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A FREE BOUNDARY PROBLEM FOR THE STOKES EQUATIONS

François Bouchon1,2, Gunther H. Peichl3,∗, Mohamed Sayeh4

and Rachid Touzani1,2

Abstract. A free boundary problem for the Stokes equations governing a viscous flow with over-
determined condition on the free boundary is investigated. This free boundary problem is transformed
into a shape optimization one which consists in minimizing a Kohn–Vogelius energy cost functional.
Existence of the material derivatives of the states is proven and the corresponding variational problems
are derived. Existence of the shape derivative of the cost functional is also proven and the analytic
expression of the shape derivative is given in the Hadamard structure form.
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1. Introduction

This paper aims at studying a free boundary problem for fluid flows governed by the Stokes equations. This
problem originates from numerous applications such as magnetic shaping processes, where the shape of the fluid
is determined by the Lorentz force. For such configurations, the model is described by the fluid flow equations,
here the Stokes equations, and a pressure balance equation on the unknown boundary in the case where surface
tension effects are neglected. Depending on the application, two types of models can be considered: an interior
problem where the fluid is confined in a mould and has an internal unknown boundary and an exterior problem
where a part of the fluid boundary adheres to a solid and the remaining (unknown) part is free and is in contact
with the ambient air. We shall focus our study on this last case for two-dimensional geometries.

Consider a bounded C2,1 domain A ⊂ R
2 with boundary Γf . The fluid is considered in levitation around A

and occupies then the domain Ω = B\A, where B is a bounded domain with boundary Γ that contains A. Let
u and p stand for the fluid velocity and pressure respectively. Let f ∈ H1

loc(R
2)2 denote the density of a given

body force and g ∈ H
5
2 (Γf )2 such that ∫

Γf

g · ν = 0,

where ν is the outer unit normal vector to Γf .
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For a given scalar λ we consider the free boundary problem of determining the domain Ω occupied by the
fluid, the fluid velocity u and its pressure p such that:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 2 divσ(u) + ∇p = f in Ω,
div u = 0 in Ω,

u = g on Γf ,

u · ν = 0 on Γ,

νTσ(u)τ = 0 on Γ,

2 νTσ(u)ν − p = λ on Γ.

(1.1)

We start with the following observation concerning the scalar λ: if (Ω,u, p) is a solution of (1.1) corresponding
to λ = 0, then (Ω,u, p − λ) is a solution of the same problem where 0 would be replaced by λ. For technical
reasons, we will need to assume that

∫
Ω p = 0 by adding a constant to the pressure, therefore we need to keep

the scalar λ in our analysis.
Above, ν and τ are the outer normal and tangent unit vectors to the boundary Γ respectively and

σ(u) =
1
2
(∇u + ∇uT

)
is the symmetric deformation tensor. We note that the prescribed velocity g expresses the motion of the
‘mould’ Γf .

Problem (1.1) can be viewed as an analog of the Bernoulli free boundary problem, where the Laplace operator
is replaced by the Stokes operator. Assuming the existence of a solution to (1.1) we adopt the so-called Kohn–
Vogelius formulation, which applies for inverse problems (see [13, 14, 26] for instance) and which consists in
matching a Dirichlet and a Neumann problem. For an application of this technique to the Bernoulli free boundary
problem we refer to [3, 9].

Hence let (uD, pD), (uN , pN) denote for given Ω the solution of the following Dirichlet, respectively Neumann
problem: ⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

− 2 divσ(uD) + ∇pD = f in Ω,
div uD = 0 in Ω,
uD = g on Γf ,

νTσ(uD) τ = 0 on Γ,
uD · ν = 0 on Γ,

(1.2)

and ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− 2 divσ(uN ) + ∇pN = f in Ω,

div uN = 0 in Ω,
uN = g on Γf ,

νTσ(uN ) τ = 0 on Γ,

2 νTσ(uN ) ν − pN = λ on Γ.

(1.3)

Let us define the functional J on a suitable class of domains Ω by

J(Ω) = 2
∫

Ω

|σ(uD − uN )|2,

where

|σ(u)|2 :=
2∑

i,j=1

σ(u)2ij .
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We observe that J(Ω) = 0 if (u, Ω) is a solution of the free boundary problem (1.1) since then u = uD = uN .
Conversely, if J(Ω) = 0 Korn’s inequality implies uD = uN . Then (u, Ω) with u = uD = uN is a solution to
the free boundary problem. Thus Problem (1.1) is equivalent to the shape optimization problem:

Find Ω such that J(Ω) = min
Ω̃

J(Ω̃) = 0. (1.4)

Remark 1.1. Clearly the identity J(Ω) = 0 is equivalent to the existence of a constant α ∈ R such that

(uD, pD) = (uN , pN + α).

In this paper we focus on a sensitivity analysis of the cost functional J . The computation of the shape
gradient is complicated by the fact that applying the method of mapping to perturbations of Problem (1.2)
neither preserves the divergence condition divuD = 0 nor the boundary condition uD · ν = 0 on Γ . We address
this issue and propose a novel strategy to overcome the ensuing difficulties in Section 4.2. This technique only
needs the weak form of the material derivative of the states.

The slip boundary condition u · ν = 0 on Γ allows tangential velocities on the free boundary, but inflow
or outflow are not possible. This condition is appropriate for problems that involve free boundaries, flow past
chemically reacting walls, and other examples where the usual no-slip condition u = 0 is not valid. There
has been much discussion regarding the difference between the no-slip and slip boundary conditions. The no-
slip condition is well established (see, e.g. Girault and Raviart [11] or Galdi [10]) for moderate pressures and
velocities by direct observations and comparisons between numerical simulations and experimental results of a
large class of complex flow problems. However, early experiments demonstrated that gases at low temperatures
slip past solid surfaces. In particular, for sufficiently large Knudsen numbers velocity slip occurs at the wall
surface. Such a wall slip has also been observed in the flow of nonlinear fluids such as lubricants, hydraulic
fracturing fluids, biological fluids. A slip boundary condition is the appropriate physical model for a wide
variety of applications including flow problems with free boundaries such as the coating flow (see [18,20,22,25])
and flows past chemically reacting walls (see [4]).

Free boundary problems and inverse problems with similar boundary conditions on the free boundary have
already been investigated by several authors (see [2, 16]). Solonnikov [24] considered the problem of filling a
plane capillary. The problem of filling a circular capillary tube, coating flows and the steady flow in a capillary
tube which is partially filled with liquid were considered. The latter free boundary problem was first considered
by Sattinger [19] and investigated in more detail by Solonnikov [23]. As opposed to the problem discussed in
this paper the free boundary however is in contact with a rigid wall.

As in most of the cited papers, we consider the simplified model where the boundary conditions on the free
boundary do not take into account the surface tension terms. Thus, technical difficulties arising from the higher
derivative terms are ignored.

The remainder of this paper is organized as follows: in Section 2 we recall some basic concepts, and results
related to shape differentiation are given in Section 3. In Section 4 we prove the existence of the Eulerian
derivatives of the state functions uD and uN and give the variational formulas verified by them. In Section 5 we
prove the existence of the shape derivative of the functional J, and give its analytical representation together
with the proof of this expression.

The results presented in Section 3 require the C2,1 regularity of the boundary Γ . Therefore, although many
lemmas and theorems of other sections may required weaker assumptions, we consider Ω (and then A and B)
with C2,1 boundaries. Both domains A and B are assumed simply connected.

Remark 1.2. The results presented in this paper can be extended to the 3-dimensional case. This would need
to rewrite some of the technical tools in Section 3, since we use the tangential vector τ which is defined only in
the 2-dimensional situation.
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2. Discussion of the equations for uD and uN

In the following L2(Ω) and Hk(Ω) will stand for classical Lebesgue and Sobolev spaces. Moreover, for k ≥ 0,
we shall denote by Hk(Ω) the space of vector valued functions Hk(Ω)2.

To define the variational formulations we shall make use of the following Hilbert spaces:

V = {v ∈ H1(Ω) : v|Γf
= 0},

V0 = {v ∈ V : v · ν = 0 on Γ},
V0,Γ = {v ∈ H1(Ω) : v · ν = 0 on Γ},

Q = L2(Ω),

Q0 = {q ∈ Q :
∫

Ω

q = 0},

and the bilinear forms a : V × V → R, b : V ×Q→ R defined by

a(u,v) = 2
∫

Ω

σ(u) : σ(v),

b(u, q) = −
∫

Ω

q div u.

The Dirichlet problem can then be cast into the variational formulation:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find (uD, pD) ∈ V0,Γ ×Q0 such that:

a(uD,v) + b(v, pD) =
∫

Ω

f · v ∀ v ∈ V0,

b(uD, q) = 0 ∀ q ∈ Q0,

uD = g on Γf .

(2.1)

We remark that the pressure pD is determined by (1.2) only up to an additive constant.
Similarly one can derive a weak formulation of the Neumann problem (1.3):

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find (uN , pN ) ∈ H1(Ω) ×Q such that:

a(uN ,v) + b(v, pN ) =
∫

Ω

f · v + λ

∫
Γ

v · ν ∀ v ∈ V,

b(uN , q) = 0 ∀ q ∈ Q,

uN = g on Γf .

(2.2)

Existence and uniqueness of the solutions (uN , pN) ∈ H1(Ω) × Q and (uD, pD) ∈ V0,Γ × Q0 to the mixed
variational problems (2.1) and (2.2), follow from the following properties satisfied by the bilinear forms a and b,

(i) The bilinear form a is coercive, i.e. there is a constant C > 0 such that

a(v,v) ≥ C ‖v‖2
H1(Ω) ∀ v ∈ V,

(ii) The bilinear form b satisfies the inf-sup condition, i.e. there is a constant β > 0 such that

inf
q∈Q,q �=0

sup
v∈V,v �=0

b(v, q)
‖v‖H1(Ω)‖q‖L2(Ω)

> β.
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For further reference we recall the following regularity result:

Theorem 2.1 (see Thm. 4.1 in [8]).
Let Ω ∈ R

n be a bounded domain of class Ck,� with 1 ≤ k, 0 ≤ 
 ≤ 1. There exists a Lipschitz continuous
function f : R

n → R
n such that:

Ω = {y ∈ R
n, f(y) > 0}, ∂Ω = {y ∈ R

n, f(y) = 0}
and a neighborhood ω of ∂Ω such that:

f ∈ Ck,�(ω), ∇f 
= 0 on ω and ν = − ∇f
|∇f |

where ν is the outer unit normal to Ω on ∂Ω.

The verification of the inf-sup condition for (2.2) is based on the following Lemma which is adapted from [6].

Lemma 2.2. Let Ω ⊂ R
2 be a doubly connected C1,1-domain with boundary Γ∪Γf . Then there exists a constant

C > 0 such that for all p ∈ L2(Ω) there is a function v ∈ H1(Ω) satisfying

div v = p in Ω,

v = 0 on Γf ,

‖v‖H1 ≤ C‖p‖L2.

Proof. For given p ∈ L2(Ω), consider the problem⎧⎪⎨
⎪⎩

div v = p in Ω,
v = 0 on Γf ,

v = Kν on Γ

where K = 1
|Γ |
∫

Ω p.
The result follows from Lemma 3.3 in [1] observing that ν ∈ C0,1(ω) ⊂ W 1,∞(ω) ⊂ H1(ω) ⊂ H1/2(Γ ) by

Theorem 2.1. �

Using v ∈ V as specified by Lemma 2.2 one can show the inf-sup condition for problem (2.2) similarly as for
problem (2.1). Hence problem (2.2) is also well-posed.

We conclude this section with an interpretation of the boundary condition in (2.2) which is a priori not clear
since pN ∈ L2(Ω) only. We note that the first equation in (2.2) can be written as

2
∫

Ω

σ(u) : ∇v −
∫

Ω

p div v =
∫

Ω

f · v + λ

∫
Γ

v · ν, v ∈ V, (2.3)

which implies that the equation
−2 divσ(u) + ∇p = f (2.4)

is satisfied in the distributional sense. Since

(−2 div σ(u) + ∇p)i = div(−2σ(u) + pI)ei, i = 1, 2,

where ei is the ith vector of the canonical basis in R
2 and (−2σ(u)+pI)ei ∈ L2(Ω) we conclude that (−2σ(u)+

pI)ei ∈ H1(div, Ω), i = 1, 2. In view of Theorem 2.5 in [11], the normal component eT
i (−2σ(u) + pI)ν, i = 1, 2,

exists in H− 1
2 (Γ ) and the following Green’s formula holds for ϕ ∈ H1(Ω):

((−2σ(u) + pI)ei,∇ϕ) + (div(−2σ(u) + pI)ei, ϕ) =
〈
eT

i (−2σ(u) + pI)ν, ϕ
〉

(2.5)
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(〈·, ·〉 denotes the duality pairing between H
1
2 (Γ ) and H− 1

2 (Γ )). Since for ψ ∈ H1(Ω) one can verify

((−2σ(u) + pI)ei,∇ψi) = −2
∫

Ω

σ(u) : σ(ψ) +
∫

Ω

p divψ,

(div(−2σ(u) + pI)ei, ψi) = (−2 divσ(u) + ∇p, ψ)

we obtain the identity∫
Ω

(−2σ(u) : σ(ψ) + p divψ) +
∫

Ω

(−2 divσ(u) + ∇p) · ψ = 〈(−2σ(u) + pI)ν, ψ〉.

In view of (2.3) and (2.4) this implies

−λ
∫

Γ

ψ · ν = 〈(−2σ(u) + pI)ν, ψ〉.

Hence (u, p) ∈ H1(Ω) ×Q satisfies the boundary condition

(2σ(u) − pI) · ν = λν

in H− 1
2 (Γ ). If the solution turns out more regular, e.g. (uN , pN ) ∈ H2(Ω) ×H1(Ω) this implies

2νTσ(uN )τ = 0 on Γ,

2νTσ(uN )ν − p = λ on Γ.

A similar discussion can be carried out for (uD, pD).
In order to derive the shape derivative of J we need (uD, pD) ∈ H3(Ω)×H2(Ω) which is guaranteed by ([17],

Thm. 6.2):

Theorem 2.3. Assume that Γf and Γ are of class C3 and C4 respectively, f ∈ H1(Ω), g ∈ H
5
2 (Γf ), then

(uD, pD) ∈ H3(Ω) ×H2(Ω)

Moreover
‖uD‖3 + ‖pD‖2 ≤ C

(
‖f‖1 + ‖g‖ 5

2

)
.

We point out that under the assumptions of Theorem 2.3 we also have (uN , pN ) ∈ H3(Ω)×H2(Ω). Results in [2]
indicate that this regularity could be obtained assuming Ω ∈ C2,1 only (see also [5], Thm. IV.7.4). Given this
regularity of the solution one only needs C2,1-regularity of Ω to justify the derivation of the shape derivative of
J . Therefore we shall assume for the rest of the paper Ω ∈ C2,1 and (uD, pD), (uN , pN) ∈ H3(Ω) ×H2(Ω).

3. Some material on the shape derivative of J

In this section we briefly describe the idea of the shape derivative of J and recall some additional results
which will be needed in the sequel. For a more thorough exposition we refer to [8, 12, 21]. In order to define
the shape derivative of J we embed problems (1.2) and (1.3) into a family of perturbed problems which are
defined on perturbations of a C2,1 reference domain Ω constructed by perturbing the identity. Let U be a convex
bounded domain of class C2,1 such that Ω̄ ⊂ U and let

S = {h ∈ C2,1(Ū ,R2) : h = 0 on ∂U ∪ Γf and h · τ = 0 on Γ} (3.1)

be the space of feasible deformation fields endowed with the natural norm in C2(Ū ,R2). This choice of feasible
deformation fields anticipates the form of the shape gradient of J according to the Hadamard–Zolésio structure
theorem (see [7, 15]). For a fixed field h ∈ S define for every t ∈ R the mapping Ft : Ū → R

2 by

Ft = id+ th.
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For t sufficiently small Ft defines a family of C2-diffeomorphisms of U onto itself. For such t one sets

Ωt = Ft(Ω), Γt = Ft(Γ ),

hence Ω0 = Ω, Γ0 = Γ , Γf = Ft(Γf ) and Ω̄t ⊂ U . For each t sufficiently small we consider problems (1.2)t

and (1.3)t which correspond to problems (1.2) and (1.3) with (Ω,Γf , Γ ) replaced by (Ωt, Γf , Γt). In view of
the previous discussion (1.2)t and (1.3)t have unique weak solutions (uD,t, pD,t) ∈ V0,Γt × Q0,t, respectively
(uN,t, pN,t) ∈ H1(Ωt) ×Qt where

Qt = L2(Ωt),

Q0,t = {qt ∈ Qt :
∫

Ωt

qt = 0},

Set

J(Ωt) = 2
∫

Ωt

|σ(uD,t − uN,t)|2.

Then the Eulerian derivative of J at Ω in the direction h is defined as

J ′(Ω;h) = lim
t→0

1
t
(J(Ωt) − J(Ω)).

The functional J is called shape differentiable at Ω if J ′(Ω;h) exists for all h ∈ S and defines a continuous
linear functional on S.

In order to evaluate J(Ωt) − J(Ω) we transform J(Ωt) to an integral over the reference domain Ω. For this
purpose we refer any function ϕt : Ωt → R

k, k = 1, 2, to the reference domain using the transformation

ϕt = ϕt ◦ Ft : Ω → R
k.

Let us define the material and shape derivatives of a function depending on the domain.

Definition 3.1. Let u(Ω) be a function defined and depending on the domain Ω. The material derivative of u
in the direction h at Ω is the limit

u̇(h) := lim
t→0

u(Ωt) ◦ Ft − u(Ω)
t

,

when it exists. The local derivative also called shape derivative in the direction h at Ω is the limit

u′(h) := lim
t→0

u(Ωt) − u(Ω)
t

·

The general strategy to derive shape derivatives is to first transfer the problem back to the original boundary
before computing the limit, which results in the need to compute the material derivative. The chain rule combines
both by the identity

u̇(h) = u′(h) + ∇u · h.
Thus, if u does not depend on the geometry, one has

u′(h) = 0 and u̇(h) = ∇u · h.

The following technical results (see [8], Chap. 9) will be useful in deriving equations for the transported
solutions (ut

D, p
t
D) and (ut

N , p
t
N ).
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Lemma 3.2. Let ϕt ∈ H1(Ωt) and vt ∈ H1(Ωt). Then ϕt ∈ H1(Ω), vt ∈ H1(Ω) and we have

(∇ϕt) ◦ Ft = (∇ϕt)t = Mt∇ϕt,

(div vt) ◦ Ft = (div vt)t = MT
t : ∇vt,

where

Mt = (DFt)−T = (∇Ft)−1.

Here, D denotes the Jacobian matrix and ∇ = DT .
For further use we recall the definition of the tangential divergence of a vector field ϕ and the tangential

gradient of a sufficiently smooth function f :

divΓ ϕ = divϕ|Γ −∇ϕν · ν,
∇Γ f = ∇f|Γ − ∂f

∂ν
ν.

Next we briefly discuss the variation of the normal field νt. Let bt denote the signed distance function to Γt

such that νt = ∇bt. By ([8], Thm. 5.4.3) we have bt ∈ C2 in a neighborhood of Γt. Define

bt = bt ◦ Ft, νt = νt ◦ Ft.

Since Γ is the zero level set of bt we conclude that ∇bt is collinear to ν = ν0 and ∇bt = αν for some α > 0.
This implies

νt = ∇bt ◦ Ft = Mt∇bt = αMtν.

In view of |νt| = 1 one eventually obtains

νt =
Mtν

|Mtν| · (3.2)

Since ∇b provides an unitary C1,1-extension of ν to a neighborhood of Γ we deduce from (3.2) the following
properties of the normal and tangent vector fields:

Lemma 3.3. Let Ω be a C2,1 domain. We have:

(∇ν) ν = (∇τ) τ = 0, (3.3)
(∇ν) τ + (∇τ) ν = 0, (3.4)
(∇ν) τ = −(∇τ) ν = κτ. (3.5)

where κ denotes the curvature.

Proof. (3.3) and (3.4) follow by differentiating the identities |ν|2 = |τ |2 = 1, respectively ν · τ = 0. (3.5) is a
consequence of the following identities:

(∇ν) τ · ν = 0, (∇ν) τ · τ = divΓ ν = κ,

and (3.4). �

The relations (3.3)–(3.5) even hold on a neighborhood of Γ since b is defined and regular on a neighborhood
of Γ .

Finally we report some properties of the deformation fields h ∈ S.
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Lemma 3.4. Let h ∈ S. Then the following relations hold on Γ :

∇(h · ν) = (∇h) ν, (3.6)
divΓ h = κh · ν. (3.7)

Proof. Combining h = (h · ν)ν on Γ and (3.3) we obtain

∇(h · ν) = (∇h) ν + (∇ν)h = (∇h) ν + (h · ν)(∇ν) ν = (∇h) ν.

For the proof of (3.7) we observe that divΓ h does not depend on the extension h̃ of h into a neighborhood of
Γ . Since h = (h · ν) ν on Γ one can use the identity

h̃ = (h · ∇b)∇b = (h · ν) ν

for the computation of divΓ h. Thus we obtain

divΓ h = divΓ h̃ = div h̃ − (∇h̃) ν · ν.

Since ∇h̃ = ∇(h · ν) νT + (h · ν)∇ν, (3.3) leads to

(∇h̃) ν · ν = ∇(h · ν) νT ν · ν + (h · ν)(∇ν) ν · ν = ∇(h · ν) · ν.

Using div ν = κ we therefore find

divΓ h = div((h · ν)ν) −∇(h · ν) · ν
= ∇(h · ν) · ν + (h · ν) div ν −∇(h · ν) · ν = κ(h · ν). �

As a consequence of (3.2) and Lemma 3.4 we obtain the following expression for the material derivative of
the normal field (see also [12]).

Lemma 3.5. For each t sufficiently small νt is C1 in a neighborhood of Γ and t �→ νt(x) is differentiable at
t = 0 uniformly in x ∈ Γ and its derivative at 0 is given by the following expression:

ν̇ = −∇Γ (h · ν). (3.8)

A similar statement holds for the transported tangent vector τ t. This follows from the representation

τ t =
1

|Mtν| (−(Mtν · τ) ν + (Mtν · ν) τ).

Lemma 3.6. For f, g ∈ H2(Ω) the following integration by parts formula holds∫
∂Ω

f(∇g · τ) = −
∫

∂Ω

g(∇f · τ).

In particular we have for h ∈ S ∫
Γ

f∇hν · τ = −
∫

Γ

(∇f · τ)h · ν.

Proof. Recall that the following integration by parts formula holds for domains of class C2 and ϕ ∈ H2(Ω) and
ψ ∈ C1(Ω̄) such that ψ · ν = 0 on ∂Ω ∫

∂Ω

∇Γϕ · ψ = −
∫

∂Ω

ϕdivΓ ψ.
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Choose ϕ = g and ψ = fnτ where (fn) ⊂ C1(Ω̄) approximates f in H2(Ω) and τ is a continuously differentiable
extension of the tangent field to Ω which is unitary in a neighborhood of ∂Ω. Note that in such a neighborhood
of ∂Ω we have τ = (−by, bx) and hence div τ = 0. This entails

divΓ (fnτ) = ∇fn · τ −D(fnτ)ν · ν.

Then (3.5) implies
D(fnτ)ν · ν = Dfnν τ · ν + fnDτν · ν = 0.

Since ∇g · τ = ∇Γ g · τ we obtain ∫
∂Ω

fn(∇g · τ) = −
∫

∂Ω

g(∇fn · τ)

which implies the result. The second statement follows choosing g = h · ν using (3.6). Note that g vanishes
on Γf . �

We conclude this section with some well known formula:

dMt

dt
|t=0 = −∇h and then

dM−T
t

dt
|t=0 = ∇hT (3.9)

and
dδt
dt

|t=0 = div h (3.10)

where we have set δt = Det(DFt) = det(I + tDh).

4. Differentiability of the states

For each t ∈ I we define the bilinear forms at, ȧ : V × V → R and bt, ḃ : V ×Q→ R by

at(u,v) =
∫

Ω

δtM
T
t (Mt∇u + (Mt∇u)T ) : ∇v,

ȧ(u,v) = 2
∫

Ω

(div h)σ(u) : ∇v − 2
∫

Ω

σ(u) : ∇h∇v − 2
∫

Ω

∇h∇u : σ(v),

bt(u, q) = −
∫

Ω

δt q (MT
t : ∇u),

ḃ(u, q) = −
∫

Ω

q div h div u +
∫

Ω

q∇hT : ∇u.

4.1. Differentiability of t �→ (ut
N, pt

N)

It was shown in Section 2 that the family of perturbed Neumann problems (1.3)t is well posed in H1(Ωt)×Qt

for t in a sufficiently small neighborhood I of 0. We observe that the transported solutions (ut
N , p

t
N ) belong to

V ×Q. One can verify that (ut
N , p

t
N ) satisfies the following system.

Theorem 4.1. For each t ∈ I the pair (ut
N , p

t
N) ∈ H1(Ω) ×Q is the unique solution of the problem⎧⎪⎪⎪⎨

⎪⎪⎪⎩
at(ut

N , ϕ) + bt(ϕ, pt
N ) =

∫
Ω

δt f t · ϕ+ λ

∫
Γ

δt ϕ ·Mtν ∀ v ∈ V,

bt(ut
N , χ) = 0 ∀ χ ∈ Q,

ut
N = g on Γf .

(4.1)
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Proof. We just indicate the transformation of the boundary integral in (2.2)t describing the Neumann condition.
The transformation formula for boundary integrals implies∫

Γt

ϕt · νt =
∫

Γ

ϕt · νt δt|Mtν| =
∫

Γ

δtϕ
t ·Mtν

where we used (3.2) in the last step (see also [2], Lem. 3.1). �

Now we can state the main result of this section.

Theorem 4.2. The mapping t �→ (ut
N , p

t
N) is continuously strongly differentiable on a neighborhood of zero.

Furthermore,

(u̇N , ṗN) :=
∂

∂t
(ut

N , p
t
N )|t=0,

is the unique solution of the following variational problem:
⎧⎪⎨
⎪⎩

Find (u̇N , ṗN ) ∈ V ×Q such that:
a(u̇N , ϕ) + b(ϕ, ṗN ) = LN(ϕ) ∀ ϕ ∈ V,

b(u̇N , χ) = −ḃ(uN , χ) ∀ χ ∈ Q,

(4.2)

where LN(ϕ) is given by
LN(ϕ) := −ȧ(uN , ϕ) − ḃ(ϕ, pN ) + 
N (ϕ),

and


N(ϕ) =
∫

Ω

(div h f · ϕ+ ∇fTh · ϕ) + λ

∫
Γ

(div hϕ · ν − ϕ · (∇h) ν).

For ϕ ∈ V ∩ H2(Ω) one can represent 
N as


N(ϕ) =
∫

Ω

(div h f · ϕ+ ∇fTh · ϕ) + λ

∫
Γ

(∇ϕτ · τ)h · ν.

Proof. Let us consider the mapping

H = (H1, H2) : I × V ×Q→ V∗ ×Q∗

defined by
〈H1(t,w, θ), ϕ〉 = at(w + uN , ϕ) + bt(ϕ, θ)

− λ

∫
Γ

δt ϕ ·Mtν −
∫

Ω

δt f t · ϕ, ϕ ∈ V

〈H2(t,w, θ), χ〉 = bt(w + uN , χ), χ ∈ Q.

(4.3)

Then (ut
N − uN , p

t
N ) is the unique element of V ×Q which satisfies

H(t,ut
N − uN , p

t
N ) = 0

for each t ∈ I. Since

〈D(w,θ)H(0,0, pN)(δw, δθ), (ϕ, χ)〉 = (a(δw, ϕ) + b(ϕ, δθ), b(δw, χ)) (4.4)
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it follows from the discussion in Section 2 that D(w,θ)H(0,0, pN) is an isomorphism from V×Q onto V∗ ×Q∗.
Furthermore, one can verify that t �→ H(t,w, θ) is weakly differentiable for every (w, θ) ∈ V ×Q and

∂

∂t
〈H1(t,w, θ), ϕ〉 =

∂

∂t
at(w + uN , ϕ) +

∂

∂t
bt(ϕ, θ)

−
∫

Ω

δ̇t f t · ϕ−
∫

Ω

δt∇fT ◦ Fth · ϕ

− λ

∫
Γ

δ̇tϕ ·Mtν − λ

∫
Γ

δtϕ · Ṁtν

∂

∂t
〈H2(t,w, θ), χ〉 = ḃt(w + uN , χ).

Since the derivatives of δt and Mt with respect to t exist in L∞(Ω), respectively L∞(Ω,R2×2) one can show that
the limits defining the above weak derivatives can be taken uniformly with respect to ϕ ∈ V, respectively χ ∈ Q
which implies that t �→ H(t,w, θ) is strongly continuously differentiable. Therefore H satisfies the assumptions
of the implicit function theorem which ensures the strong differentiability of t �→ (ut

N , p
t
N ) in a neighborhood

of 0. Its derivative at 0, (u̇N , ṗN), is the unique solution of the system

〈D(w,θ)H(0,0, pN)(u̇N , ṗN ), (ϕ, χ)〉 = −
〈
∂

∂t
H(0,0, pN), (ϕ, χ)

〉

which reads

(〈D(w,θ)H1(0,0, pN)(u̇N , ṗN ), ϕ〉 , 〈D(w,θ)H2(0,0, pN)(u̇N , ṗN ), χ〉)
= − ∂

∂t
(〈H1(0,0, pN), ϕ〉, 〈H2(0,0, pN), χ〉)

which by (4.4) is equivalent to

a(u̇N , ϕ) + b(ϕ, ṗN ) = − ∂

∂t
〈H1(0,0, pN), ϕ〉

b(u̇N , χ) = − ∂

∂t
〈H2(0,0, pN), χ〉.

One can verify

∂

∂t
〈H2(0,0, pN), χ〉 = ḃ(uN , χ),

similarly

∂

∂t
〈H1(0,0, pN), ϕ〉 = ȧ(uN , ϕ) + ḃ(ϕ, pN ) −

∫
Ω

(div h f · ϕ+ (∇fT )h · ϕ)

− λ

∫
Γ

(div hϕ · ν − ϕ · (∇h) ν).
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For ϕ ∈ V ∩ H2(Ω) one can use Lemma 3.6 and (3.7), (3.3) and (3.5) to simplify the last term:∫
Γ

((div h)ϕ · ν − ϕ · ∇hν) =
∫

Γ

((div h−∇hν · ν)ϕ · ν − (ϕ · τ)∇hν · τ)

=
∫

Γ

(ϕ · ν divΓ h +
∫

Γ

(∇(ϕ · τ) · τ)h · ν

=
∫

Γ

(κϕ · ν + ∇ϕτ · τ + ∇τϕ · τ)h · ν

=
∫

Γ

(
κϕ · ν + ∇ϕτ · τ + (∇τν · τ)(ϕ · ν)

)
h · ν

=
∫

Γ

(∇ϕτ · τ)h · ν

which completes the proof of the theorem. �

4.2. Differentiability of t �→ (ut
D, pt

D)

The analysis of the differentiability of t �→ (ut
D, p

t
D) is more difficult since the family of perturbed prob-

lems (1.2)t is well posed only in the space V0,Γt × Q0,t. However, the transported solutions (ut
D, p

t
D) do not

belong to the subspace V0,Γ ×Q0. This is a significant difference to the discussion in the preceding section. At
first we note that the condition

∫
Ωt
pD,t = 0 leads to

∫
Ω
δt p

t
D = 0. Secondly we note that by (3.2) the condition

uD,t · νt = 0 on Γt is equivalent to

(uD,t · νt) ◦ Ft = ut
D · νt = ut

D · Mtν

|Mtν| = 0 on Γ.

Hence ut
D satisfies on Γ the boundary condition

MT
t ut

D · ν = 0 on Γ

and therefore does not belong to V0,Γ . Transforming (1.2)t to the reference domain we obtain

Lemma 4.3. For each t ∈ I the pair (ut
D, p

t
D) is the unique solution of the following problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (ut
D, p

t
D) ∈ H1(Ω) ×Qt

0, such that:

at(ut
D, ϕ

t) + bt(ϕt, pt
D) =

∫
Ω

δtf t · ϕt ∀ ϕt ∈ Vt
0,

bt(ut
D, χ

t) = 0, ∀ χt ∈ Qt
0,

ut
D = g on Γf ,

ut
D ·Mtν = 0 on Γ,

(4.5)

where

Vt
0 = {ϕ ∈ V : MT

t ϕ · ν = 0 on Γ},
Qt

0 = {χ ∈ Q :
∫

Ω

δtχ = 0}.

The boundary condition in Vt
0 suggests to consider

wt = MT
t (ut

D − u�
D),
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where (u�
D, p

�
D) is the solution of the following problem

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− div σ(u�
D) + ∇p�

D = 0 in Ω,
div u�

D = 0 in Ω,

u�
D = g on Γf ,

u�
D = 0 on Γ.

(4.6)

Observe that wt ∈ V0 holds for all t ∈ I. This motivates to introduce the following family of auxiliary
problems in V0 ×Q0: For each t ∈ I⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find (wt, p̂t
D) ∈ V0 ×Q0 such that:

at
(
M−T

t wt + u�
D,M

−T
t ϕ

)
+ bt

(
M−T

t ϕ, p̂t
D

)
=
∫

Ω

δt f t ·M−T
t ϕ ∀ ϕ ∈ V0,

bt
(
M−T

t wt + u�
D,

χ

δt

)
= 0, ∀ χ ∈ Q0.

(4.7)

Problems (4.5) and (4.7) are related as follows:

Lemma 4.4. Let (wt, p̂t
D) ∈ V0 ×Q0 be a solution of (4.7) and define

(ut
D, p

t
D) =

(
M−T

t wt + u�
D, p̂

t
D + c(t)

)
with

c(t) = −
∫

Ω
δtp̂

t
D∫

Ω δt

then (ut
D, p

t
D) ∈ H1(Ω) × Qt

0 is the solution of (4.5). Conversely if (ut
D, p

t
D) ∈ H1(Ω) × Qt

0 is the unique
solution of (4.5) then

(wt, p̂t
D) =

(
MT

t (ut
D − u�

D), pt
D − 1

|Ω|
∫

Ω

pt
D

)

is a solution of (4.7)

As a consequence we conclude that (4.7) admits a unique solution for every t ∈ I.

Lemma 4.5. The mapping t �→ (wt, p̂t
D) is continuously differentiable in a neighborhood of 0 and we have that

(ẇ, ˙̂pD) = ∂
∂t (w

t, p̂t
D)|t=0 ∈ V0 ×Q0 is the solution of the following variational problem:

⎧⎪⎨
⎪⎩

Find (ẇ, ˙̂pD) ∈ V0 ×Q0 such that:

a(ẇ, ϕ) + b(ϕ, ˙̂pD) = L̂D(ϕ) ∀ ϕ ∈ V0,

b(ẇ, χ) = −b(∇hT (uD − u�
D), χ) − ḃ(uD, χ) ∀ χ ∈ Q0

(4.8)

where

L̂D(ϕ) = −a(∇hT (uD − u�
D), ϕ) − a(uD,∇hTϕ) − ȧ(uD, ϕ)

− b(∇hTϕ, pD) − ḃ(ϕ, pD) +
∫

Ω

div hf · ϕ

+
∫

Ω

∇fT h · ϕ+
∫

Ω

f · ∇hTϕ.
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Proof. Defining the function H : I × V0 ×Q0 → V∗
0 ×Q∗

0 by

〈H1(t,w, θ), ϕ〉 = at(M−T
t w + u�

D,M
−T
t ϕ)

+ bt(M−T
t ϕ, θ) −

∫
Ω

δt f t ·M−T
t ϕ ∀ ϕ ∈ V0,

〈H2(t,w, θ), χ〉 = bt
(
M−T

t w + u�
D,

χ

δt

)
∀ χ ∈ Q0,

we note that (4.7) is equivalent to:

〈H(t,wt, p̂t
D), (ϕ, χ)〉 = 0, (ϕ, χ) ∈ V0 ×Q0.

Arguing as in the proof of Theorem 4.2 we find that t→ (wt, p̂t
D) is continuously differentiable in a neighborhood

of 0 and that (ẇt,˙̂pt
D) = ∂

∂t (w
t, p̂t

D)|t=0 satisfies:

⎧⎪⎨
⎪⎩
a(ẇ, ϕ) + b(ϕ, ˙̂pt

D) = − ∂

∂t
〈H1(0,w0, p̂0

D), ϕ〉 ∀ ϕ ∈ V0,

b(ẇ, χ) = − ∂

∂t
〈H2(0,w0, p̂0

D), χ〉, ∀ χ ∈ Q0.

(4.9)

Using (3.9) and (3.10) and the definition of the bilinear forms ȧ(u,v) and ḃ(u, v), and observing

w0 + u0
D = uD, p̂0

D = pD

we obtain after some calculations:

− ∂

∂t
〈H1(0,w0, p̂0

D), ϕ〉 = L̂D(ϕ).

Similarly one finds:

− ∂

∂t
〈H2(0,w0, p̂0

D), χ〉 = ḃ(uD, χ) + b(∇hT (uD − u�
D), χ) − b(uD, div hχ), χ ∈ Q0.

The last term however vanishes since div uD = 0. �

The differentiability of t �→ (wt, p̂t
D) then entails the differentiability of t �→ (ut

D, p
t
D) and c �→ c(t).

Theorem 4.6. The mapping t �→ (ut
D, p

t
D) is continuously differentiable in a neighborhood of 0 with respect to

the topology of V × Q. At t = 0 its derivative (u̇D, ṗD) ∈ V × Q is the solution of the following variational
problem: ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Find (u̇D, ṗD) ∈ V ×Q such that:
a(u̇D, ϕ) + b(ϕ, ṗD) = LD(ϕ) ∀ ϕ ∈ V0,

b(u̇D, χ) = −ḃ(uD, χ) ∀ χ ∈ Q0,

u̇D · ν = (∇hT )uD · ν on Γ,

where

LD(ϕ) := −ȧ(uD, ϕ) − ḃ(ϕ, pD) +
∫

Ω

div h f · ϕ+
∫

Ω

∇fT h · ϕ

−
∫

Γ

(2νTσ(uD)ν − pD)(∇hT τ · ν) (ϕ · τ).
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Proof. By Lemma 4.4 we have
(ut

D, p
t
D) = (M−T

t wt + u�
D, p̂

t
D + c(t)).

Then the differentiability of t �→ (ut
D, p

t
D) follows from Lemma 4.5. In particular we obtain

(u̇D, ṗD) =
(
∇hT (uD − u�

D) + ẇ, ˙̂pD + ċ(0)
)
.

Inserting this expression into (4.8) results in:

a(u̇D, ϕ) + b(ϕ, ṗD) = L̂D(ϕ) + a
(∇hT (uD − u�

D), ϕ
)

+ b(ϕ, ċ(0)), ϕ ∈ V0

b(u̇D, χ) = b(∇hT (uD − u�
D), χ) + b(ẇ, χ)

= −ḃ(uD, χ) = −
∫

Ω

χ∇hT : ∇uD, χ ∈ Q0.

Next observe that ϕ ∈ V0 implies

b(ϕ, ċ(0)) = ċ(0)
∫

Ω

divϕ = ċ(0)
∫

∂Ω

ϕ · ν = 0.

Furthermore one finds

L̂D(ϕ) + a(∇hT (uD − u�
D), ϕ) = −a(uD,∇hTϕ) − b(∇hTϕ, pD)

− ȧ(uD, ϕ) − ḃ(ϕ, pD) +
∫

Ω

div h f · ϕ+
∫

Ω

∇fTh · ϕ+
∫

Ω

f · ∇hTϕ.

We have, using (1.2)

a(uD,∇hTϕ) + b(∇hTϕ, pD) =
∫

Ω

f · ∇hTϕ+
∫

Γ

(2σ(uD)ν − pDν) · ∇hTϕ.

Decomposing successively 2σ(uD)ν−pDν and ϕ into its tangential and normal components one can verify using
the boundary condition for uD and ϕ · ν = 0 on Γ∫

Γ

(2σ(uD)ν − pDν) · ∇hTϕ =
∫

Γ

(2σ(uD)ν · ν − pD)(ϕ · τ)∇hT τ · ν

which inserted into L̂D(ϕ) + a(∇hT (uD − u�
D), ϕ) leads to the expression given for LD(ϕ).

The weak form of the boundary condition for uD,t on Γ can be expressed as

∫
Γ

δt χut
D ·Mtν = 0, χ ∈ L2(Γ ), t ∈ I.

Differentiating this identity at t = 0 results in∫
Γ

div hχuD · ν +
∫

Γ

χ u̇D · ν −
∫

Γ

χuD · ∇hν = 0

which implies the boundary condition for u̇D on Γ

u̇D · ν = ∇hT uD · ν. �
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5. The differentiability of t �→ J(Ωt)

In this section we analyze the Eulerian derivative of J at Ω in a direction h ∈ S. For this purpose we shall
need the following two auxiliary results.

Lemma 5.1. The following equalities hold on Γ

σ(uD) : σ(uD) = 2(νTσ(uD)ν)2,

σ(uN ) : σ(uN ) =
1
2
(pN + λ)2.

Proof. Let u ∈ V denote either uN or uD. Then

tr σ(u) = div u = 0

implies
νTσ(u)ν = −τTσ(u)τ.

Defining the orthogonal matrix O = (ν, τ) the boundary condition νTσ(u)τ = 0 on Γ implies

OTσ(u)O =

(
νTσ(u)ν νTσ(u)τ

−τTσ(u)ν τTσ(u)τ

)
= νTσ(u)ν

(
1 0

0 −1

)

and therefore

σ(u) = νTσ(u)ν O
(

1 0
0 −1

)
OT .

This entails
σ(u) : σ(u) = tr (σ(u)σ(u)) = 2(νTσ(u)ν)2.

Substituting uN , respectively uD for u yields the desired result. �

Lemma 5.2. For A = AT ∈ H1(Ω,R2×2), h ∈ S and ϕ ∈ H2(Ω) we have∫
Ω

A : ∇h∇ϕ =
∫

Γ

∇ϕT h · Aν −
∫

Ω

divA · ∇ϕT h−
∫

Ω

(
(h · ∇)σ(ϕ)

)
: A.

Proof. This identity can be verified by integration by parts. �

Theorem 5.3. The functional

J(Ωt) = 2
∫

Ωt

|σ(uD,t − uN,t)|2 (5.1)

is shape differentiable at Ω. For h ∈ S the Eulerian derivative is given by

J ′(Ω,h) = 2
∫

Γ

(
f · (uN − uD) +

(∇(pD − 2νTσ(uD)ν)
) · uD

+ (|σ(uD)|2 − |σ(uN )|2)
)
h · ν

Alternatively, J ′(Ω;h) can be represented as

J ′(Ω;h) = 2
∫

Γ

(
f · uN +

(
ΔuD − 2∇(νTσ(uD)ν)

) · uD

+ 2(νTσ(uD) ν)2 − 1
2
(λ+ pN )2

)
h · ν.
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Proof. We now use the argument mentioned in the introduction: if (uN , pN ) is the unique solution of (1.3)
corresponding to λ then (uN , pN − α) is the unique solution of (1.3) corresponding to the boundary condition
λ + α, α ∈ R. Therefore, replacing λ by a suitable value λ̄ we may assume without loss of generality that the
corresponding solution (uN , p̄N ) of (1.3) with λ replaced by λ̄ satisfies p̄N ∈ Q0. Furthermore, note

p̄N + λ̄ = pN + λ. (5.2)

Transforming the cost functional (5.1) to the reference domain we obtain

J(Ωt) = at(ut
D − ut

N ,u
t
D − ut

N )

and hence by Theorems 4.2 and 4.6

J ′(Ω;h) =
d
dt
J(Ωt)|t=0 = 2a(u̇D − u̇N ,uD − uN ) + ȧ(uD − uN ,uD − uN )

=: S1 + S2

where

S1 = 2a(u̇N ,uN − uD) + ȧ(uD − uN ,uD − uN )
S2 = 2a(u̇D,uD − uN ).

Using (4.2) we obtain

S1 = 2LN(uN − uD) + ȧ(uD − uN ,uD − uN )

= −2ȧ(uN ,uN − uD) + ȧ(uD − uN ,uD − uN ) − 2ḃ(uN − uD, p̄N)
+ 2
N (uN − uD)

= ȧ(uD,uD) − ȧ(uN ,uN ) − 2ḃ(uN − uD, p̄N ) + 2
N (uN − uD).

Integrating S2 by parts and using (1.2) and (1.3) with λ, pN replaced by λ̄, p̄N respectively we obtain

S2 = 2a(u̇D,uD − uN )

= −4
∫

Ω

div(σ(uD − uN )) · u̇D + 4
∫

Γ

νTσ(uD − uN )u̇D

= −2
∫

Ω

∇(pD − p̄N ) · u̇D + 4
∫

Γ

νTσ(uD − uN )u̇D

= 2
∫

Ω

(pD − p̄N ) div u̇D + 2
∫

Γ

(2σ(uD − uN )ν − (pD − p̄N)ν) · u̇D

= 2
∫

Ω

(pD − p̄N ) div u̇D + 2
∫

Γ

(2νTσ(uD)ν − pD − λ̄) u̇D · ν.

The latter expression follows from the fact that

(2σ(uD − uN ) ν − (pD − p̄N ) ν) · τ = 0 on Γ.

From Theorem 4.6 we deduce div u̇D = ∇hT : ∇uD weakly in Q0 and u̇D · ν = ∇hT uD · ν on Γ . This together
with the definition of ḃ eventually leads to

S2 = 2
∫

Ω

(pD − p̄N)∇hT : ∇uD + 2
∫

Γ

(2νTσ(uD)ν − pD − λ̄)∇hν · uD

= 2ḃ(uD, pD − p̄N ) + 2
∫

Γ

(2νTσ(uD)ν − pD − λ̄)∇hν · uD.
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Summarizing we obtain the following preliminary representation for the Eulerian derivative of J

J ′(Ω;h) = ȧ(uD,uD) + 2ḃ(uD, pD) − (ȧ(uN ,uN ) + 2ḃ(uN , p̄N ))

+ 2
N(uN − uD) + 2
∫

Γ

(2νTσ(uD)ν − pD − λ̄)∇hν · uD.

Let us compute the quantities:

TN = ȧ(uN ,uN ) + 2ḃ(uN , p̄N ),

TD = ȧ(uD,uD) + 2ḃ(uD, pD).

Applying Lemma 5.2 with A = 2σ(uN ) − p̄N I to TN results in

TN = −2
∫

Ω

(2σ(uN ) − p̄NI) : ∇h∇uN + 2
∫

Ω

div h|σ(uN )|2

= 2
∫

Ω

div(2σ(uN ) − p̄NI) · ∇uT
Nh + 2

∫
Ω

(
2(h · ∇)σ(uN ) + div hσ(uN )

)
: σ(uN )

− 2
∫

Ω

(h · ∇)σ(uN ) : p̄NI − 2
∫

Γ

∇uT
Nh · (2σ(uN ) − p̄NI)ν.

Observe
I : (h · ∇)σ(uN ) = (h · ∇) div uN = 0

and ∫
Ω

(
2(h · ∇)σ(uN ) + div hσ(uN )

)
: σ(uN ) =

∫
Ω

div(h|σ(uN )|2) =
∫

Γ

|σ(uN )|2h · ν

and on Γ
2σ(uN )ν − p̄Nν = λ̄ν

Therefore we obtain

TN = −2
∫

Ω

f · ∇uT
Nh + 2

∫
Γ

|σ(uN )|2h · ν − 2
∫

Γ

λ̄(νT∇uNν) h · ν

Similarly TD can be expressed as

TD = −2
∫

Ω

f · ∇uT
Dh + 2

∫
Γ

|σ(uD)|2h · ν − 2
∫

Γ

(2νTσ(uD)ν − pD) (νT∇uDν) h · ν.

Then J ′(Ω;h) can be written as

J ′(Ω;h) = 2
∫

Ω

f · ∇(uN − uD)Th + 2
∫

Γ

(|σ(uD)|2 − |σ(uN )|2)h · ν

+ 2
∫

Γ

(2νTσ(uD)ν − pD − λ̄)∇hν · uD − [(2νTσ(uD)ν − pD) (νT∇uDν)]h · ν

+ 2
N(uN − uD) + 2
∫

Γ

λ̄(νT∇uNν)h · ν

Let us consider the term

R = 2
∫

Γ

(2νTσ(uD)ν − pD − λ̄)∇hν · uD − [(2νTσ(uD)ν − pD) (νT∇uDν)]h · ν
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Since (uD, pD) ∈ H3(Ω)×H2(Ω) and ν respectively τ can be extended to an unitary vector field in C1,1(Ω)
by Theorem 2.1, on can verify that f = (2νTσ(uD)ν − pD − λ̄) uD · τ ∈ H2(Ω).

Since
∇hν · uD = (∇hν · τ) (uD · τ)

one can apply Lemma 3.6 with f = (2νTσ(uD)ν − pD − λ̄) uD · τ to obtain
∫

Γ

(2νTσ(uD)ν − pD − λ̄) uD · τ ∇hν · τ

= −
∫

Γ

∇[(2νTσ(uD)ν − pD − λ̄) uD · τ ] · τ h · ν

=
∫

Γ

[∇(pD − 2νTσ(uD)ν) · uD + (λ̄+ pD − 2νTσ(uD)ν)∇uDτ · τ ] h · ν

Then

R = 2
∫

Γ

(∇(pD − 2νTσ(uD)ν) · uD + (pD − 2νTσ(uD)ν)(∇uDτ · τ + ∇uDν · ν)
+ λ̄∇uDτ · τ

)
h · ν

In view of
∇uDτ · τ + ∇uDν · ν = div uD = 0

we arrive at

R = 2
∫

Γ

(∇(pD − 2νTσ(uD)ν) · uD + λ̄∇uDτ · τ
)
h · ν.

Therefore using the expression of 
N and R one can easily verify that J ′(Ω;h) can be written as

J ′(Ω;h) = 2
∫

Ω

f · ∇(uN − uD)Th + (f div h + ∇fT h) · (uN − uD)

+ 2
∫

Γ

(
λ̄(νT∇(uN )ν + τT∇uNτ) + (|σ(uD)|2 − |σ(uN )|2)

+
(∇(pD − 2νTσ(uD)ν)

) · uD

)
h · ν.

Finally observing νT∇uNν + τT∇uN τ = div uN = 0 and∫
Ω

f · ∇(uN − uD)Th + (f div h + ∇fT h) · (uN − uD) =
∫

Ω

div(f · (uN − uD) h)

=
∫

Γ

f · (uN − uD) h · ν,

we get

J ′(Ω,h) = 2
∫

Γ

(
f · (uN − uD) + ∇(pD − 2νTσ(uD)ν) · uD

+ (|σ(uD)|2 − |σ(uN )|2)
)
h · ν.

For the second representation of J ′(Ω;h) use div 2σ(uD) = ΔuD since div uD = 0 and Lemma 5.1. �
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6. Conclusion

We have analyzed the shape derivative of a cost functional for an over determined Stokes problem which
measures the gap between the solutions of the associated Dirichlet and Neumann problems. We proposed a
possibility to overcome the difficulty arising from the fact that applying the method of mapping to the Dirichlet
problem neither preserves the slip boundary condition for the velocity nor the normalizing condition for the
pressure. We established the existence of the material derivatives of the states and derived the corresponding
variational problems. They alone were used in the derivation of the shape derivative of the cost functional which
eventually was expressed in terms of a boundary integral. This information can be combined with a level set
technique to construct an efficient numerical iterative scheme to solve the free boundary Stokes problem which
is ongoing research. For further algorithmic details in the context of the Bernoulli free boundary problem we
refer to [3].
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