∂Fε,T the norm in L 2 (0, T ; H 1 (∂F ε )).

By definition, for every φ ∈ H 1 (∂F ε ) there exists ∇ Γ φ ∈ L 2 (∂F ε ) with ∇ Γ φ • ν = 0 a.e. on ∂F ε , the tangential gradient in the distributional sense.

We introduce, for any s > 1, the space H s (∂F ε ), which is naturally embedded in H 1 (∂F ε ), equipped with the norm inherited, which we denote by

|| • || H s (∂Fε) . For all ψ ∈ H 1 (∂F ε ) and v ∈ (C 1 (∂F ε )) N such that v • ν = 0 a.e. on ∂F ε , we have the Stokes formula (see [17, Proposition 2.58]) ∂Fε ∇ Γ ψ • v dσ = - ∂Fε ψdiv Γ v dσ. ( 11 
) Let h ∈ H 2 (∂F ε ), then we have ∇ Γ h ∈ H 1 (∂F ε ) such that ∇ Γ h • ν = 0 a.e. on ∂F ε . The Laplace-Beltrami operator ∆ Γ on ∂F ε is defined as follows ∆ Γ h = div Γ (∇ Γ h) ∀h ∈ H 2 (∂F ε ).
Hence ∆ Γ h ∈ L 2 (∂F ε ), and from [START_REF] Gal | Coleman-Gurtin type equations with dynamic boundary conditions[END_REF] it follows that the element

∆ Γ h ∈ L 2 (∂F ε ) is uniquely determined by the integral identity ∂Fε ∆ Γ hψ dσ = - ∂Fε ∇ Γ h • ∇ψdσ ∀ψ ∈ H 1 (∂F ε ). ( 12 
)
If ψ ∈ H 1 (∂F ε ), then there exists (see [17, Chapter 2, Section 2.20]) an element ϑ ∈ H 3/2 (Ω ε ), the extension of ψ, and

ϑ| ∂Fε = ψ, furthermore ∇ϑ • ν = 0 on ∂F ε . (13) 
Therefore ∇ϑ = ∇ Γ ψ on ∂F ε . It should be noted that on the right-hand side of ( 12) there is the scalar product of vector fields ∇ Γ h and ∇ Γ ψ tangent to ∂F ε .

On the other hand, if ψ is a smooth function defined in an open neighbourhood of

∂F ε in Ω, then (see [17, Chapter 2, Section 2.20]) ∇ Γ h • (∇ψ| ∂Fε ) = ∇ Γ h • ∇ Γ ψ because of (∇ψ • νν) • ∇ Γ h = 0.
Hence, if ψ is the restriction to ∂F ε of a given function ψ defined in Ω, then

∂Fε ∆ Γ hψ dσ = - ∂Fε ∇ Γ h • ∇ψdσ ∀ψ ∈ H 2 (Ω). ( 14 
)
The space W δ . We now introduce, as anticipated in the introduction, the space W δ given in [START_REF] Cioranescu | An Introduction to Homogenization[END_REF] (see [10, Subsection 2.2] for more details). Let V δ ∂Ω , δ ≥ 0, be the completion of C 1 (Ω ε ) in the norm

||u|| 2 V δ ∂Ω := Ωε |u(x)| 2 + |∇u(x)| 2 dx + ε ∂Fε |u(x)| 2 + δ|∇ Γ u(x)| 2 dσ(x).
Note that for any f ∈ V δ ∂Ω , we have f ∈ H 1 ∂Ω (Ω ε ) so that f ∂Fε makes sense in the trace sense. The space

V δ ∂Ω is topologically isomorphic to H 1 (Ω ε ) × H 1 ∂Ω (∂Ω ε ) if δ > 0, and V 0 ∂Ω = H 1 ∂Ω (Ω ε
). For all δ ≥ 0, we define the linear space

W δ := (v, γ 0 (v)) : v ∈ V δ ∂Ω .
We emphasize that W δ is not a product space as V δ ∂Ω . Clearly, W δ ⊂ H densely since the trace operator acting on function H 1 (Ω ε ) and into H 1/2 (∂Ω ε ) is bounded and onto, and W δ is a Hilbert space with respect to the inner product inherited from V δ ∂Ω , δ ≥ 0. Thus, by definition we can identify

W δ = (v, γ 0 (v)) ∈ H 1 (Ω ε ) × H 1 ∂Ω (∂Ω ε ) , for each δ > 0, where (v, γ 0 (v)) 2 W δ := v 2 Ωε + ε γ 0 (v) 2 ∂Fε , and 
W 0 = (v, γ 0 (v)) ∈ H 1 (Ω ε ) × H 1/2 ∂Ω (∂Ω ε ) .

Existence and uniqueness of solution

Along this paper, we shall denote by C different constants which are independent of ε. We state in this section a result on the existence and uniqueness of solution of problem [START_REF] Amar | Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices[END_REF]. First, we observe that it is easy to see from (2) that there exists a constant C > 0 such that

|g(s)| ≤ C 1 + |s| q-1 , for all s ∈ R. ( 15 
)
Definition 3.1. A weak solution of ( 1) is a pair of functions (u ε , ψ ε ), satisfying

u ε ∈ C([0, T ]; L 2 (Ω ε )), ψ ε ∈ C([0, T ]; L 2 ∂Ω (∂Ω ε )), for all T > 0, ( 16 
)
u ε ∈ L 2 (0, T ; H 1 (Ω ε )), for all T > 0, ( 17 
)
ψ ε ∈ L 2 (0, T ; H 1 ∂Ω (∂Ω ε )) ∩ L q (0, T ; L q ∂Ω (∂Ω ε )), for all T > 0, ( 18 
)
γ 0 (u ε (t)) = ψ ε (t), a.e. t ∈ (0, T ], (19) 
         d dt (u ε (t), v) Ωε + ε d dt (ψ ε (t), γ 0 (v)) ∂Fε + (∇u ε (t), ∇v) Ωε + κ(u ε (t), v) Ωε +ε δ(∇ Γ ψ ε (t), ∇ Γ γ 0 (v)) ∂Fε + ε (g(ψ ε (t)), γ 0 (v)) ∂Fε = 0 in D (0, T ), for all v ∈ H 1 (Ω ε ) such that γ 0 (v) ∈ H 1 ∂Ω (∂Ω ε ) ∩ L q ∂Ω (∂Ω ε ), (20) 
u ε (0) = u 0 ε , and ψ ε (0) = ψ 0 ε . (21) 
We have the following result.

Theorem 3.2. Under the assumptions (2)-( 3) and ( 4), there exists a unique solution (u ε , ψ ε ) of the problem [START_REF] Amar | Laplace-Beltrami operator for the heat conduction in polymer coating of electronic devices[END_REF]. Moreover, this solution satisfies the energy equality

1 2 d dt |(u ε (t), ψ ε (t))| 2 H + |∇u ε (t)| 2 Ωε + κ|u ε (t)| 2 Ωε + ε δ|∇ Γ ψ ε (t)| 2 ∂Fε + ε (g(ψ ε (t)), ψ ε (t)) ∂Fε = 0, (22) 
a.e. t ∈ (0, T ).

Proof. On the space W δ we define a continuous symmetric linear operator A δ : W δ → W δ , given by

A δ ((v, γ 0 (v))), (w, γ 0 (w)) = (∇v, ∇w) Ωε + κ(v, w) Ωε + ε δ(∇ Γ γ 0 (v), ∇ Γ γ 0 (w)) ∂Fε , (23) 
for all (v, γ 0 (v)), (w, γ 0 (w)) ∈ W δ .

We observe that A δ is coercive. In fact, for all (v, γ 0 (v)) ∈ W δ , we have

A δ ((v, γ 0 (v))) , (v, γ 0 (v)) + |(v, γ 0 (v))| 2 H ≥ min {1, κ} v 2 Ωε + ε δ|∇ Γ γ 0 (v)| 2 ∂Fε + |v| 2 Ωε + ε|γ 0 (v)| 2 ∂Fε ≥ min {1, κ} (v, γ 0 (v)) 2 W δ . Let us denote V 1 = W δ , A 1 = A δ , V 2 = L 2 (Ω ε ) × L q ∂Ω (∂Ω ε ) , A 2 (v, φ) = (0, ε g(φ)). From (15) one deduces that A 2 : V 2 → V 2 .

With this notation, and denoting

V = V 1 ∩ V 2 , p 1 = 2, p 2 = q, u ε = (u ε , ψ ε ), one has that (16)-(21) is equivalent to u ε ∈ C([0, T ]; H), u ε ∈ 2 i=1 L pi (0, T ; V i ), for all T > 0, ( 24 
) ( u ε ) (t) + 2 i=1 A i ( u ε (t)) = 0 in D (0, T ; V ), (25) 
u ε (0) = (u 0 ε , ψ 0 ε ). ( 26 
)
Applying a slight modification of [14, Chapter 2,Theorem 1.4], it is not difficult to see that problem (24)-(26) has a unique solution. Moreover, u ε satisfies the energy equality 1 2

d dt | u ε (t)| 2 H + 2 i=1 A i ( u ε (t)), u ε (t) i = 0 a.e. t ∈ (0, T ),
where •, • i denotes the duality product between V i and V i . This last equality turns out to be just (22).

A priori estimates

In this section we obtain some energy estimates for the solution of (1). By ( 22) and taking into account (2), we have

d dt |(u ε (t), ψ ε (t))| 2 H + 2 min {1, κ} u ε (t) 2 Ωε + 2εδ|∇ Γ ψ ε (t)| 2 ∂Fε + 2α 1 ε |ψ ε (t)| q q,∂Fε ≤ 2βε |∂F ε |, (27) 
where |∂F ε | denotes the measure of ∂F ε .

Observe that the number of holes is given by

N (ε) = |Ω| (2ε) N (1 + o(1)) , then using the change of variable y = x ε , dσ(y) = ε -(N -1) dσ(x),
we can deduce

|∂F ε | = N (ε)|∂F k,ε | = N (ε)ε N -1 |∂F | ≤ C ε . (28) 
Let us denote

G(s) := s 0 g(r)dr.
Then, there exist positive constants α 1 , α 2 , and β such that

α 1 |s| q -β ≤ G(s) ≤ α 2 |s| q + β ∀s ∈ R. ( 29 
)
We observe that the linear term ∆ Γ u ε in the boundary condition is coercive, so that this term is of no real significance to the energy estimates and only enhances the regularity of the solution.

Lemma 4.1. Under the assumptions (2)-( 3) and ( 5), assume that g ∈ C 1 (R). Then, for any initial condition

(u 0 ε , ψ 0 ε ) ∈ W δ ∩ H q , there exists a constant C independent of ε, such that the solution (u ε , ψ ε ) of the problem (1) satisfies u ε Ωε,T ≤ C, sup t∈[0,T ] u ε (t) Ωε ≤ C, u ε Ωε,T ≤ C, √ ε γ 0 (u ε ) ∂Fε,T ≤ C, (30) 
√ ε|ψ ε (t)| ∂Fε ≤ C, |u ε (t)| Ωε ≤ C, √ ε|γ 0 (u ε (t))| ∂Fε ≤ C, (31) 
for all t ∈ (0, T ).

Proof. Taking into account (28) in ( 27), in particular, we obtain

d dt |(u ε (t), ψ ε (t))| 2 H + 2 min {1, κ} u ε (t) 2 Ωε ≤ C. (32) 
Integrating between 0 and t and taking into account [START_REF] Cioranescu | Homogénéisation du problème de Neumann non homogène dans des ouverts perfores[END_REF], we obtain the first estimate in (30) and the fist estimate in (31).

Now, if we want to take the inner product in (1) with u ε , we need that

u ε ∈ L 2 (0, T ; H 1 (Ω ε )) with γ 0 (u ε ) ∈ L 2 (0, T ; H 1 ∂Ω (∂Ω ε )) ∩ L q (0, T ; L q ∂Ω (∂Ω ε ))
. However, we do not have it for our weak solution. Therefore, we use the Galerkin method in order to prove, rigorously, new a priori estimates for u ε .

Let us observe that the space H 1 (Ω ε ) × H 1 ∂Ω (∂Ω ε ) is compactly imbedded in H, and therefore, for the symmetric and coercive linear continuous operator A δ : W δ → W δ , where A δ is given by ( 23), there exists a non-decreasing sequence 0 < λ 1 ≤ λ 2 ≤ . . . of eigenvalues associated to the operator A δ with lim j→∞ λ j = ∞, and there exists a Hilbert basis of H, {(w j , γ 0 (w j )) : j ≥ 1}⊂ D(A δ ), with span{(w j , γ 0 (w j )) : j ≥ 1} densely embedded in W δ , such that A δ ((w j , γ 0 (w j ))) = λ j (w j , γ 0 (w j )) ∀j ≥ 1.

Taking into account the above facts, we denote by

(u ε,m (t), γ 0 (u ε,m (t))) = (u ε,m (t; 0, u 0 ε , ψ 0 ε ), γ 0 (u ε,m (t; 0, u 0 ε , ψ 0 ε )))
the Galerkin approximation of the solution (u ε (t; 0,

u 0 ε , ψ 0 ε ), γ 0 (u ε (t; 0, u 0 ε , ψ 0 ε ))) to (1) for each integer m ≥ 1, which is given by (u ε,m (t), γ 0 (u ε,m (t))) = m j=1 δ εmj (t)(w j , γ 0 (w j )), (33) 
and is the solution of d dt ((u ε,m (t), γ 0 (u ε,m (t))), (w j , γ 0 (w j ))) H + A δ ((u ε,m (t), γ 0 (u ε,m (t)))), (w j , γ 0 (w j )) +ε(g(γ 0 (u ε,m (t))), γ 0 (w j )) ∂Fε = 0, j = 1, . . . , m,

with initial data

(u ε,m (0), γ 0 (u ε,m (0))) = (u 0 ε,m , γ 0 (u 0 ε,m )), (35) 
where

δ εmj (t) = (u ε,m (t), w j ) Ωε + (γ 0 (u ε,m (t)), γ 0 (w j )) ∂Fε ,
and (u 0 ε,m , γ 0 (u 0 ε,m )) ∈ span{(w j , γ 0 (w j )) : j = 1, . . . , m} converge (when m → ∞) to (u 0 ε , ψ 0 ε ) in a suitable sense which will be specified below.

Let (u 0 ε , ψ 0 ε ) ∈ W δ ∩H q . For all m ≥ 1, since span{(w j , γ 0 (w j )) : j ≥ 1} is densely embedded in W δ ∩H q , there exists (u 0 ε,m , γ 0 (u 0 ε,m )) ∈ span{(w j , γ 0 (w j )) : 1 ≤ j ≤ m}, such that the sequence {(u 0 ε,m , γ 0 (u 0 ε,m ))} converges to (u 0 ε , ψ 0 ε ) in W δ and in H q .
Then, in particular we know that there exists a constant C such that

||(u 0 ε,m , γ 0 (u 0 ε,m ))|| W δ ≤ C, |(u 0 ε,m , γ 0 (u 0 ε,m ))| Hq ≤ C. (36) 
For each integer m ≥ 1, we consider the sequence {(u ε,m (t), γ 0 (u ε,m (t)))} defined by (33)-( 35) with these initial data.

Multiplying by the derivative δ εmj in (34), and summing from j = 1 to m, we obtain

|(u ε,m (t), γ 0 (u ε,m (t)))| 2 H + 1 2 d dt ( A δ ((u ε,m (t), γ 0 (u ε,m (t)))), (u ε,m (t), γ 0 (u ε,m (t))) ) +ε(g(γ 0 (u ε,m (t))), γ 0 (u ε,m (t))) ∂Fε = 0. ( 37 
)
We observe that (g(γ

0 (u ε,m (t))), γ 0 (u ε,m (t))) ∂Fε = d dt ∂Fε G(γ 0 (u ε,m (t)))dσ(x).
Then, integrating (37) between 0 and t, taking into account the definition of A δ and (28)-(29), we obtain

t 0 |(u ε,m (s), γ 0 (u ε,m (s)))| 2 H ds + |∇u ε,m (t)| 2 Ωε + κ|u ε,m (t)| 2 Ωε + ε δ|∇ Γ γ 0 (u ε,m (t))| 2 ∂Fε +2 α 1 ε|γ 0 (u ε,m (t))| q ∂Fε ≤ max{1, κ} (u 0 ε,m , γ 0 (u 0 ε,m )) 2 W δ + 2 α 2 |(u 0 ε,m , γ 0 (u 0 ε,m ))| q Hq + 4 βC,
for all t ∈ (0, T ), and we can deduce

t 0 |(u ε,m (s), γ 0 (u ε,m (s)))| 2 H ds + min {1, κ, 2 α1 }||(u ε,m (t), γ 0 (u ε,m (t)))|| 2 W δ ≤ C 1 + (u 0 ε,m , γ 0 (u 0 ε,m )) 2 W δ + |(u 0 ε,m , γ 0 (u 0 ε,m ))| q Hq , (38) 
for all t ∈ (0, T ). Taking into account (36) in (38), we have proved that the sequence {(u ε,m , γ 0 (u ε,m ))} is bounded in C([0, T ]; W δ ), and {(u ε,m , γ 0 (u ε,m ))} is bounded in L 2 (0, T ; H), for all T > 0.

If we work with the truncated Galerkin equations ( 33)-( 35) instead of the full PDE, we note that the calculations of the proof of (32) can be following identically to show that {u ε,m } is bounded in L 2 (0, T ; H 1 (Ω ε )), for all T > 0.

Moreover, taking into account the uniqueness of solution to (1) and using Aubin-Lions compactness lemma (e.g., cf. Lions [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non linèaires[END_REF]), it is not difficult to conclude that the sequence {u ε,m } converges weakly in L 2 (0, T ; H 1 (Ω ε )) to the solution u ε to (1). Since the inclusion Lemma 11.2] that the second estimate in (30) is proved.

H 1 (Ω ε ) ⊂ L 2 (Ω ε ) is compact and u ε ∈ C([0, T ]; L 2 (Ω ε )), it follows using [16,
On the other hand, we note that, under the condition (3), we have that g (s) ≥ -l ∀s ∈ R.

(39)

Observe that as we are assuming that g ∈ C 1 (R), we can differentiate with respect to time in (34), and then, multiplying by the derivative δ εmj and summing from j = 1 to m, we obtain 1 2

d dt |(u ε,m (t), γ 0 (u ε,m (t)))| 2 H + A δ ((u ε,m (t), γ 0 (u ε,m (t)))), (u ε,m (t), γ 0 (u ε,m (t))) = -ε(g (γ 0 (u ε,m (t)))γ 0 (u ε,m (t)), γ 0 (u ε,m (t))) ∂Fε .
Then, using the definition of A δ and (39), we have

d dt |(u ε,m (t), γ 0 (u ε,m (t)))| 2 H + 2|∇u ε,m (t)| 2 Ωε + 2κ|u ε,m (t)| 2 Ωε + 2ε δ|∇ Γ γ 0 (u ε,m (t))| 2 ∂Fε ≤ 2lε|γ 0 (u ε,m (t))| 2 ∂Fε ,
and we can deduce

d dt |(u ε,m (t), γ 0 (u ε,m (t)))| 2 H + 2min {1, κ}||u ε,m (t)|| 2 Ωε + 2ε |γ 0 (u ε,m (t))| 2 ∂Fε + δ|∇ Γ γ 0 (u ε,m (t))| 2 ∂Fε ≤ 2ε(l + 1)|γ 0 (u ε,m (t))| 2 ∂Fε . Then, we obtain d dt |(u ε,m (t), γ 0 (u ε,m (t)))| 2 H + 2min {1, κ}||(u ε,m (t), γ 0 (u ε,m (t)))|| 2 W δ ≤ 2(l + 1)|(u ε,m (t), γ 0 (u ε,m (t)))| 2 H . ( 40 
)
Integrating between r and t, we obtain

|(u ε,m (t), γ 0 (u ε,m (t)))| 2 H + 2min {1, κ} t r ||(u ε,m (s), γ 0 (u ε,m (s)))|| 2 W δ ds ≤ |(u ε,m (r), γ 0 (u ε,m (r)))| 2 H +2(l + 1) t r |(u ε,m (s), γ 0 (u ε,m (s)))| 2 H ds,
for all 0 ≤ r ≤ t. Now, integrating with respect to r between 0 and t,

t|(u ε,m (t), γ 0 (u ε,m (t)))| 2 H + 2min {1, κ} t 0 ||(u ε,m (s), γ 0 (u ε,m (s)))|| 2 W δ ds ≤ (2l + 3) t 0 |(u ε,m (s), γ 0 (u ε,m (s)))| 2 H ds,
for all t ∈ (0, T ), which, jointly with (38), yields that

t 0 ||(u ε,m (s), γ 0 (u ε,m (s)))|| 2 W δ ds ≤ C 1 + (u 0 ε,m , γ 0 (u 0 ε,m )) 2 W δ + |(u 0 ε,m , γ 0 (u 0 ε,m ))| q Hq , (41) 
and using (36) we have proved that the sequence {(u ε,m , γ 0 (u ε,m ))} is bounded in L 2 (0, T ; W δ ), for all T > 0.

Then, the sequence {(u ε,m , γ 0 (u ε,m ))} converges weakly in L 2 (0, T ; W δ ) to (u ε , γ 0 (u ε )), for all T > 0, and using the lower-semicontinuity of the norm and (41), we get

||u ε || 2 Ωε,T + ε||γ 0 (u ε )|| 2 ∂Fε,T ≤ lim inf m→∞ ||u ε,m || 2 Ωε,T + ε||γ 0 (u ε,m )|| 2 ∂Fε,T ≤ C lim inf m→∞ 1 + (u 0 ε,m , γ 0 (u 0 ε,m )) 2 W δ + |(u 0 ε,m , γ 0 (u 0 ε,m ))| q Hq = C 1 + (u 0 ε , ψ 0 ε ) 2 W δ + |(u 0 ε , ψ 0 ε )| q Hq ,
which, jointly with (u 0 ε , ψ 0 ε ) ∈ W δ ∩ H q , implies the last two estimates in (30). On the other hand, for any τ > 0 and t > τ , integrating (40), in particular, we have

|(u ε,m (r), γ 0 (u ε,m (r)))| 2 H ≤ |(u ε,m (θ), γ 0 (u ε,m (θ)))| 2 H +2(l + 1) t τ /2 |(u ε,m (s), γ 0 (u ε,m (s)))| 2 H ds,
for all τ /2 ≤ θ ≤ r ≤ t. Now, integrating with respect to θ between τ /2 and r,

(r -τ /2)|(u ε,m (r), γ 0 (u ε,m (r)))| 2 H ≤ (2(l + 1)(t -τ /2) + 1) t τ /2 |(u ε,m (s), γ 0 (u ε,m (s)))| 2 H ds,
for all 0 < τ /2 ≤ r ≤ t < T , and, in particular

|(u ε,m (r), γ 0 (u ε,m (r)))| 2 H ≤ 2τ -1 (2(l + 1)(T -τ /2) + 1) t 0 |(u ε,m (s), γ 0 (u ε,m (s)))| 2 H ds,
for all r ∈ [τ, t], which, jointly with (38), yields that

|(u ε,m (r), γ 0 (u ε,m (r)))| 2 H ≤ C 1 + (u 0 ε,m , γ 0 (u 0 ε,m )) 2 W δ + |(u 0 ε,m , γ 0 (u 0 ε,m ))| q Hq , (42) 
for all r ∈ (0, T ). Using (36) we have proved that the sequence

{(u ε,m , γ 0 (u ε,m ))} is bounded in C([0, T ]; H).
Then, the sequence {(u ε,m (r), γ 0 (u ε,m (r)))} converges weakly in H to (u ε (r), γ 0 (u ε (r))), for all r ∈ [0, T ], and using the lower-semicontinuity of the norm and (42), we get

|u ε (r)| 2 Ωε + ε|γ 0 (u ε (r))| 2 ∂Fε ≤ lim inf m→∞ |u ε,m (r)| 2 Ωε + ε|γ 0 (u ε,m (r))| 2 ∂Fε ≤ C lim inf m→∞ 1 + (u 0 ε,m , γ 0 (u 0 ε,m )) 2 W δ + |(u 0 ε,m , γ 0 (u 0 ε,m ))| q Hq = C 1 + (u 0 ε , ψ 0 ε ) 2 W δ + |(u 0 ε , ψ 0 ε )| q Hq ,
which, jointly with (u 0 ε , ψ 0 ε ) ∈ W δ ∩ H q , implies the last two estimates in (31).

In the following result, we enhance the regularity of the solution.

Lemma 4.2. Assume the assumptions in Lemma 4.1. Then, for any initial condition (u 0 ε , ψ 0 ε ) ∈ W δ ∩ H q , there exists a constant C independent of ε, such that the solution u ε of the problem (1) satisfies

u ε (t) H 2 (Ωε) ≤ C, (43) 
for all t ∈ (0, T ).

Proof. In order to obtain the estimates for the H 2 -norm, we rewrite (for every fixed t) problem ( 1) as a secondorder nonlinear elliptic boundary value problem:

         -∆ u ε + κu ε = h 1 (t) := - ∂u ε ∂t in Ω ε , -ε δ∆ Γ u ε + ε λu ε + ∇u ε • ν + ε g(u ε ) = ε h 2 (t) := -ε ∂u ε ∂t + ελu ε on ∂F ε , u ε = 0 on ∂Ω, ( 44 
)
where λ is some positive constant.

We multiply the first equation of (44) scalarly in L 2 (Ω ε ) by u ε , we integrate by parts and using (2), we have

|∇u ε | 2 Ωε + κ|u ε | 2 Ωε + ε δ|∇ Γ γ 0 (u ε )| 2 ∂Fε + ε λ|γ 0 (u ε )| 2 ∂Fε + ε α 1 |u ε | q q,∂Fε ≤ (h 1 , u ε ) Ωε + ε(h 2 , γ 0 (u ε )) ∂Fε + ε β|∂F ε |. ( 45 
)
Using Young's inequality, we obtain

(h 1 , u ε ) Ωε ≤ |h 1 | Ωε |u ε | Ωε ≤ 1 2κ |h 1 | 2 Ωε + κ 2 |u ε | 2 Ωε , and 
(h 2 , γ 0 (u ε )) ∂Fε ≤ |h 2 | ∂Fε |γ 0 (u ε )| ∂Fε ≤ 1 2λ |h 2 | 2 ∂Fε + λ 2 |γ 0 (u ε )| 2 ∂Fε ,
and by (45), using (28), we can deduce, in particular, that there exists a positive constant C such that

||u ε || Ωε ≤ C 1 + |h 1 | Ωε + √ ε|h 2 | ∂Fε . ( 46 
)
Using now the estimates for general elliptic boundary value problems (see [START_REF] Lions | Non-Homogeneous Boundary Value Problems and Applications[END_REF]Chaper 2,Remark 7.2]) to the first equation of (44) with s = 2, m = 1 and j = 0, we have

||u ε || H 2 (Ωε) ≤ C |h 1 | Ωε + ||εγ 0 (u ε )|| H 3/2 (∂Fε) . (47) 
Analogously, applying this estimate to the second equation in ( 44) and taking into account ( 28) and (39), we deduce

||εγ 0 (u ε )|| H 2 (∂Fε) ≤ C (1 + ε|h 2 | ∂Fε + |∂ ν u ε | ∂Fε ) , (48) 
where by ∂ ν u ε we denote ∇u ε • ν. Taking into account (48) in (47), we can deduce

||u ε || H 2 (Ωε) ≤ C (1 + |h 1 | Ωε + ε|h 2 | ∂Fε + |∂ ν u ε | ∂Fε ) . (49) 
By the Trace Theorem in H 7/4 (Ω ε ) (see [15, Chapter 1, Theorem 9.4]), we have

|∂ ν u ε | ∂Fε ≤ C||u ε || H 7/4 (Ωε) ,
and by interpolation inequality (see [15, Chapter 1, Remark 9.1]) with s 1 = 1, s 2 = 2 and θ = 3/4, we can deduce

|∂ ν u ε | ∂Fε ≤ C||u ε || 1/4 Ωε ||u ε || 3/4 H 2 (Ωε) .
By Young's inequality, with the conjugate exponents 4 and 4/3, we get

|∂ ν u ε | ∂Fε ≤ C ||u ε || Ωε + c ||u ε || H 2 (Ωε) , (50) 
where the positive constant c can be arbitrarily small. Then, taking into account (50) in (49), we have

||u ε || H 2 (Ωε) ≤ C (1 + |h 1 | Ωε + ε|h 2 | ∂Fε + ||u ε || Ωε ) ,
and using (46), we can deduce the following estimate for the H 2 -norm

||u ε || H 2 (Ωε) ≤ C 1 + |h 1 | Ωε + √ ε|h 2 | ∂Fε . (51) 
According to the second estimate in (31), we have

|h 1 | Ωε ≤ C, (52) 
and by the first and third estimates in (31), we can deduce

√ ε|h 2 | ∂Fε ≤ C. (53) 
Finally, taking into account ( 52)-( 53) in (51), we obtain (43).

The extension of u ε to the whole Ω × (0, T ): since the solution u ε of the problem ( 1) is defined only in Ω ε × (0, T ), we need to extend it to the whole Ω × (0, T ) to be able to state the convergence result. In order to do that, we use the well-known extension result given by Cioranescu and Saint Jean Paulin [START_REF] Cioranescu | Homogenization in open sets with holes[END_REF]. Taking into account Lemma 4.1, the following result is a direct consequence of results contained in [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF]Corollary 4.8].

Corollary 4.3. Assume the assumptions in Lemma 4.1. Then, there exists an extension ũε of the solution u ε of the problem (1) into Ω × (0, T ), such that

ũε Ω,T ≤ C, |ũ ε | q,Ω,T ≤ C, (54) 
sup

t∈[0,T ] ũε (t) Ω ≤ C, (55) 
|ũ ε | q,Ω,T ≤ C, (56) 
where the constant C does not depend on ε.

A compactness result

In this section, we obtain some compactness results about the behavior of the sequence ũε satisfying the a priori estimates given in Corollary 4.3.

By χ Ωε we denote the characteristic function of the domain Ω ε . Due to the periodicity of the domain Ω ε , from Theorem 2.6 in Cioranescu and Donato [START_REF] Cioranescu | An Introduction to Homogenization[END_REF] one has, for ε → 0, that

χ Ωε * |Y * | |Y | weakly-star in L ∞ (Ω), (57) 
where the limit is the proportion of the material in the cell Y .

Let ξ ε be the gradient of u ε in Ω ε × (0, T ) and let us denote by ξε its extension with zero to the whole of Ω × (0, T ), i.e.

ξε = ξ ε in Ω ε × (0, T ), 0 in (Ω \ Ω ε ) × (0, T ). ( 58 
)
for all r ∈ [2, 2 ).

We separate the cases N > 2 and N = 2.

Case 1: N > 2. Since

2 q = (N -2)(q -2) + N N -2 = q -1 + 2 N -2 > q -1,
there exists r ∈ [2, 2 ) such that r q ≥ q -1 and

|g(s)| ≤ C 1 + |s| q-1 ≤ C 1 + |s| r q .
Then, applying Theorem 2.4 in [START_REF] Conca | Homogenization in chemical reactive flows[END_REF] for G(x, v) = g(v), t = q and r ∈ [2, 2 ) such that r q ≥ q -1, we have that the map v ∈ L r (Ω) → g(v) ∈ L q (Ω) is continuous in the strong topologies. Then, taking into account (68), we get (63).

Finally, we prove (64). First, we observe that it is easy to see from ( 2) that there exists a constant

C > 0 such that |g (s)| ≤ C 1 + |s| q-2 .
Then, we get

Ω ∂g ∂x i (ũ ε (t)) q dx ≤ C Ω 1 + |ũ ε (t)| (q-2)q ∂ ũε (t) ∂x i q dx (69) 
≤ C 1 + Ω |ũ ε (t)| (q-2)qγ dx 1/γ Ω |∇ũ ε (t)| qη dx 1/η
, where we took γ and η such that qη = 2, 1/γ + 1/η = 1 and (q -2)qγ = 2 . Note that from here we get q = 2N (N -2)(q -2) + N .

Observe that q > 1. Indeed,

q ≤ 2N -2 N -2 = N N -2 + 1 < N N -2 + 2 ⇒ (N -2)(q -2) + N < 2N ⇒ 2N (N -2)(q -2) + N > 1.
Then, we have

Ω ∂g ∂x i (ũ ε (t)) q dx ≤ C 1 + |ũ ε | 2 /γ 2 ,Ω |∇ũ ε | 2/η Ω ,
and taking into account the continuous embedding H 1 0 (Ω) ⊂ L 2 (Ω) and (55), we get

|∇g(ũ ε (t))| q,Ω ≤ C. (70) 
Then, from (63) and (70), we can deduce (64).

Case 2: N = 2. We consider s ∈ [2q -2, +∞) and

q = 2s 2(q -2) + s . ( 71 
) Since s q = 2(q -2) + s 2 = q -1 + s -2 2 ≥ q -1, we have |g(s)| ≤ C 1 + |s| q-1 ≤ C 1 + |s| s q .
Then, applying Theorem 2.4 in [START_REF] Conca | Homogenization in chemical reactive flows[END_REF] for G(x, v) = g(v), t = q and r = s, we have that the map v ∈ L s (Ω) → g(v) ∈ L q (Ω) is continuous in the strong topologies. Then, taking into account (68), we get (63).

Finally, we prove (64). In (69) we took γ and η such that qη = 2, 1/γ + 1/η = 1 and (q -2)qγ = s. Note that from here we get q given by (71).

Observe that q ∈ (1, 2). Indeed, taking into account that

1 q = q -2 s + 1 2 , we can deduce 2q -2 ≤ s < +∞ ⇒ 0 < 1 s ≤ 1 2q -2 ⇒ 1 2 < 1 q ≤ q -2 2q -2 + 1 2 ⇒ 2(2q -2) 2(q -2) + 2q -2 ≤ q < 2,
and using that 2(2q-2) 2(q-2)+2q-2 > 1, we have that q ∈ (1, 2). Then, we have

Ω ∂g ∂x i (ũ ε (t)) q dx ≤ C 1 + |ũ ε | s/γ s,Ω |∇ũ ε | 2/η Ω ,
and taking into account the continuous embedding H 1 0 (Ω) ⊂ L s (Ω) and (55), we get

|∇g(ũ ε (t))| q,Ω ≤ C. (72) 
Then, from ( 63) and (72), we can deduce (64).

Because we have the linear term ∆ Γ u ε in the boundary condition, in order to pass to the limit in the integral which involves this term, we need the following result. Proposition 5.2. Under the assumptions in Lemma 4.2, there exists a function ξ ∈ L 2 (0, T ; H 1 (Ω)) such that for all T > 0,

ξε ξ weakly in H 1 (Ω), ∀t ∈ [0, T ], ( 73 
)
where ξε is given by (58).

Proof. From the estimate (43) and (58), we have || ξε || Ω ≤ C. Then, we see that the sequence { ξε } is bounded in H 1 (Ω), and hence, up to a subsequence and by (62), we can deduce (73).

6 Homogenized model: proof of the main Theorem

In this section, we identify the homogenized model.

We multiply system (1) by a test function v ∈ D(Ω), integrating by parts and taking into account ( 14) and (58), we have

d dt Ω χ Ωε ũε (t)vdx + ε d dt ∂Fε γ 0 (u ε (t))vdσ(x) + Ω ξε • ∇vdx + κ Ω χ Ωε ũε (t)vdx +ε δ ∂Fε ∇ Γ γ 0 (u ε (t)) • ∇vdσ(x) + ε ∂Fε g(γ 0 (u ε (t)))vdσ(x) = 0, in D (0, T ).
We consider ϕ ∈ C 1 c ([0, T ]) such that ϕ(T ) = 0 and ϕ(0) = 0. Multiplying by ϕ and integrating between 0 and T , we have

-ϕ(0) Ω χ Ωε ũε (0)vdx - T 0 d dt ϕ(t) Ω χ Ωε ũε (t)vdx dt -εϕ(0) ∂Fε γ 0 (u ε (0))vdσ(x) -ε T 0 d dt ϕ(t) ∂Fε γ 0 (u ε (t))vdσ(x) dt + T 0 ϕ(t) Ω ξε • ∇vdxdt + κ T 0 ϕ(t) Ω χ Ωε ũε (t)vdxdt (74) +ε δ T 0 ϕ(t) ∂Fε ∇ Γ γ 0 (u ε (t)) • ∇vdσ(x)dt + ε T 0 ϕ(t) ∂Fε g(γ 0 (u ε (t)))vdσ(x)dt = 0.
For the sake of clarity, we split the proof in three parts. Firstly, we pass to the limit, as ε → 0, in (74) in order to get the limit equation satisfied by u. Secondly we identify ξ making use of the solutions of the cell-problems [START_REF] Gal | The role of surface diffusion in dynamic boundary conditions: where do we stand?[END_REF], and finally we prove that u is uniquely determined.

Step 1. In order to pass to the limit, as ε → 0, we reason as in [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF]Theorem 6.1] for all the terms except the term which involves the tangential gradient ∇ Γ . Exactly, for the integrals on Ω we only require to use Proposition 5.1 and the convergence (57) and for the integrals on the boundary of the holes we make use of a convergence result based on a technique introduced by Vanninathan [START_REF] Vanninathan | Homogenization of eigenvalues problems in perforated domains[END_REF] for the Steklov problem which transforms surface integrals into volume integrals, which was already used as a main tool to homogenize the non homogeneous Neumann problem for the elliptic case by Cioranescu and Donato [START_REF] Cioranescu | Homogénéisation du problème de Neumann non homogène dans des ouverts perfores[END_REF]. For the term which involves the tangential gradient, we also use this technique together with Proposition 5.2. By Definition 3.2 in Cioranescu and Donato [START_REF] Cioranescu | Homogénéisation du problème de Neumann non homogène dans des ouverts perfores[END_REF], let us introduce, for any h ∈ L s (∂F ), 1 ≤ s ≤ ∞, the linear form µ ε h on W 1,s 0 (Ω) defined by

µ ε h , ϕ = ε ∂Fε h x ε ϕ(x)dσ(x), ∀ϕ ∈ W 1,s 0 (Ω),
with 1/s + 1/s = 1. It is proved in Lemma 3.3 in Cioranescu and Donato [START_REF] Cioranescu | Homogénéisation du problème de Neumann non homogène dans des ouverts perfores[END_REF] that

µ ε h → µ h strongly in (W 1,s 0 (Ω)) , (75) 
where

µ h , ϕ = µ h Ω ϕ(x)dx, with µ h = 1 |Y | ∂F h(y)dσ(y).
In the particular case in which h ∈ L ∞ (∂F ) or even when h is constant, we have

µ ε h → µ h strongly in W -1,∞ (Ω).
We denote by µ ε 1 the above introduced measure in the particular case in which h = 1. Notice that in this case

µ h becomes µ 1 = |∂F |/|Y |.
For the term which involves the tangential gradient, we proceed as follows. Taking into account [START_REF] Graf | Diffusion on surfaces and the boundary periodic unfolding operator with an application to carcinogenesis in human cells[END_REF], there exists an element ϑ ε ∈ H 3/2 (Ω ε ), the extension of γ 0 (u ε (t)), such that ∇ϑ ε = ∇ Γ γ 0 (u ε (t)) on ∂F ε . Then, we can deduce

ε ∂Fε ∇ Γ γ 0 (u ε (t)) • ∇vdσ(x) = ε ∂Fε ∇ϑ ε • ∇vdσ(x) = µ ε 1 , ξε • ∇v ,
where ξε is given by (58). Note that using (75) with s = 2 and taking into account (73), we can deduce, for ε → 0,

ε ∂Fε ∇ Γ γ 0 (u ε (t)) • ∇vdσ(x) = µ ε 1 , ξε • ∇v → µ 1 Ω ξ • ∇vdx = |∂F | |Y | Ω ξ • ∇vdx, ∀v ∈ D(Ω),
which integrating in time and using Lebesgue's Dominated Convergence Theorem, gives

ε T 0 ϕ(t) ∂Fε ∇ Γ γ 0 (u ε (t)) • ∇vdσ(x)dt → |∂F | |Y | T 0 ϕ(t) Ω ξ • ∇vdx dt. (76) 
Therefore, using the proof of the main Theorem in [START_REF] Anguiano | Existence, uniqueness and homogenization of nonlinear parabolic problems with dynamical boundary conditions in perforated media[END_REF] and (76), we pass to the limit, as ε → 0, in (74), and we obtain

-ϕ(0) |Y * | |Y | + |∂F | |Y | Ω u(0)vdx - |Y * | |Y | + |∂F | |Y | T 0 d dt ϕ(t) Ω u(t)vdx dt + T 0 ϕ(t) Ω ξ • ∇vdxdt + κ |Y * | |Y | T 0 ϕ(t) Ω u(t)vdxdt +δ |∂F | |Y | T 0 ϕ(t) Ω ξ • ∇vdxdt + |∂F | |Y | T 0 ϕ(t) Ω g(u(t))vdxdt = 0.
Hence, ξ verifies

|Y * | |Y | + |∂F | |Y | ∂u ∂t -1 + δ |∂F | |Y | divξ + |Y * | |Y | κu + |∂F | |Y | g(u) = 0, in Ω × (0, T ). (77) 
Step 2. It remains now to identify ξ. We shall make use of the solutions of the cell problems [START_REF] Gal | The role of surface diffusion in dynamic boundary conditions: where do we stand?[END_REF]. For any fixed i = 1, ..., N , let us define

Ψ iε (x) = ε w i x ε + y i ∀x ∈ Ω ε , (78) 
where y = x/ε.

By periodicity Ψiε

x i weakly in H 1 (Ω), where • denotes the extension to Ω given by Cioranescu and Saint Jean Paulin [START_REF] Cioranescu | Homogenization in open sets with holes[END_REF]. Then, by Rellich-Kondrachov Theorem, we can deduce Ψiε → x i strongly in L 2 (Ω).

Let ∇Ψ iε be the gradient of Ψ iε in Ω ε . Denote by ∇Ψ iε the extension by zero of ∇Ψ iε inside the holes. From (78), we have and we denote by µ ε h the above introduced linear form in the particular case in which h

∇Ψ iε = ∇ y (w i + y i ) = ∇ y w i (y) + e i χ Y
x ε = ∇ Γ γ 0 (Ψ iε (x)).
From (78), we have

∇ Γ γ 0 (Ψ iε ) = P Γ e i + ∇ Γ w i (y),
where P Γ e i is defined on ∂F and the tangential gradient of w i is given by

∇ Γ w i := P Γ ∇ y wi = ∇ y wi -(∇ y wi • ν)ν on ∂F,
where wi is an extension of w i .

In this case, µ h becomes

µ h = 1 |Y | ∂F (P Γ e i + ∇ Γ w i (y)) dσ(y).
Then, using (75), we obtain

ε ∂Fε ∇ Γ γ 0 (Ψ iε (x))ϕ(x)dσ(x) = µ ε h , ϕ → µ h , ϕ = µ h Ω ϕ(x)dx, ∀ϕ ∈ W 1,s 0 (Ω). (81) 
On the other hand, it is not difficult to see that Ψ iε satisfies

-div (∇Ψ iε ) = 0, in Ω ε , ∇Ψ iε • ν = ε δ div Γ (∇ Γ Ψ iε ) , on ∂F ε . (82) 
Let v ∈ D(Ω). Multiplying the first equation in (82) by vu ε , integrating by parts over Ω ε and taking into account ( 14), we get

-ε δ ∂Fε ∇ Γ γ 0 (Ψ iε ) • ∇v γ 0 (u ε )dσ(x) -ε δ ∂Fε ∇ Γ γ 0 (Ψ iε ) • ∇ Γ γ 0 (u ε )vdσ(x) (83) 
= Ωε ∇Ψ iε • ∇v u ε dx + Ωε ∇Ψ iε • ∇u ε vdx.
On the other hand, we multiply system (1) by the test function vΨ iε , integrating by parts over Ω ε and taking into account [START_REF] Lions | Quelques Méthodes de Résolution des Problèmes aux Limites Non linèaires[END_REF], we obtain

d dt Ω χ Ωε ũε v Ψiε dx + ε d dt ∂Fε γ 0 (u ε )vγ 0 (Ψ iε )dσ(x) + Ωε ∇u ε • ∇vΨ iε dx + Ωε ∇u ε • ∇Ψ iε vdx +κ Ω χ Ωε ũε v Ψiε dx + ε δ ∂Fε ∇ Γ γ 0 (u ε ) • ∇v γ 0 (Ψ iε )dσ(x) + ε δ ∂Fε ∇ Γ γ 0 (u ε ) • ∇ Γ γ 0 (Ψ iε )vdσ(x) +ε ∂Fε g(γ 0 (u ε ))vγ 0 (Ψ iε )dσ(x) = 0, in D (0, T ).
Using (83), we have Now, we have to pass to the limit, as ε → 0. We will focus on the terms which involve the gradient and the tangential gradient. Taking into account (79), we reason as in [3, Theorem 6.1] for the others terms. Therefore, when we pass to the limit in (84), we obtain 

d dt Ω χ Ωε ũε v Ψiε dx + ε d dt ∂Fε γ 0 (u ε )vγ 0 (Ψ iε )dσ(x) + Ωε ∇u ε • ∇vΨ iε dx - Ωε ∇Ψ iε • ∇v u ε dx -ε δ ∂Fε ∇ Γ γ 0 (Ψ iε ) • ∇v γ 0 (u ε )dσ(x) + κ Ω χ Ωε ũε v Ψiε dx + ε δ ∂Fε ∇ Γ γ 0 (u ε ) • ∇v γ 0 (Ψ iε )dσ ( 
where Q = ((q ij )), 1 ≤ i, j ≤ N , is given by

q ij = 1 |Y | Y *
(e i + ∇ y w i ) • e j dy + δ ∂F (P Γ e i + ∇ Γ w i ) • P Γ e j dσ(y) .

Observe that if we multiply system (10) by the test function w j , integrating by parts over Y * , we obtain Y * (e i + ∇ y w i ) • ∇ y w j dy + δ ∂F (P Γ e i + ∇ Γ w i ) • ∇ Γ w j dσ(y) = 0, then we conclude that q ij is given by (9).

Step 3. Finally, thanks to (77) and (85), we observe that u satisfies the first equation in [START_REF] Conca | Homogenization in chemical reactive flows[END_REF]. A weak solution of ( 8) is any function u, satisfying u ∈ C([0, T ]; L 2 (Ω)), for all T > 0, u ∈ L 2 (0, T ; H 1 0 (Ω)) ∩ L q (0, T ; L q (Ω)), for all T > 0, 

|Y * | |Y | + |∂F | |Y |

Notation.

  We denote by (•, •) Ωε (respectively, (•, •) ∂Fε ) the inner product in L 2 (Ω ε ) (respectively, in L 2 (∂F ε )), and by |•| Ωε (respectively, |•| ∂Fε ) the associated norm. We also denote by (•, •) Ωε the inner product in (L 2 (Ω ε )) N .

χχ∇χ

  x) +ε ∂Fε g(γ 0 (u ε ))vγ 0 (Ψ iε )dσ(x) = 0, in D (0, T ).We consider ϕ ∈ C 1 c ([0, T ]) such that ϕ(T ) = 0 and ϕ(0) = 0. Multiplying by ϕ and integrating between 0 and T , we have-ϕ(0) Ω Ωε ũε (0)v Ψiε dx -Ωε ũε (t)v Ψiε dx dt(84)-εϕ(0)∂Fε γ 0 (u ε (0))vγ 0 (Ψ iε )dσ(x) -ε u ε (t))vγ 0 (Ψ iε )dσ(x) dt + Γ γ 0 (Ψ iε ) • ∇v γ 0 (u ε )dσ(x)dt + κ Ωε ũε v Ψiε dxdt +ε δ T 0 ϕ(t) ∂Fε ∇ Γ γ 0 (u ε ) • ∇v γ 0 (Ψ iε )dσ(x)dt +ε T 0 ϕ(t)∂Fε g(γ 0 (u ε ))vγ 0 (Ψ iε )dσ(x)dt = 0.

Firstly∇∇

  , using (62), (79) and Lebesgue's Dominated Convergence Theorem, we have x i dxdt, and by (60), (80) and Lebesgue's Dominated Convergence Theorem, we obtain + ∇ y w i ) dy • ∇v udxdt.On the other hand, using (59) and (81), we can deduceε δ ∂Fε ∇ Γ γ 0 (Ψ iε ) • ∇v γ 0 (u ε )dσ(x) → δ |Y | Ω ∂F (P Γ e i + ∇ Γ w i ) dσ(y) • ∇v udx,which integrating in time and by Lebesgue's Dominated Convergence Theorem, we obtainΓ γ 0 (Ψ iε ) • ∇v γ 0 (u ε )dσ(x)dt → δ e i + ∇ Γ w i ) dσ(y) • ∇v udxdt.Similarly to the proof of (76) together with (79), we have Γ γ 0 (u ε ) • ∇v γ 0 (Ψ iε )dσ(x)dt → δ x i dxdt.

ξ

  + ∇ y w i ) dy • ∇v udxdt e i + ∇ Γ w i ) dσ(y) • ∇v udxdt + κ |Y * t))vx i dxdt = 0.Using Green's formula and equation (77), we have-+ ∇ y w i ) dy • ∇u vdxdt e i + ∇ Γ w i ) dσ(y) • ∇u vdxdt -δ • ∇x i vdxdt = 0.The above equality holds true for any v ∈ D(Ω) and ϕ ∈ C 1 c ([0, T ]). This implies that-+ ∇ y w i ) dy • ∇u + δ |Y | ∂F (P Γ e i + ∇ Γ w i ) dσ(y) • ∇u = 0, in Ω × (0, T ). We conclude that 1 + δ |∂F | |Y | divξ = div (Q∇u) ,

  t), v) + (Q∇u(t), ∇v) + |Y * | |Y | κ(u(t), v) + |∂F | |Y | (g(u(t)), v) = 0, in D (0, T ), for all v ∈ H 1 0 (Ω) ∩ L q (Ω), and u(0) = u 0 .Due to that the homogenized matrix Q is positive-definite (see[START_REF] Gahn | Multi-scale modeling of processes in porous media-coupling reaction-diffusion processes in the solid and the fluid phase and on the separating interfaces[END_REF] Theorem 4.1]), applying a slight modification of [14, Chapter 2,Theorem 1.4], we obtain that the problem (8) has a unique solution, and therefore Theorem 1.1 is proved.

  Due to that w i ∈ H per \ R (see[START_REF] Gahn | Multi-scale modeling of processes in porous media-coupling reaction-diffusion processes in the solid and the fluid phase and on the separating interfaces[END_REF] Theorem 4.1]), let ∇ Γ γ 0 (Ψ iε ) be the tangential gradient of γ 0 (Ψ iε ) on ∂F ε

	and taking into account [4, Corollary 2.10], we have	
	∇Ψ iε	1 |Y | Y *	(e i + ∇ y w i (y)) dy weakly in L 2 (Ω).	(80)

* ,

Departamento de Análisis Matemático. Facultad de Matemáticas. Universidad de Sevilla, 41012 Sevilla (Spain) anguiano@us.es

Proposition 5.1. Under the assumptions in Lemma 4.1, there exists a function u ∈ L 2 (0, T ; H 1 0 (Ω))∩ L q (0, T ; L q (Ω)) (u will be the unique solution of the limit system [START_REF] Conca | Homogenization in chemical reactive flows[END_REF]) and a function ξ ∈ L 2 (0, T ; L 2 (Ω)) such that, at least after extraction of a subsequence, we have the following convergences for all T > 0,

where ξε is given by (58).

Let q be the exponent satisfying [START_REF] Cioranescu | Homogenization in open sets with holes[END_REF]. Let q > 1 given by

Then, we have the following convergences for all T > 0,

Proof. By (54), we observe that the sequence {ũ ε } is bounded in the spaces L 2 (0, T ; H 1 0 (Ω))∩L q (0, T ; L q (Ω)), for all T > 0. Let us fix T > 0. Then, there exists a subsequence

ũε u weakly in L q (0, T ; L q (Ω)).

(66)

By the estimate (55), for each t ∈ [0, T ], we have that {ũ ε (t)} is bounded in H 1 0 (Ω), and since we have (65), we can deduce (59). By (59) and Rellich-Kondrachov Theorem, we obtain (60).

From the first estimate in (30) and (58), we have | ξε | Ω,T ≤ C, and hence, up a sequence, there exists ξ ∈ L 2 (0, T, L 2 (Ω)) such that ξε ξ weakly inL 2 (0, T ; L 2 (Ω)),

and we have (61). In order to prove (62), we observe that by the estimate (55), for each t ∈ [0, T ], we have that ξε is bounded in L 2 (Ω), and since we have (67), we can deduce (62).

By the arbitrariness of T > 0, all the convergences are satisfied, as we wanted to prove. Now, we analyze the convergences for the nonlinear term g. By Rellich-Kondrachov Theorem, we have the compact embedding

By the estimate (55), for each t ∈ [0, T ], we have that {ũ ε (t)} is bounded in H 1 0 (Ω). Then, the compact embedding H 1 0 (Ω) ⊂ L r (Ω) for all r ∈ [2, 2 ), implies that it is precompact in L r (Ω) for all r ∈ [2, 2 ). By the estimate (56), we see that the sequence {ũ ε } is bounded in L r (0, T ; L r (Ω)), for all T > 0 and for all r ∈ [2, 2 ). Then, we have that ũε (t) : [0, T ] -→ L r (Ω) is an equicontinuous family of functions.

Then, applying the Ascoli-Arzelà Theorem, we deduce that {ũ ε (t)} is a precompact sequence in C([0, T ]; L r (Ω)) for all r ∈ [2, 2 ). Hence, since we have (66) for all q ≥ 2, we can deduce that ũε → u strongly in C([0, T ]; L r (Ω)),