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Abstract

We report our recent development to model quadratic and cubic ultra-broadband

nonlinear dynamics in photonic devices, by means of a nonlinear single-

envelope equation. We present the case of generation of tunable visible light

from large band conversion, in a quadratic crystal, of the infrared continuum

from standard photonic crystal fibers. Moreover, we show the study of a

visible supercontinuum generation, initiated by second-harmonic generation,

in a quadratic poled germanium-doped microstructured fiber.
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1. Introduction

There is considerable interest in developing robust and compact optical

frequency sources in the ultraviolet (UV), visible, infrared (IR) and mid-

infrared (MIR, i.e. from 2− 12µm) spectral regions for spectroscopy, coher-

ence tomography, frequency metrology, few-cycle pulse generation, optical

sensing, and material processing. Nonlinear optical processes are usually

required to generate frequencies in regions not directly accessible through

well-developed broadband laser gain media. Spectral generation of new fre-

quency components is a inherent feature of nonlinear optics, and has been

studied intensively since the early 1960s [1]. In this context, several promis-

ing methods have been considered, including optical parametric oscillators

(OPOs) [2, 3], difference frequency generation (DFG) [4, 5, 6], and supercon-

tinuum (SC) generation [7, 8, 9, 10].

The particular process known as SC generation occurs when narrow-band

incident pulses undergo extreme nonlinear spectral broadening to yield a

broadband spectrally continuous output. First reported in bulk glasses [11],

SC has since been the subject of numerous investigations in a wide variety of

cubic nonlinear media, including solids, organic and inorganic liquids, gases,

and various type of waveguides. The advent of a new class of optical waveg-

uides in the form of a photonic crystal fiber (PCF) in the late 1990s has

attracted widespread interest throughout the scientific community, and led

to a revolution in the generation of ultrabroadband high brightness spectra

through SC generation [12, 13, 14]. SC PCF generation has already found

numerous applications in such diverse fields as spectroscopy, pulse compres-

sion, and the design of tunable ultrafast femtosecond laser sources. In a
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telecommunications context, the spectral slicing of broadband SC spectra

has also been proposed as a simple way to create multiwavelength optical

sources for dense wavelength division multiplexing applications.

SC PCFs are designed to provide a flat spectrum over a wide wavelength

range, but the produced spectrum is directly dependent on parameters such

as fiber material and structure, fiber length, pump power, pump wavelength.

In spite of the great flexibility in generating such a wide range of wavelengths,

it is not already demonstrated the possibility to synthetise a well defined

amplitude and phase profile of the SC spectrum directly by designing the

fiber or other system parameters.

A general and extremely flexible option for reaching wavelengths which

are difficult to obtain by employing cubic nonlinearities, or for shaping the

spectrum of PCF sources, could be provided by exploiting a mixture of

quadratic and cubic effects. In fact, quadratic nonlinear materials can be

properly engineered to generate, with high-efficiency, pulses with transform

limited duration, predetermined spectral and temporal shapes, and synchro-

nization [15, 16, 17]. Examples of the synthesis of super-Gaussian pulses and

of pairs of phase-coherent picosecond pulses with a given carrier-frequency

detuning, by designing aperiodically poled quadratic ferroelectric domains,

were recently given in Ref. [18, 19].

In this paper, we report our recent developments in the study of broad-

band quadratic and cubic interactions. The paper is organized as follows: in

Section 2 we introduce a single-envelope model to capture ultra-broadband

interactions in quadratic and cubic nonlinear media. Our equation, besides

providing a simple and powerful tool for analytical treatment due to its sim-
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plicity, can be easily solved with a modest computational effort. The only

alternative way to numerically describe ultrabroadband quadratic and cubic

phenomena is to solve directly Maxwell equations in the time domain, with

an immense computational burden. Section 3 reports the case of tunable light

sources from large band conversion of PCF continuum by quadratic crystals.

Section 4 considers the SC visible generation, initiated by second-harmonic

generation, in quadratic poled germanium-doped PCFs. Conclusions appear

in Section 5.

2. Single-envelope model for broadband interactions

Starting fromMaxwell equations (written in MKS units), neglecting trans-

verse dimensions (i.e considering the propagation of plane waves in bulk me-

dia or bound modes in waveguides), we can write the 1+1D wave equation

for the electric field E(z, t) [20]:

∂2E(z, t)

∂z2
−

1

c2
∂2

∂t2

∫ +∞

−∞

E(z, t′)ε(t− t′)dt′ =
1

ε0c2
∂2

∂t2
PNL(z, t). (1)

By defining the Fourier transform F [E](ω) = Ê(ω) =
∫+∞

−∞
E(t)e−iωtdt, we

can write (1) in frequency domain:

∂2Ê(z, ω)

∂z2
+

ω2

c2
ε̂(ω)Ê(z, ω) = −

ω2

ε0c2
P̂NL(z, ω), (2)

where c is the velocity of light in vacuum, ε0 is the vacuum dielectric per-

mittivity, ε̂(ω) = 1 + χ̂(ω), χ̂(ω) is the linear electric susceptibility and

k(ω) = (ω/c)
√

ε̂(ω) is the propagation constant. In the case of waveguides,

k(ω) is the wavenumber of the propagating mode. We now factor out the

fast dependence of the propagation coordinate from the electric field, for all

frequencies: Ê(z, ω) = Û(z, ω) exp[−ik(ω)z] [21]. This definition amounts to
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write the electric field as the product of a spatial carrier wave and a slowly

varying envelope. Since we remove the exact propagation constant at ev-

ery frequency, we can avoid to make a requirement on the bandwidth of the

pulses. The wave equation for the field Û reads as:

∂2Û(z, ω)

∂z2
− 2ik(ω)

∂Û(z, ω)

∂z
= −

ω2

ε0c2
P̂NL(z, ω)e

ik(ω)z. (3)

We make the slowly evolving wave approximation (SEWA) [21], that is

|∂zÛ | << 2k(ω)|Û |, and thus we can write

∂Û(z, ω)

∂z
= −i

ω2

2ε0c2k(ω)
P̂NL(z, ω)e

ik(ω)z, (4)

and from the definition of Û , we obtain the equation for the electric field:

∂Ê(z, ω)

∂z
+ ik(ω)Ê(z, ω) = −i

ω

2ε0cn(ω)
P̂NL(z, ω). (5)

This equation has been found by an heuristic method, and has been termed

Forward Maxwell Equation (FME) [22]. Once specified the form of nonlin-

earity, we can directly solve Eq.(5) in frequency domain with a standard

split-step Fourier method. When backward waves can be neglected, this

equation is equivalent to Maxwell equations [22, 23], but the numerical solu-

tion is much more efficient.

However, we can simplify further Eq. (5) by properly defining an enve-

lope. We consider the electric field E and the nonlinear polarization PNL as

the product of a complex envelope and a carrier wave:

E(z, t) =
1

2
A(z, t)eiω0t−iβ0z + c.c., (6)

PNL(z, t) =
1

2
Ap(z, t)e

iω0t−iβ0z + c.c, (7)
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that in frequency domain reads:

Ê(z, ω) =
1

2
Â(z, ω − ω0)e

−iβ0z +
1

2
Â∗(z,−ω − ω0)e

iβ0z,

P̂NL(z, ω) =
1

2
Âp(z, ω − ω0)e

−iβ0z +
1

2
Â∗

p(z,−ω − ω0)e
iβ0z,

where ω0 is a reference frequency, β0 = Re[k(ω0)]. Particular care must be

devoted to the definition of the complex envelope, since we do not want to

impose any limitation to the frequency extent of the signals. For nonlinear

media, a proper definition of the envelope is crucial [24, 25]. As usual in

the theory of modulation [26], we define the analytic representation of the

electric field:

Ẽ(z, t) = E(z, t) + iH[E](z, t), (8)

where

H[E](z, t) =
1

π
p.v.

∫ +∞

−∞

E(z, t′)

t− t′
dt′ (9)

is the Hilbert transform of the electric field (p.v. indicates the Cauchy prin-

cipal value of the integral). The Fourier transform of the analytic signal

reads:

ˆ̃E(z, ω) =



























2Ê(z, ω) if ω > 0

Ê(z, 0) if ω = 0

0 if ω < 0

, (10)

that is a signal that contains only the positive frequency content of the electric

field. Due to reality of E(z, t), its Fourier transform has Hermitian symmetry,

so that only the positive (or the negative) frequencies carry information, and

we can write:

Ê(z, ω) =
1

2
ˆ̃E(z, ω) +

1

2
ˆ̃E
∗

(z,−ω), (11)
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we can define the complex electric field envelope (6) as:

A(z, t) = Ẽ(z, t)e−iω0t+iβ0z, (12)

i.e. the inverse Fourier transform of the positive frequency content of E

shifted towards the low frequency part of the spectrum by an amount ω0. No

approximations on the frequency extent of the envelope has been done, and

supp{Â(z, ω)} = (−ω0,+∞).

The substitution of expressions of Ê(z, ω) and P̂NL(z, ω) in Eq. (5) and

the Taylor-expansion of k(ω) about ω0 yields:

∂Â(z,Ω)

∂z
+ i

[ ∞
∑

m=1

km
m!

Ωm

]

Â(z,Ω) = −i
ω

2n(ω)cε0
Âp(z,Ω), (13)

where Ω = ω − ω0 and km = ∂mk
∂ωm

(ω0). In order to obtain a time domain

equation we have to perform another approximation, i.e. we have to impose

that n(ω) is nearly constant in the frequency band of interest. Since we want

to take into account ultra-broad spectra, we require the validity of this condi-

tion on a band whose order of magnitude is the same of the carrier frequency,

that is ∂n(ω)
∂ω

|ω0
ω0 << n(ω0). Far from resonances, this requirement is fulfilled

in the majority of parametric processes in which all waves propagate in the

same direction. By inverse Fourier transform we obtain from (13)

∂A(z, t)

∂z
+ iD′A(z, t) = −i

ω0

2n0cε0

(

1−
i

ω0

∂

∂t

)

Ap(z, t), (14)

where we have defined the dispersive operator D′ =
∑

∞

m=1
1
m!
km(−i ∂

∂t
)m.

As a last step, we consider quadratic and cubic nonlinearities, in partic-

ular the following nonlinear polarization:

PNL(z, t) = P
(2)
NL(z, t) + P

(3)
NL(z, t) (15)
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= ε0χ
(2)E(z, t)2 + ε0χ

(3)E(z, t)
∫

R(t− t′)|E(z, t′)|2dt′.

(16)

where the causal R(t) = (1 − fr)δ(t) + frhr(t) includes both instantaneous

electronic and delayed Raman contributions [7]. The integrals are in the

range (−∞,+∞). As to quadratic nonlinearity,

P
(2)
NL(z, t) = ε0χ

(2)E(z, t)2

=
ε0χ

(2)

4

[

A2e2iω0t−2iβ0z + A∗2e−2iω0t+2iβ0z + 2|A|2
]

.

It is worth noting that, due to the definition of A, the first (second) term

in the square brackets contains only positive (negative) frequencies, whereas

the third has both. By going through the steps (8)-(12) we can define the

quadratic nonlinear polarization envelope [24, 25]:

A(2)
p (z, t) = P̃

(2)
NL(z, t)e

−iω0t+iβ0z

=
ε0χ

(2)

2

[

A2eiω0t−iβ0z +
(

|A|2 + iH[|A2|]
)

e−iω0t+iβ0z

]

(17)

Before inserting Eq. (17) into Eq. (14), the term |A|2 in Eqs. (17) de-

serves further comments, since it is centered around zero in frequency do-

main. In particular to obtain the nonlinear polarization envelope in Eq. (17)

we had to filter out the negative frequency components of P̂NL(ω), as done

for Ê(ω). We note however that (i) Â(z, ω − ω0) does not contain negative

frequency by definition, (ii) PNL is a small perturbation to the linear polar-

ization and (iii) negative frequencies cannot be phase-matched. It follows

that the task of filtering the negative frequency components of |A|2 can be

left to the propagation equation instead of having it explicitly in the defini-

tion of A(2)
p (z, t). In other words, when inserting Eq. (17) into Eq. (14), we

8



can write: |A|2 + iH[|A2|] ≈ 2|A|2. We have checked numerically the good

accuracy of this approximation. Even if this approximation in not necessary

in the numerical solution (it is straightforward to calculate the exact non-

linear polarization envelope in frequency domain), it is suitable to obtain a

simple and manageable model for further analytical investigations [27].

As to cubic nonlinearity,

P
(3)
NL(z, t) = ε0χ

(3)E(z, t)
∫

R(t− t′)|E(z, t′)|2dt′ (18)

and, after some algebra through the steps (8)-(12), we obtain

A(3)
p (z, t) =

ε0χ
(3)

2
A(z, t)

∫

dt′R(t′)|A(z, t− t′)|2 +

+
ε0χ

(3)

4
A∗(z, t)

∫

dt′R(t′)A2(z, t− t′)e−2iω0t
′

+

+
ε0χ

(3)

4
Ae2iω0t−2iβ0z

∫

dt′R(t′)A2(z, t− t′)e−2iω0t
′

. (19)

.

Examples of numerical solutions of Eqs.(14)–(17) (but neglecting the Ra-

man contribution) for describing harmonic wave and supercontinuum genera-

tion in quadratic and cubic nonlinear crystals were reported in Ref.[28]. The

method reported above can be extended to the case of several propagating

modes [29] and different electric field polarizations [30].

3. Infrared PCF supercontinuum and quadratic crystals

As mentioned, supercontinuum light generation in PCF has been devel-

oped very successfully during recent decades as a powerful concept for wide-

band fiber light sources. It relies on cubic nonlinear effects such as four-wave
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mixing, soliton propagation, cross-phase modulation and Raman conversion.

Efficient supercontinuum light generation requires a suitable design of the

dispersion relationship of the fiber. Microstructured PCFs offer new and

flexible ways to manipulate the light generation process. Special glasses with

high nonlinearity can also be used in the fiber core region [31]. By changing

the structure of the cladding, the linear and nonlinear properties of the PCF

can be adapted for pumping with different sources in order to generate the

targeted wavelength ranges. In silica PCFs, numerous studies have demon-

strated SC generation covering a wavelength range from UV (around 400nm)

to near-IR (2.2µm) [32]. By replacing the silica with other glasses such as

tellurite or heavy oxide SF-57 glasses [33], the SC spectrum is shifted towards

the higher infrared wavelengths up to about 4µm.

In spite of the great flexibility in generating such a wide range of wave-

lengths, the possibility to achieve a specific wavelength spectrum directly by

designing the fiber or other system parameters is not already demonstrated.

A single-pass frequency doubler device may convert the SC broadband in-

frared radiation into visible light with a tunable carrier wavelength, desired

temporal durations, and good-efficiency conversion [15, 16, 17]. To this end,

we can expoit the nonlinear envelope technique, introduced in Sec. 2, to sim-

ulate the dynamics of a SC PCF infrared radiation injected in a quadratic

crystal and to guide experiments of frequency conversion.

For a demonstration experiment, the setup depicted in Fig. 1 is employed.

A passively Q–switched Nd:YAG laser delivering 800ps pulses at 1064nm is

used as a pump source. The repetition rate and the peak power were 8kHz

and 10kW , respectively. Two half wave plates and a polarizer allowed to
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control the power and polarization direction of pump radiation. The pump

is coupled into a PCF by an aspheric lens with a coupling efficiency of 75%.

For fiber supercontinuum generation, we used a PCF with a core diameter

of 4.2µm whereas the hole diameter and the hole-to-hole spacing are 2.5µm

and 4µm respectively (Fig. 2). The zero dispersion wavelength for the fun-

damental guided mode is located close to 990nm (Fig. 2), and the mode

effective area is about 3.6µm2 at 1064 nm. The nonlinear refrative index is

2.7·10−20m2W−1. By coupling the pump radiation into a 8m long fiber in the

anomalous dispersion regime, we generated a broadband spectrum mainly ex-

tending in the infrared domain, induced by the combination of modulational

instability, solitonic propagation and cross-phase modulation effects. Fig. 3

reports a typical experimental SC spectrum at the output of the PCF, char-

acterized by an optical spectrum analyzer (OSA), and the spectrum obtained

through numerical simulations, averaged over 30 measurements to mimic the

integration time of the OSA. After the propagation through a spectral filter

(FEL1000) in order to remove any noise in the 400nm-800 nm band, the SC

extended in the IR range (1064− 2220nm) with an average power of 50mW .

We considered a compact SC system with a wide wavelength range, which

can be easily manipulated externally.

The SC is then focused onto a 2cm long quadratic biaxial LBO crystal, at

the temperature T = 27oC. As an example, we show the case of light prop-

agation in the principal plane XY of the biaxial crystal with the azimuthal

angle φ varying from 0o to 5o. The spectra were subsequently characterized by

the OSA. Fig. 4 reports a typical experimental spectrum at the output of the

quadratic LBO crystal, and the spectrum obtained through broadband nu-
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merical simulations. In fact, second harmonic generation (SHG) takes place

in the quadratic crystal, generating wavelengths in the visible band. Fig.

5 reports typical temporal profiles of signals generated in the visible range.

The wavelengths of the waves can be tuned by simply varying the azimuthal

angle of the LBO crystal. Fig. 6 reports experimental visible spectra at the

output of the quadratic LBO crystal, at different azimuthal crystal angle φ.

At φ = 0, a 100nm width spectrum in the visible domain is generated. Fig. 6

also shows the theoretical contour plots of the normalised parametric gain for

second harmonic generation varying the crystal azimuthal angle (the curves

are calculated from Sellmeier equations for LBO at temperature T = 27o C).

Reverse engineering [15] through the nonlinear envelope equation could

allow one to choose different crystals permitting the generation of waves in

different regions of the spectrum and/or with desired temporal durations. As

an example, the combination of a PCF designed for broadband SC generation

in the visible and a KDP crystal would lead to the generation of fields in the

UV spectrum.

4. Visible supercontinuum in optically poled PCFs

For many biomedical applications, it would be highly desirable to have

a fiber-based broadband, high-brightness source of light in the visible range

of the spectrum. An approach to generate visible optical SC is to use a

tapered PCF, where the zero-dispersion wavelength, initially located close to

the pump wavelength at, e.g., 800nm, is gradually shifted towards shorter

wavelengths [34]. As we saw in the previous section, a different approach to

visible SC generation may involves the frequency doubling of the infrared SC

by means of a quadratic crystal. Alternatively, visible SC may be directly
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generated in the fiber itself by exploiting its cubic and quadratic nonlinear

response.

Although the second-order order susceptibility is not present in silica

because of centrosimmetry, several experiments have indeed reported SHG

in germanium-doped silica fibers, due to either dipolar effects at the core-

cladding interface [35], or to a cascading process involving the third-order

nonlinearity mediated creation, from an initial doping-induced weak SHG,

of a static electric field which induces a grating for quasi-phase-matching

[36]. In all of these experiments, the SHG efficiency was not sufficient to

lead to visible SC generation when the fiber was pumped by an infrared

beam. In 2004, a method for visible SC generation was investigated by

several research teams [37]. The method consists of the double excitation

of a PCF by launching an IR radiation (1064nm) and its second harmonic

(532nm), the latter being generated through a nonlinear crystal. A spectral

broadening is obtained in the IR domain by means of solitonic effects, whereas

the visible spectrum is induced by the cross-phase modulation (XPM) of

the IR solitons on the harmonic pump wave. In that way, a significant

visible spectrum enlargement can be obtained for any value of the second-

harmonic (SH) power, even weak, its spectral width being determined by the

IR radiations velocities. It was also demonstrated that the dual pumping

process writes a permanent grating in the germanium-doped fiber, so that

efficient broadband SHG can be obtained directly from the poled fiber when

using the IR pump only [38]. Recent experiments have investigated the

limitations due to the Raman effect in the self-poling process occurring in a

germanium-doped standard single-mode fiber [39].
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Here, we consider and model the case of SC visible generation, initiated by

second-harmonic generation, in quadratic poled germanium-doped PCFs [38].

A passively Q–switched Nd:YAG laser delivering 650ps pulses at 1064nm

is used as a pump source. The repetition rate and the peak power were

12.5kHz and 2.5kW , respectively. The pump is coupled into a 4m-long

germanium-doped PCF. For fiber supercontinuum generation, we used a PCF

with a core diameter of 1.8µm whereas the average hole diameter is 2.1µm

and the pitch is 2.3µm (Fig. 7). The zero dispersion wavelength for the

fundamental guided mode is located close to 875nm (Fig. 7), and the mode

effective area is about 2.4µm2 at 1064 nm. The nonlinear refrative index is

2.6·10−20m2W−1. The PCF has been previously poled by both green (532nm)

and IR (1064nm) radiation beating. In the first 45cm of the PCF, a quadratic

square spatial modulation is estimated, with 0.001pm/V magnitude and Λ =

25.8µm grating period, respectively.

By coupling the pump radiation at 1064nm into the poled PCF, a broad-

band IR SC is produced by Raman self-frequency shifting solitons accompa-

nied by a lower amplitude, visible and symmetric XPM-induced SC, extend-

ing over about 200nm around 532nm. Fig. 8 reports a typical experimental

spectrum at the output of the PCF, characterized by the OSA. Fig. 9 reports

the spectrum obtained through numerical simulations. Fig. 9 illustrates the

numerical spectra at different lengths of the PCF, from 10cm up to 1m, for an

input pump pulse peak power of 1.25kW . At 10cm, MI-induced sidebands

appear next to the IR pump, and a narrowband SH wave is generated at

532nm. At 20cm, the pump spectrum broadens considerably owing to multi-

ple four-wave mixing, and correspondingly the spectrum around 532nm also
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broadens in a rather symmetric fashion. At 40cm, the IR spectrum broad-

ening is enhanced by Raman scattering towards the longer wavelengths; this

also leads to an asymmetric broadening of the visible spectrum up to about

800nm. Since the poling and the associated quadratic susceptibility stops at

45cm, for longer fiber lengths there is no further conversion from the IR to

the visible and the main effect is the continuous broadening towards longer

wavelength of the IR SC owing to the Raman induced soliton self-frequency

shift.

In addition to the output spectra, the numerical simulations also provide

the temporal intensity profile of the output fields. For example, Fig. 10

reports a portion of typical temporal profiles of signals generated in the

visible range, which exhibit fast sub-picosecond fluctuations. The inset in

Fig. 10 shows with a dashed red curve the bandpass filter used to slice the

visible spectrum.

5. Conclusions

We have presented a nonlinear single-envelope equation able to model

quadratic and cubic ultra-broadband nonlinear dynamics in photonic devices.

Owing to a proper formal definition of the complex envelope, it is possible

to treat pulses of arbitrary frequency content. A proper definition of the

envelope is crucial for second-order nonlinearities, due to the generation of

frequency components around zero. Previous works [7, 21], more focused on

cubic nonlinearities, did not consider this aspect. We have shown the case of

the generation of tunable visible light from large band conversion, in a LBO

quadratic crystal, of the infrared continuum from standard photonic crystal

fibers. Moreover, we have presented the modeling of a visible supercontinuum
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generation, initiated by second-harmonic generation, in a quadratic poled

germanium-doped microstructured fiber.
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Fig. 1. Experimental setup. Nd:YAG laser pump delivering 800ps pulses,

at 1064nm, 8kHz repetition rate; L1, L2, L3 lenses; λ/2 half wave plate;

P polarizer; F, filter; photonic crystal fiber (PCF); quadratic biaxial LBO

crystal; optical spectrum analyzer (OSA).

Fig. 2. Cross-sectional scanning electron microscope image of

PCF and calculated group velocity dispersion parameter D.

Fig. 3. Typical SC spectrum at the output of the PCF. Top, OSA

meausurement, bottom, numerical trace. Here, input peak power of 7.8kW .

Fig. 4. Spectrum at the output of the LBO crystal. Top, OSA meausure-

ment, bottom, numerical result. The azimuthal angle φ = 0o.

Fig. 5. Typical numerical temporal profiles filtered at 700nm at the

output of the LBO crystal.

Fig. 6. Top, OSA meausurement of visible spectra at the output of

the LBO crystal at different crystal azimuthal angles (φ = 0o, blue line;

φ = 3o, red line; φ = 4.5o, light blue line). Bottom, parametric gain for

second harmonic generation in LBO as a function of generated wavelength

and crystal azimuthal angle.

Fig. 7. Cross-sectional scanning electron microscope image of

the germanium-doped PCF and calculated group velocity disper-

sion parameter D.

Fig. 8. OSA measurement of typical spectrum at the output of the

germanium-doped PCF. Here, input peak power of 2.5kW .

Fig. 9. Numerical trace of typical spectrum at different lenghts of the

germanium-doped PCF. Here, input peak power of 1.25kW .
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Fig. 10. Portion of numerical temporal profiles filtered around 532nm

at the output of germanium-doped PCF. Dashed red curve, bandpass filter

used to slice the visible spectrum. Here, input peak power of 1.25kW .
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Figure 1: Experimental setup. Nd:YAG laser pump delivering 800ps pulses, at 1064nm,
8kHz repetition rate; L1, L2, L3 lenses; λ/2 half wave plate; P polarizer; F, filter; photonic
crystal fiber (PCF); quadratic biaxial LBO crystal; optical spectrum analyzer (OSA).
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Figure 2: Cross-sectional scanning electron microscope image of PCF and calculated group
velocity dispersion parameter D.
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Figure 3: Typical SC spectrum at the output of the PCF. Top, OSA meausurement,
bottom, numerical trace. Here, input peak power of 7.8kW .
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Figure 4: Spectrum at the output of the LBO crystal. Top, OSA meausurement, bottom,
numerical result. The azimuthal angle φ = 0o.
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Figure 5: Typical numerical temporal profiles filtered at 700nm at the output of the LBO
crystal.
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Figure 6: Top, OSA meausurement of visible spectra at the output of the LBO crystal at
different crystal azimuthal angles (φ = 0o, blue line; φ = 3o, red line; φ = 4.5o, light blue
line). Bottom, parametric gain for second harmonic generation in LBO as a function of
generated wavelength and crystal azimuthal angle.
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Figure 7: Cross-sectional scanning electron microscope image of the germanium-doped
PCF and calculated group velocity dispersion parameter D
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Figure 8: OSA measurement of typical spectrum at the output of the germanium-doped
PCF. Here, the input peak power is 2.5kW .
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Figure 9: Numerical trace of typical spectrum at different lenghts of the germanium-doped
PCF. Here, the input peak power is 1.25kW .
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Figure 10: Portion of numerical temporal profiles filtered around 532nm at the output
of germanium-doped PCF. Dashed red curve, bandpass filter used to slice the visible
spectrum. Here, input peak power of 1.25kW .
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