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Rayleigh Taylor like instability in a foam film

Evgenia Shabalina, Antoine Bérut, Mathilde Cavelier, Arnaud Saint-Jalmes and Isabelle Cantat
Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F- 35000 Rennes
(Dated: December 13, 2019)

It is well known, since the seminal work of Mysels et al., that the thinner parts of a foam film
go up by gravity, whereas the thicker parts go down. Preparing a foam film in a controlled way, so
that the top part of the film is much thicker than the bottom part at initial time, we show that this
situation is indeed unstable under gravity. The observed instability is identified as a Rayleigh-Taylor
like instability and studied in the linear regime. The wavelength and the growth rate are measured
as a function of the effective gravity, and as a function of the thick film extension. We theoretically
show that all wavelengths are unstable, as the surface tension stabilizing the small wavelengths in
the classical bulk Rayleigh Taylor instability has no significant equivalent in a foam film. The fastest
mode is analytically determined and is in qualitative agreement with the experimental observations.

I. INTRODUCTION

Inside an aqueous foam, gas bubbles are packed and
separated by thin liquid films. The existence of such a
foam directly relies on the ability to stabilize these films
at a finite thickness. For that purpose, surfactants need
to be added to the aqueous phase: they can then adsorb
on the gas-liquid interfaces, and eventually provide some
stabilizing mechanisms.

In parallel, both when a foam ages and when it flows,
the arrangement of the bubbles does not remain still,
and bubbles keep swapping their relative positions. This
implies that the liquid films are contracted, elongated,
deformed and that some films vanish while others are
created. As a consequence, some liquid flows are induced
inside the films, and the liquid is dynamically distributed
between the films and the menisci to which they are con-
nected (also known as 'Plateau borders’).

The liquid flow in such surfactant-stabilized films has
some specific features. On one hand, the liquid is strongly
confined between the two interfaces covered by surfac-
tants, and any flow relatively to these interfaces is highly
dissipative; this effect appears to be a key element for
understanding the high effective viscosity of liquid foams
[1, 2]. On the other hand, the in-plane mobility of the
liquid is very high, so that turbulent flows can be eas-
ily induced in dedicated experimental configurations. In
consequence, surfactant-stabilized liquid films have been
used as a model system to reach high Reynolds numbers
and to study turbulence in 2D [3, 4].

For all these reasons, understanding all the equilibrium
and dynamical properties of an aqueous foams requires
to unravel the interactions and flows acting at the scale
of the liquid films. Many experimental results have been
collected by monitoring a single liquid film. A large liter-
ature is available on horizontal films held on solid frames,
especially in the framework of the ’thin film balance’ ap-
paratus [5, 6]. With this setup, one can focus on the small
thickness regime (due to high capillary suction by the
meniscus), and on the repulsive and attractive forces be-
tween the two surfactant-covered layers. Over the years,
such experiments have brought many new insights on
the required conditions for film stability, as well as on

confinement effects (like stratification, [5, 6]). However,
gravity plays no role in these horizontal films, and only
smooth radial flows - due to capillary suction towards
the surrounding meniscus - can be monitored. Thus, this
setup is not suited for investigating flows induced during
fast dynamical changes of film area, like those occurring
during bubble swapping.

On the opposite, other experiments have been per-
formed on single vertical films, most generally held on
large (centimeters) solid frames. In such conditions, the
gravitational drainage of a film can be studied [7-11].
Subtle effects, like 'pinching’ or 'marginal regeneration’
[7, 12], have then been evidenced, illustrating the non-
trivial flows occurring in such vertical films. It is indeed
well known since the seminal work of Mysels [7] that thin-
ner parts of a foam film move up by gravity, whereas the
thicker parts go down. A continuous injection of surfac-
tant solution inside a vertical film can also be done to
sustain high film thickness of a few microns. As pointed
out previously, 2D turbulence has actually been studied
with such sustained vertical films [3, 4]. Nevertheless,
these films are then far from those found in usual foams,
both in terms of size, thickness and velocity scales.

More recently, to fill the gap between a single isolated
film and a 3D opaque foam, experiments have been per-
formed on system which can be considered as the ele-
mentary building blocks of a foam, meaning a few films
connected to one (or a few) meniscus [13-20]. The main
goal is then to identify non-trivial features occurring at
the connections between free films and menisci. Together
with the fact that these clusters of films are relatively
easy to build, one of their advantages is that they allow to
visualize and to monitor the various flows, deformations
and out-of-equilibrium film thicknesses [21]. Another ad-
vantage is that these elementary clusters can be activated
on purpose: one can trigger re-organization of films, con-
trol flows in films, etc... Also - as shown in the following
article - one can also easily change the setup orientation
to tune the effects of gravity. In parallel, by continuing
to study such clusters of films and menisci, one can also
expect to shed light on the efficiency of these elementary
building blocks to mimic 3D foams. In fact, how far one
can transpose the observations made on film clusters to



any foams remains to be fully elucidated, especially in
terms of bubble sizes, liquid fractions, or chemical for-
mulation.

Here, we present results performed on a new type of
film/meniscus cluster, and allowing us to prepare one
of the foam film in a controlled way, so that the top
part of this film is initially much thicker than the bottom
part. We show that this situation is indeed unstable un-
der gravity and we identify this instability as a Rayleigh
Taylor instability [22]. The wavelength and the growth
rate are measured in the linear regime as a function of
the effective gravity, and as a function of the film exten-
sion. We built a model involving viscous, gravitational,
and inertial contributions. The fastest mode is analyti-
cally determined and is in qualitative agreement with the
experimental observations.

II. EXPERIMENTAL SET-UP

The set-up and the reference frame are schematized in
Fig. 1. A horizontal free meniscus of width w = 5 cm
is connected to three flat rectangular foam films. For
one of these films, denoted by F in the following, the
edge parallel to the free meniscus can translate along the
lateral edges, and its position is controlled by a piezo
translation stage. Its area is thus w x L(t) with L(t) the
distance between the moving edge and the free meniscus.
The two other films F’ and F” are of area w X L;4;, with
Lo = 13mm.
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FIG. 1. Scheme of the experimental set-up and notations
used in the text. Light blue represent the three foam films
connected along the free meniscus (dark blue). They are sup-
ported by a deformable metallic frame : the red lines are the
immobile edges and the black line is the mobile edge. The de-
formable film F' is illuminated with the white light WL and
recorded in reflection with the color camera CC. The whole
set-up is on a table which can be tilted by an angle 6.

We define as x the meniscus direction, and as (z, 2)

the plane of the film of interest F'. We use two variants
of the same set-up. The first one (set-up A) is on a
table which inclination 6 can be controlled in the range
[0 —9°], so that the direction z makes an angle 6 with
the horizontal. With these conventions, the projection of
the gravity vector on the film plane is —ge,, with g =
gsin@. In the second one (set-up B), the film F is placed
vertically, with the free meniscus at the top, so 6 = /2.
We describe below the protocol for set-up (A), the one
for set-up (B) being similar.

We used two different foaming solutions. Solution S,
is made of sodium dodecyl sulfate (SDS) at 5.6 g/L and
glycerol at 15 % of volume. In solution S, we added
dodecanol at 0.05 g/L. The bulk viscosity is n = 1.51073
Pa.s, the density is p = 1.05103kg/m® and the surface
tension is v = 29mN/m for the S, and 30mN/m for S
[23]. The films are prepared by immersing the frame into
a vessel containing the foaming solution and by removing
slowly the vessel. The film drains during 15 s, then is
extended at t=0, by moving the piezo stage at velocity
U= 80 mm/s, so that L(¢) varies from Ly = 6mm to
Lo+ AL = 19 mm. The film F' is observed at a frame
rate of 60 Hz with a color camera Imaging Source DFK 23
UMO021, with 1280 x 960 pixels. The incident light is in
the (x,y) plane and the camera is at the mirror position.

A spectral camera Resonon Pika L has also been used
to record the light spectrum reflected by the film F', along
a line perpendicular to the free meniscus. As discussed
in section IT B, this provides the film thickness.

A. Qualitative description of the flow

An example of film evolution during and after the dis-
placement of its moving edge is shown in Fig. 2, for the
case of set-up (B). The images are all cropped just below
free meniscus (see the few black lines at the top of the
images). This meniscus remains almost at a constant po-
sition during the deformation. The moving edge appears
in black at the bottom of the film. It begins to move at
image (a) and stops at image (d).

The shape of the film F remains flat and rectangular
and its area wL(t) increases at the rate imposed by the
linear stage motion. As already shown in [17], this area
variation is first insured by an extension of the foam film
initially present (denoted as the initial film in the follow-
ing), which lead to the increase of the surface tension.
When the film tension becomes large enough, the initial
film becomes able to pull on the meniscus and to extract
volume and interface from this reservoir: new pieces of
film, hereafter called the Frankel’s films, are extracted
from the menisci bounding the deformed film [7].

Consistently, the initial film is first stretched and get
thinner between images (a) and (d). Colors indicate for
example a thickness of 450 nm in (b) (dark blue), and
350 nm in (d) (yellow). In image (¢) the gray bands
appearing at the top and bottom are the Frankel’s films
extracted from the menisci. They are thus much thicker



FIG. 2. Images of the film at the times [0, 67, 83, 167, 250,
284, 384, 1467] ms, in the vertical case, solution Sp. In the z
direction, the whole height is shown, from the moving menis-
cus at the bottom (see the white arrow on images (a-d)) to
the free meniscus at the top of the image. In the z direction,
the image is cropped in the central part of the film, and only
10.3 mm are visible. The remaining part of the film evolves
similarly, excepted close to the lateral sides. The bottom edge
moves over 13 mm during the first 100 ms (images (a - d)),
at a velocity of 80 mm/s.

than the initial film and a sharp frontier separates them
from it.

The Frankel’s film extracted from the bottom meniscus
(located on the moving edge) remains stable, whereas the
one extracted from the top meniscus (the free one) desta-
bilizes after a fraction of second. Its frontier with the ini-
tial film exhibits a relatively regular and sinusoidal shape
for a while (image (d)) and then produces drop-like struc-
tures reminiscent of a usual Rayleigh Taylor instability
(images (e) and (f)). These drops of thick film eventually
detach from the top Frankel’s film and fall through the
initial film until they merge with the bottom Frankel’s
film (images (g) and (h)).

In this paper, we focus on the linear regime of the grav-
itational destabilization of the top Frankel’s film. Note
that, even before the motor motion, some spots move up
in the film by a process known as marginal regeneration
[7]. They are thinner than the surrounding film, and pro-
duced at the frontier between the menisci and the thin
film, by marginal pinching [12]. As the thickness differ-
ence is small, their upward velocity is smaller than the
velocity of the instability, as observed qualitatively by
following patterns in Fig. 2. They do not influence the
dynamics of interest.

B. Image processing and geometrical
characterizations

The thicknesses of both the initial film and the
Frankel’s film are deduced from the data obtained with
a spectral camera. This camera makes the image of a
line £ perpendicular to the free meniscus and measures
the spectrum of the light reflected by each point of L:
the intensity I of the light of wavelength )A;, in the range
[375 —1010], reflected by the piece of film at the position
z; and of size dz dx is recorded by the pixel (4, j) of the 2D
sensor. The distance dx is fixed by the width of a slit in
the camera and dz = 54um is the spatial resolution. The
light trajectory is in the plane (y,z) and the incidence
angle on the film is ¢ = 45°. The lamp is a usual halogen
lamp. A typical image obtained after motor motion for
the case § = 9° is shown in Fig. 3a.

We measure the thickness profile h(z) on the last im-
age before the destabilization becomes visible using the
relation

I(\) o 1 —cos (477;”‘ (1 - Sin%)m) SNGY

n2

with n the optical index of the solution.

As shown in Fig. 3b, the thin and thick parts of the
film are separated by a sharp transition occurring over a
distance 0 ~ 100um where the thickness is not resolved
because the gradient is too large. The average thicknesses
in the thin and thick parts are denoted respectively by
h,l and hg.

The experiments with the vertical set-up have been
performed without the spectral camera and the thick-
nesses are deduced from the observed colors, compared
to a color chart. The Frankel’s film thickness gradient is
higher is this configuration and the thickness may vary
from roughly 600 nm close to the frontier with the thin
film to 2 pum close to the top meniscus. For comparison
with the theory, we use the rough estimate hy ~ 1.5um.

The destabilization process is quantified using the color
camera. We call I; the first image where oscillations are
visible, and I the last image before I;. The height of the
initial film and of the top Frankel’s films in I are called
dy and ds (see Fig. 3c).

The frontier between the top Frankel’s film and the ini-
tial film is automatically detected using a matlab routine
(see Fig. 4). The extrema of the frontier are then identi-
fied, and the experimental wavelength A“*? is defined as
the average distance (along x) between minima.

Few minima are followed between I; and the following
image I to determine the growth rate n. We assume
that the position along z of a minimum obeys z,,(t) = a
exp(nt), with a the initial noise (a < 0 in this case) and n
the growth rate. We thus define the experimental value
of the growth rate as

neer = Ly <zm(t2)> . (2)

to — 1ty Zm (t1)
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FIG. 3. Initial film thickness profile. (Top) Raw image ob-
tained with the spectral camera, just after stretching the film.
The total height in the z direction is 19 mm, and the wave-
length A varies from 375 nm at the top to 1010 nm at the bot-
tom. The gray level is the light intensity (in arbitrary unit).
The central part corresponds to the initial thin film and the
two lateral parts are the thicker parts of the film, which have
been extracted from the menisci. (middle) Film thickness
profile extracted from the top image. (Bottom) Sketch of the
film profile and notations used in the text.
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FIG. 4. Determination of the wavelength. The red line is the
frontier between the initial film and the top Frankel’s film,
as detected by the image processing. The wavelength is the
average distance between two successive minima x; and x; 1
of the curve.

III. EXPERIMENTAL RESULTS
A. Linear Regime: wavelength and growth rate

The first series of data have been obtained with the
solution S, on the inclined table (set-up A). In this se-
ries the film thicknesses and initial sizes are kept as con-
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FIG. 5. Behavior in the linear regime for solution (S,). (Top)
Wavelength as a function of the effective gravity ; (Bottom)
Growth rate of the instability. The solid lines are the scaling
laws given respectively by eq. 10 with the prefactor 3 (instead
of the expected 19.5) and by eq. 11 with the prefactor 1/3.5
(instead of the expected 1/2.8). The color indicates the value
of the thick film height d2, in mm.

stant as possible and the effective gravity is varied. At
the onset of the instability, we have hy = 0.4 + 0.1pm,
ho =1.2+£02um, dg =8 £ 0.7 mm and dy = 4.2+ 0.7
mm. The observed wavelength is shown in Fig. 5 as a
function of the effective gravity g: the wavelength slightly
decreases when the angle increases. The data are rather
dispersed, and we checked that this variability was not
correlated with the fluctuations of the system character-
istics: in Fig. 5, we show that da, given by the color
chart, is not correlated to the wavelength, at a given an-
gle. Similarly the film thickness variations cannot explain
the data dispersion.

In Fig. 5, we show that the growth rate increases with
the effective gravity. Finally, as expected, the frontier
between the thin and thick films is stable when the film
is perfectly horizontal (6 = 0).

Very similar results are obtained with the solution S
(with dodecanol) in almost the same conditions, as shown
in Fig. 6. In that second series, hy = 0.5 + 0.1pm,
ho =3+ 0.5pum and dy = 3 + 0.3mm.

The vertical set-up (set-up B) has been used with so-
lution Sp. In that case, the effective gravity is fixed, and
we modify the characteristics of the thin and thick films
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FIG. 6. Behavior in the linear regime for solution (S3). (Top)
Wavelength as a function of the effective gravity; (Bottom)
Growth rate of the instability. The solid lines are the scaling
laws given respectively by eq. 10 with the prefactor 4.5 (in-
stead of the expected 19.5) and by eq. 11 with the prefactor
1/4 (instead of the expected 1/2.8). The color indicates the
value of the thick film height ds, in mm.

by changing the motor velocity from U,, = 5 mm/s to
the maximal rate U,, = 112 mm/s. As the stretching of
the initial film and the extraction of the Frankel’s film
are two competing effects occurring simultaneously dur-
ing and after linear stage motion, the various geometrical
parameters hy, ho, di and dy can not be varied indepen-
dently.

The obtained parameter range is [0.2 — 1.2] mm for ds
and [0.3 —0.7]pm for h;. We only have an estimation for
ha, which is in the range 1 — 2um. The thin film height
is always much larger than ds and plays no role. Fig. 7
shows the wavelength and the growth rate as a function
of the thick film height dy. The color indicates the thin
film thickness h;, with an error bar of 100 nm.

These experimental data are discussed in section V,
and compared to the model developed below.
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FIG. 7. Experimental wavelength (top) and growth rate (bot-
tom) as a function of da, for solution S, with the vertical
set-up. The thin film thickness hi, expressed in pm, is given
by the color chart. (Top) dashed line: scaling law 12; solid
line: scaling law 10 with the prefactor 3.12 (instead of the
expected 19.5). (Bottom) dashed line: scaling law 13; solid
line: scaling law 11 with the prefactor 1/5.6 (instead of the
expected 1/2.8).

IV. THEORY: LINEAR STABILITY ANALYSIS
A. Model assumptions

The Frankel’s film extracted at the bottom is stable. It
plays no role in the instability and will not be taken into
account in the model, which will focus on the coupling
between the thick film at the top, of thickness hs ~ 2um
and height dy (region 2 of the film) and the thin film at
the bottom, of thickness h; & 0.5um and height d; (re-
gion 1). The thicknesses are always much larger than 100
nm and the disjoining pressure is thus negligible. The
fluctuations of hy or hs with time and space are much
smaller than the thickness difference hy — hy, so a uni-
form thickness will be assumed in each region. The tran-
sition between one region to the other occurs on a typi-
cal length ¢ of the order of 100um (see Fig. 3 and [17]).
This length is smaller than the observed wavelength and
a sharp transition is therefore assumed between both re-
gions. The frontier is located along the line z = d(z,t)
which will be predicted by the model.

The fluid dynamics is governed by the lubrication



equations and the velocity and pressure fields V and P
thus obey, in each part of the film,

1 hi\”
Vier (y- %) (VPrmtv. @

with v; the interfacial velocity in the domain i. The
pressure gradients V P are governed by the Laplace pres-
sure and are localized at the frontier between both films,
where the interface curvature is non zero. They scale as
y(hg — h1)/8% ~ 10* m?/s, and are thus comparable to
the gravity term pg in the frontier vicinity. The induced
Poiseuille flow occurring in the film even before the in-
stability begins to develop) scales as (pg + VP)h?/n ~
10um/s, whereas the observed velocities are of the or-
der of 10 mm/s: the velocities are thus dominated by
the interfacial velocities v;. In the following, we neglect
this Poiseuille contribution and assume that the veloc-
ity is uniform across the film thickness and is equal to
vi(z,z,t), and that the pressure is homogeneous and
equal to the air pressure. One important consequence
is that an elementary piece of film of volume h;dxdz,
taken either in the thin or in the thick film, is a closed
material system. Especially, there is no liquid flux across
the frontier d between both film regions.

We assume that the instability can be described using
an inextensible interface model. This assumption implies
that each piece of film dxdz keeps a constant thickness
with time.

Finally, the instability begins to grow during the
Frankel’s film extraction, so the reference state, char-
acterized by d; and ds, depends on time. However, in
the following, we make the crude assumption that the
instability time scale is much smaller than the extraction
time scale and that d; and ds can be assumed to be con-
stant. To summarize, the main physical processes can be
reproduced assuming that the parts of film (1) and (2)
are of constant and uniform thickness hy and hs, and of
constant area wd; and wds.

The evolution of the frontier is governed by the gravity
g, the surface tension of the film o (taking into account
both interfaces) and the shear viscosity of the film p,; =
nh; +2ns. The interface viscosity is typically of the order
of 9y ~ 10~ %kg st [23], much larger than nh ~ 10~%kg
s~1. The film shear viscosity can thus be approximated
by ps = 215 in both parts of the film.

B. Reference state

In the reference state, the frontier do(z) between parts
(1) and (2) of the film is a horizontal straight line and
the reference for z is chosen so that do(z) = 0. The
interface velocities are vanishing and the whole system
is at rest. As the Laplace and disjoining pressures are
negligible in the film, the pressure in the liquid phase is
the atmospheric pressure, taken as a reference pressure.
The force balance in the z direction on a piece of film

dzx dz therefore implies only the tension and the gravity:

do B
0= 5" —phg (4)

We thus get
o) = pghiz+ 2y and o9 = pghaz +2v  (5)

in the reference state, with o the interface tension ref-
erence, taken arbitrary at z = 0. It is analog to a hydro-
static pressure in a 3D problem.

C. Scaling laws

In order to determine the stability of the reference
state, a frontier shape d(z,t) = ce™ e* is assumed.
Before dealing with the full linear stability analysis we
first derive scaling laws for n(k) based on simple force
balances.

We first deal with the system (1) shown in Fig. 8(left),
made of piece of film of size A X A across the frontier, with
A = 27 /k the perturbation wavelength.

In each film, all horizontal oscillations of the physi-
cal quantities damp exponentially with z over a distance
comparable to the wavelength. For this scaling law anal-
ysis, let us boldly assume that they are independent of z
at z = £\, i. e. at the top and bottom boundaries of

system (1).
z z
d, d,
h, hy
A (0+66)T A (0+50)T
p e/ A - (nE/A) A -p(ne/k) A /t\ - (nE/A) A
a
0 [N i =k U A Y i
p T\ |7

Ao | ig h, Ao ig

-d; -d,

FIG. 8. Various forces acting on system (1) and (2), limited by
the red rectangles respectively in the left and right schemes.
(Left) The force balance on the system (1) involves surface
tension and gravity, as viscous forces compensate on both
sides. (Right) On the system (2), gravity force is reduced by
a larger amount of thin film, and interfacial viscous forces and
inertia need to be considered.

The surface tension is denoted by o + Ao at the top
boundary and o at the bottom.

The mass of the system is (disregarding any numerical
prefactor) m = A\2p(hy + hz). The acceleration is van-
ishing by symmetry: the left part moves down and the
right part moves up. Similarly, periodicity implies that



the viscous forces on both sides compensate each other.
Finally, the resulting force due to the surface tension is
Moe, and the weight is —\2pg(hy + h2)e.. The force
balance on the system thus imposes

Ao ~ Apg(hy + ha). (6)

The equilibrium relation (4) thus remains true in the
out of equilibrium case, far enough from the frontier.

We now focus on the subsystem (2), made of the
right part of the previous system, moving upwards (see
Fig. 8 (right)). The surface tension contribution is still
F, = MAAo, but it now slightly overcompensates the grav-
ity Fg = —Apglhi(Ae)+ha(A—¢)]. Using eq. (6), the re-
sulting force can be expressed as F,+Fy = A\pge(ha—h1).

One damping term is the film inertia, scaling as
A2p(hy + ha) n?e. Another arises from the interfacial vis-
cous forces: on both lateral sides of the system (length
of order \), the velocity gradients scale as ne/A (see Fig.
8(right)) and the resulting force thus scales as —pusne.

—_— ds
7, : '
Ry

FIG. 9. Origin of the line tension. We consider the fron-
tier width, measured in the plane normal to the frontier: the
width ds measured along the interface shape is slightly larger
than the width § measured in the film plane. It induces a
resulting force T oriented along the frontier tangent.

From the thickness profiles, we can define a line tension
T between the domains (1) and (2) (see Fig. 9). Its order
of magnitude can be determined from the area excess
induced by the frontier. As the thickness varies from
h1 to ho over a distance § perpendicular to a local line
element df, the area of this transition region is a;,; =
dl(6% + (ha — h1)?)/2 ~ dt5(1 + (hy — h1)?/(26%)). The
excess area due to the thickness variation is thus (hy —
h1)?/(26) per unit length. The resulting line tension T
scales as a(hy — h1)?/6 ~ 107N, and the associated
force on the system includes the slope €/\ and scales as
—ea(hy — h1)?/(M\S) (see Fig. 8(right)).

This line tension term dominates at very small wave-
length. Balancing the gravity excess and the line tension,
we show that it ensures the stabilization of perturbations
having a wavelength smaller than \., with

O'(hg — hl) 1/2

Ae = | ————= . (7)
pgo

All length scales smaller than this cut-off are stable.
At small angles, A, is in the range 500 ym - 1 mm for
g between 0.2 and 1.6 m?/s, and for the vertical case
Ae ~ 200pm. In both cases it is 5 times smaller than the
observed wavelengths. Note that for A ~ § ~ 100um,

the model of sharp frontier is not valid anymore, and a
more refined model would be needed in order to take the
tension into account in a relevant way.

The damping induced by the friction on air can also
become relevant, as it is the case for giant films [24]. As-
suming that the air in contact with the film is at rest
at the instability onset, we can estimate its contribu-
tion. The thickness of the laminar visco-inertial bound-
ary layer in air scales as 6, = [pa/(pan)]*/? ~ 1 mm and
the induced friction on the system is Fy ~ A2 pgne/6q.
The ratio between this viscous force and the inertial term
is pada/(ph), as expected by considering the boundary
layer in air as an added mass to the system. This ratio
remains slightly lower than 1 for our experimental values
of the parameters.

Finally, in this first attempt to rationalize our obser-
vations with a semi-analytical model, we chose to keep
it as simple as possible and to neglect the line tension
and the friction on air. We consequently keep only two
damping terms, the interfacial viscous forces and the in-
ertia, scaling respectively as A? and A? to balance the
driving force, which is the excess of gravity force, scaling
as A'. The potential influence of the neglected terms is
discussed qualitatively in section V.

Just above \., the instability is damped by the viscos-
ity and the growth rate is obtained by balancing gravity
and interfacial viscosity terms

(ha — h1)Apg
s

(8)

Nyisq ™~

Similarly, in the large A limit, the damping term is the
inertia and the growth rate scales as

_((ha—h1)g\"?
Ninert = (M\) . (9)

The full numerical prediction, based on the approxima-
tions discussed above and on the equations established in
the next paragraph, is shown in Fig. 10. The power laws
given by eq. (8) and (9) are recovered at small and large
A, respectively. There is a direct parallel with the usual
Rayleigh - Taylor instability in 3D systems, surface ten-
sion playing the role of the pressure and film thickness
replacing the density.

The fastest growth rate ny,; is obtained for the wave-
length Ayp, 1 verifying g5 ~ Ninert. Using the prefactors
obtained by comparison with the numerical prediction
(see Fig. 11), we get

NQ 1/3
A1 =195 (ot ) 10
th1 <<h§—h%>p2g) (10)

and

_ 2-2 \1/3
SELE <(h2 M) g ”) . (11)
2.8 (hg + ]’Ll)/.ts
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FIG. 10. Value of n as a function of the wavelength with p =
10° kg/m™2, hy = 0.5107%m, ha = 210~%m, p, = 10" "kg/s
and g = 9.8. Black solid line: solution of the equation set (egs.
(25)-(27), (30) and (35)-(36)); blue and red line: asymptotic
scaling laws given by eq. (8) and (9), respectively. The fastest
mode is represented by the black dot, close to the intersection
of both asymptotes. The gray dashed line is at the abscissa
d2 and the large wavelengths at the right of this line are for-
bidden. If this cut off at d> occurs at a wavelength smaller
than the fastest one, than the gray dot represents the actual
fastest mode.

For ps = 10~ "kg-s™!, hy = 2um, hy = 0.5um we find
Atn,1 of the order of few millimeters, which may be com-
parable to the thick film height dy. We thus expect a
cut-off at dy of the scaling for \: wavelengths larger than
dy can not grow, so if A\¢y,1 > da then the fastest wave-
length scales as dy and its growth rate is controlled by eq.
(8) (see Fig. 10). This imposes, for the cases A1 > da,

/\th,2 >~ 3.8d2 5 (12)

and

1 (he — h1)dapg

13
10.5 Vi (13)

Nip2 =

Here again, the prefactors result from fits of the numeri-
cal solutions (see Fig. 11).

D. Equations in the bulk

These scaling laws clearly identify the physical pro-
cesses, which are modeled below. The stability analysis
of the usual Rayleigh-Taylor instability have been done
for 2D systems in [25]. We re-establish the dispersion
relation here, in the context of soap films, and extend it
to finite size systems.

We define the interface velocity v; = (u;, w;) and the
film tension o = 0 4 do, with ¢° given by eq. (5).

The assumption of inextensible interfaces leads to

Bt + Bow = 0 (14)

The force balance written on a film piece dxdz of thick-
ness h (of value either hy or hy) is, projected in the z and

102

A (mm)

10t

10°

1/n (s)

10t
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FIG. 11. Theoretical fastest wavelength (top) and associated
time scale (bottom) as a function of the upper film size d».
The parameters are by = 0.5um, he = 2um, s, = 10~ kg-s™ !,
and an infinite value of di. The angle 6, governing the ap-
parent gravity, verifies sin § = 0.01, 0.1, 1 respectively for the
red, magenta and blue lines. (Top) Horizontal dashed lines:
19.5M\n,1 (eq. (10)); black dashed line: 3.8A\in,2 (eq. (12)).
(Bottom) Dashed lines: 2.8/n¢x1 (eq. (11)) ; dot-dashed lines:
10.5/n¢n2 (eq. (13)). Solid lines are the numerical solutions
A" and n™™™ of the full system (egs. (25)-(27), (30) and
(35)-(36)). The prefactors of the scaling laws egs. (10)-(13)
are fitted on these numerical solutions.

z directions

ph (Oru 4+ udyu + wo,u) =

020 + s (Ozgu + 0z2u) (15)
ph (Opw + ud,w + wd,w) =

0.0 + pis (Opzw + Dy w) — pgh . (16)

At leading order (ie, order 0 in &) we recover the equi-
librium equation for the reference state eq. (4) and, at
order 1in €, egs. (15), (16) and (14) become respectively:

phnu = ikdo + s (—k;2u + 8zzu) , (17)
phnw = 0,00 + g (—k;2w + ﬁzzw) , (18)
iku = —0,w . (19)

Substituting do and u in eqs (17)-(19), we get an equa-



tion on w only:

LhsOgw — (phn + 2k2u3) Dz + (psk* + phnk*)w = 0

(20)
whose solutions are, in domains j = 1 or 2,
wj = Ajekz + Bje_kz + Cjequ + Dje_qu s (21)
with
B 1/2
b= (22 w2) (22)

and A;, B;, C; and D; coeflicients we need to determine
from the boundary conditions.

The x-component of the velocity and the dynamical
surface tension in each domain can be expressed as a
function of w from eqgs. (17) and (19):

u = %(’Lw , (23)

hn s
b e e o

k?

The second relation is obtained by substituting eq. (23)
in eq. (17).

E. Boundary condition at the interface

The normal velocity continuity at the frontier wy (d) =
wa(d) leads to:

A +B1+Ci+D1=Ay+ By +Co + Dy, (25)

and the tangential velocity continuity u; (d) = ua(d) pro-
vides, using eq.(23):
kA1 — kBi+q1Ch — 1 D1 =
kAs — kBy + QQCQ — q2D> (26)

The  continuity of the  tangential  stress

s (O u1 + Opwr) = ps (O us + Opwo) is :
2k%(A1 + B1) + (¢ + K*)(C1 + D1) =
2k*(As + B2) + (45 + k*)(Ca + Do) (27)
Finally, disregarding the role of the line tension, the
continuity of the normal stress imposes
2us0, w1 + 0,016 + do1 =
2s0,we + 0,09¢ + 03 . (28)
This expression involves £ because 0,0 is of order 0.

Its value is obtained from the kinematic condition 0,d =
w1 = Wyt

ne = w . (29)

The value of do is given by eq. (24). After some reorga-
nization proposed in [25] and given in Appendix 1, the
condition becomes

R R R R
0=4, <_a1>+Bl (2—1—@1) +C1§+D15+

2
R R R R
A2 <2 +C¥2) +BQ <2 — Oég) +025 +D2§ s (30)
with

gk ha — hy
= 1
n2 h1+h2 ’ (3 )

hy

P = . 2
@ hi + ho (3 )

F. Limit of large d; and d»

The velocity remains finite so As = 0, By =0, Cy =0,
Dy = 0. The system is then

A +Cy—By—Dy=0,

kA1 + q1C1 + kB + q2D2 = 0, (33)
k%A1 4 (¢ + k*)Cy — 2k®By — (¢2 + k*)Dy = 0,
A1 (R—2a1) + C1R+ B2(R—2a3) + DoR =0,

in agreement with the system eq. (111) in
problem in bulk, without surface tension.

This system has non trivial solutions only if its de-
terminant is zero, which imposes, as established in Ap-
pendix 2,

[25], for a

0=(R-1) (q1a2 + qoorp — k‘) —4dkaqas . (34)

This is eq. 113 in [25].

With the parameters of Fig. 10, the model predicts
that the most unstable wavelength is 1.5 cm, to be com-
pared with the 3 mm experimentally observed. As al-
ready seen with the scaling laws, we have to consider the
finite size of the system: there is a cut-off on the wave-
length when the height of one region (d; or ds) is too
small.

G. Finite value of d>

For finite size systems, conditions must be imposed at
the positions d; and dy. As we have d; > do, we only
consider the finite value of dy. The precise condition at
the boundary with the free meniscus is actually a compli-
cated problem. The Laplace pressure becomes important
close to the meniscus and the equations of motion used
here fail. For sake of simplicity, we simply impose van-
ishing tangential and normal velocities. This leads to, at
z = d2 :

Agekdz -+ Bgeikdz -+ 026q2d2 + D267q2d2 = O (35)
ijgekdz— k‘Bge_kd2 + QQ026q2d2— q2D2€_q2d2 =0 (36)



12 -
[ J
o o°
10 [ J )
[ J
X ©® o ° ®
6 * o
- Ny T
TmG X. XO b %O
L6 X [e)
- x>‘xo 06 ) o
= [ ] o
4 x X 8 ©
X X °
0] X, g
2+ O O o
. %:CQQQOO
o 1 0, I I I |
0 2 4 6 8 10 12

FIG. 12. Theoretical growth rate as a function of the exper-
imental value shown in Fig. 5 (o), 6 (e) and 7 (x). The
theoretical value is determined by numerical resolution of the
system, using the experimental values of d2, h2 and hi (we
used he = 1.5um for the vertical series). The other param-
eters are p = 10° kg/m® and ps = 0.8 10™"kg/s. The line

corresponds to n'* = n®P,

We thus obtain a system with 6 equations and 6 un-
known eqgs. (25)-(27), (30) and (35)-(36). For a given
set of physical parameters, and for a suited range of k,
we determine numerically the value of n(k) for which the
system determinant vanishes. We adapt the range of k
to make sure that n(k) has a maximum 7z (Kmaez) in
that range. We solved the problem for the parameter
sets hy = 0.5um, hy = 2um, p, = 10~ "kg-s~1, for 3 val-
ues of the effective gravity, and for do between 1 and 100
mm. The corresponding wavelengths A = 27/kp,q. and
characteristic times 7 = 1/n,q, are shown in Fig. 11:
as expected, the scaling laws previously established are
recovered in the limit of small and large ds.

V. COMPARISON WITH THE
EXPERIMENTAL DATA

To compare our predictions with the experimental
data, we took into account in the model, for each ex-
perimental data, the measured value of the parameters
hi, ha, da, g. For the set up (A), the only unknown pa-
rameter is the interfacial shear viscosity us. For set-up
(B) (without spectral camera), the thickness h; has been
deduced from the comparison of the foam film color and
a reference color chart with an uncertainty of £100nm.
The error bar on hg is larger, but counting the interfer-
ence fringes indicates a value in the range [1—2] um. The
thickness ho = 1.5um has been used in the model. The
comparison between the growth rates obtained theoret-
ically and experimentally is shown in Fig.12 and shows
a reasonable agreement for p, = 0.81077 kg st for
both solutions. The order of magnitude of this viscos-
ity is the expected one for the SDS solution. Indeed

10

Ns = ps/2 = 0.6 £0.410~7 kg.s~! has been found in [23].
A slightly larger value was expected for the solution with
dodecanol.

Then, using p, = 0.8107"kg.s™!, the experimental
data of Figs. 5, 6 and 7 can be compared to the scaling
laws eqs.(10), (11) at large da (solid lines in the figures)
and eqgs. (12), (13) at small dy (dashed lines in the fig-
ures). In Fig. 5 and 6, we observe no correlation between
do and A, which indicates that the large ds scaling should
be used. Consistently, we show in Fig. 5 and 6 that the
variations of A and n are compatible respectively with
the scalings ¢~/ (eq. (10)) and ¢g?/3 (eq. (11)). Sim-
ilarly, the wavelengths of Fig. 7 are compatible with a
scaling as da (eq. (12)) at small dy and a constant value
(eq. (10)) at large da.

However, the prefactors used for these fits differs from
the predicted ones. Especially the power law (10) is pre-
dicted to have a prefactor of the order of 20, whereas a
prefactor of the order of 4 is systematically needed to fit
the data of Figs. 5, 6 and 7. As A is of the order of 2
or 3 times dg, the finite size effect should be non negli-
gible and the measured value for A should be in contrast
smaller than the asymptotic prediction of eq. (10), as
shown in Fig. 11.

Finally all the measured wavelengths are plotted as
a function of the full numerical prediction in Fig. 13.
It confirms that the model is not fully quantitative and
that the transition from the large to the small film height
regime is not entirely understood.

As the predicted exponents of the film thicknesses and
of the interfacial viscosity are small, the discrepancy can
not be attributed to the uncertainty on these quantities.
The line tension stabilizes the short wavelengths, and
taking it into account would lead to a larger theoreti-
cal fastest wavelength, thus increasing the disagreement
with the model. The friction on air, in contrast, would
decrease the growth rate in eq. (9) and would thus lead to
a smaller theoretical wavelength in Fig. 10. Another pos-
sible reason for the overestimation of the wavelength by
the model is that the system is not steady. The thick film
height dy varies during the instability development and
the observed wavelength may thus be the fastest mode
associated to an earlier value of dy. As A" increases with
ds, this effect is compatible with the observed overesti-
mation. Finally, the boundary condition at the top used
in the model, i.e. a vanishing velocity, may be oversim-
plified. The normal velocity at the top meniscus must be
small, but the tangential velocity at the meniscus may be
non negligible. A part of the meniscus is indeed set into
motion in the x direction, by viscous friction on the film.
The typical length 4,,, of this domain can be determined
from the balance between its inertia phd,,nu and the vis-
cous force pigu/62,. This leads to &, ~ (is/(phdmn))/?.
At the distance §,, from the film, the thickness scales
as 62,/rm (with r,, the meniscus radius) so we obtain
the power law 6, ~ (psrm/(pn))*/* ~ 300pum. A more
physical tangential boundary condition, expressing the
tangential stress continuity at the frontier between the
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FIG. 13. Theoretical wavelength as a function of the experi-
mental value shown in Fig. 5 (o), 6 (¢) and 7 (e) with the same
parameters as in Fig. 12. (Top) The color chart shows the
effective gravity value in m/s?, red corresponding to 9.8 m/s>.
(Bottom) The color chart shows the Frankel’s film height d2
in mm.
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meniscus and the thick film, may thus be d,u = u/dy,.
It reduces to the condition v = 0 at small §,,, and to the
alternative limit 0,u = 0 at large J,,. This weaker con-
straint at the upper boundary would reduce the influence
of the finite film size on the fastest wavelength and may
lead to a better agreement with our observations.

VI. CONCLUSION

In this paper, we describe quantitatively for the first
time the Rayleigh Taylor instability arising in foam film
when a thick film is produced on top of a thin film.
As this situation is induced by any extension of a non-
horizontal film, it should also happen in a 3D foam when
local deformations are induced by coarsening or external
shear. This process should potentially influence the film
thickness distribution in 3D foams, and thus the gas dif-
fusion from one bubble to the other and so the coarsening
rate, or the energy dissipation induced by film shearing,
and thus the apparent viscosity. It is also an original ex-
ample of purely 2D instability, whose nonlinear evolution
may be worth a more extensive study.

APPENDIX : NORMAL STRESS CONTINUITY

The normal stress in each domain is K = 2p,0,w; + 0, ;0¢ + do;, so

pgh;k?

B K = 2k 1,0, w; +
pghik?

w; + phind,w; + ps (k2 - azz) 0. w; =

(A; + B; + Ci + D;) + (3k*us + phin) (kA; — kB; + ¢;C; — ¢;D;) — ps(K*A; — k*B; + ¢}C; — ¢3D;) - (37)

The condition (28) is thus, using ps(q? — k%) = phn in each phase,

pghik?

hi1k?
0=A, (pgnl + 2]{:3,us + phlnk) + B4 (n — 2](53/1,371 — plhlnk‘) +
hqk? hi1k?
C1 (pgnl + 2k2q1us) + Dy (pgnl — 2k2q1us> +
2 2
—A, (pgi;gk + 2K s + ph2nk> — Bs (pgf;gk —2k3 g — phgnk)

hok? hok?
~Cy (”g: + 2k2q2us) ~ D, (”g; - 2k2qws> (38)
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Making finally the transformation (38) - pgk?/(2n)(h1 + h2) (25) - 2k%us(26) we get eq. (30).

APPENDIX 2

The determinant of the system (33) can be reduced
by the transformation Co — Cy — Cq, C3 — C3 + C;
and Cy — Cy — (3, leading to

1 0 0 0

k @ —k 2k 92—k _
2k% s ps(qf — k) 0 —ps(a3 — k)|~

X (651 R— (0[1 + 0[2) (%)

q—k 28 q@-—k

pon 0 —pagn

(651 R—-1 Qg

(

The condition (34) is finally obtained by a development
of the determinant along the last line.
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