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Introduction

This paper deals with the classical Keller

-Segel problem in R 2 ,          u t =∆u -∇ • (u∇v) in R 2 × (0, ∞), v =(-∆ R 2 ) -1 u := 1 2π R 2 log 1 |x -z| u(z, t) dz, u(•, 0) = u 0 in R 2 , (1.1) 
which is a well-known model for the dynamics of a population density u(x, t) evolving by diffusion with a chemotactic drift. We consider positive solutions which are well defined, unique and smooth up to a maximal time 0 < T ≤ +∞. This problem formally preserves mass, in the sense that

R 2 u(x, t)dx = R 2
u 0 (x) dx =: M for all t ∈ (0, T ).

An interesting feature of (1.1) is the connection between the second moment of the solution and its mass which is precisely given by

d dt R 2 |x| 2 u(x, t) dx = 4M - M 2 2π ,
provided that the second moments are finite. If M > 8π, the negative rate of production of the second moment and the positivity of the solution implies finite blow-up time. If M < 8π the solution lives at all times and diffuses to zero with a self similar profile according to [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF]. When M = 8π the solution is globally defined in time. If the initial second moment is finite, it is preserved in time, and there is infinite time blow-up for the solution, as was shown in [START_REF] Blanchet | Infinite time aggregation for the critical Patlak-Keller-Segel model in R 2[END_REF]. Globally defined in time solutions of (1.1) are of course its positive finite mass steady states, which consist of the family

U λ,ξ (x) = 1 λ 2 U x -ξ λ , U (y) = 8 (1 + |y| 2 ) 2 , λ > 0, ξ ∈ R 2 .
(1.2)

We observe that all these steady states have the exact mass 8π and infinite second moment

R 2 U λ,ξ (x) dx = 8π, R 2 |x| 2 U λ,ξ (x) dx = +∞.
As a consequence, if a solution of (1.1) is attracted by the family (U λ,ξ ), its mass must be larger than 8π and if the initial second moment is finite, then blow-up occurs in a singular limit corresponding to λ → 0 + . In the critical mass M = 8π case, the infinite-time blow-up in (1.1) when the second moment is finite, takes place in the form of a bubble in the form (1.2) with λ = λ(t) → 0 according to [START_REF] Biler | The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane[END_REF][START_REF] Blanchet | Infinite time aggregation for the critical Patlak-Keller-Segel model in R 2[END_REF]. Formal rates and precise profiles were derived in [START_REF] Chavanis | Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models[END_REF][START_REF] Serrano | Modèles attractifs en astrophysique et biologie: points critiques et comportement en temps grand des solutions[END_REF] to be λ(t) ∼ c √ log t as t → +∞.

A radial solution with this rate was built by Ghoul and Masmoudi in [START_REF] Ghoul | Minimal mass blowup solutions for the Patlak-Keller-Segel equation[END_REF] and its stability within the radial class was established. The framework of the construction in [START_REF] Ghoul | Minimal mass blowup solutions for the Patlak-Keller-Segel equation[END_REF] was actually fully nonradial, but for stability a spectral gap inequality only known in the radial case was used. Numerical evidence for this inequality was obtained in [START_REF] Campos | Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane[END_REF], and stability for general nonradial perturbation was conjectured in [START_REF] Ghoul | Minimal mass blowup solutions for the Patlak-Keller-Segel equation[END_REF]. A related spectral estimate, useful in the analysis of finite time blow-up was found in [START_REF] Collot | Spectral analysis for singularity formation of the two dimensional Keller-Segel system[END_REF].

In this paper we construct an infinite-time blow-up solution with a different method to that in [START_REF] Ghoul | Minimal mass blowup solutions for the Patlak-Keller-Segel equation[END_REF], which in particular leads to a proof of the stability assertion among non-radial functions. The following is our main result.

Theorem 1.1. There exists a nonnegative, radially symmetric function u * 0 (x) with critical mass R 2 u * 0 (x) dx = 8π and finite second moment R 2 |x| 2 u * 0 (x) dx < +∞ such that for every u 1 (x) sufficiently close (in suitable sense) to u * 0 with R 2 u 1 dx = 8π, we have that the solution u(x, t) of system (1.1) with initial condition u(x, 0) = u 1 (x) has the form

u(x, t) = 1 λ(t) 2 U x -ξ(t) λ(t) (1 + o(1)), U (y) = 8 (1 + |y| 2 ) 2 (1.3)
uniformly on bounded sets of R 2 , and

λ(t) = c √ log t (1 + o(1)
), ξ(t) → q as t → +∞, for some number c > 0 and some q ∈ R 2 .

Sufficiently close for the perturbation u 1 (x) := u * 0 (x) + ϕ(x) in this result is measured in the C 1 -weighted norm for some σ > 1

ϕ * σ := (1 + | • | 4+σ )ϕ L ∞ (R 2 ) + (1 + | • | 5+σ )∇ϕ(x) L ∞ (R 2 ) < +∞.
The perturbation ϕ must have zero mass too.

"Uniformly on bounded sets" of R 2 in (1.3) means that for any bounded

K ⊂ R 2 lim t→∞ sup x∈K λ(t) 2 U x -ξ(t) λ(t) -1 u(x, t) - 1 λ(t) 2 U x -ξ(t) λ(t) = 0.
The expansion of u(x, t) can be made more precise though, and this is explained along the proof of theorem.

The scaling parameter is rather simple to find at main order from the approximate conservation of second moment, see Section 2. The center ξ(t) actually obeys a relatively simple system of nonlocal ODEs.

We devote the rest of this paper to the proof of Theorem 1.1. Our approach borrows elements of constructions in the works [START_REF] Cortázar | Green's function and infinite-time bubbling in the critical nonlinear heat equation[END_REF][START_REF] Del Pino | Infinite-time blow-up for the 3-dimensional energy-critical heat equation[END_REF][START_REF] Dávila | Singularity formation for the two-dimensional harmonic map flow into S 2[END_REF][START_REF] Davila | Gluing methods for vortex dynamics in Euler flows[END_REF] based on the so-called inner-outer gluing scheme, where a system is derived for an inner equation defined near the blow-up point and expressed in the variable of the blowing-up bubble, and an outer problem that sees the whole picture in the original scale. The result of Theorem 1.1 has already been announced in [START_REF] Del Pino | Bubbling blow-up in critical parabolic problems[END_REF] in connection with [START_REF] Cortázar | Green's function and infinite-time bubbling in the critical nonlinear heat equation[END_REF][START_REF] Del Pino | Infinite-time blow-up for the 3-dimensional energy-critical heat equation[END_REF][START_REF] Dávila | Singularity formation for the two-dimensional harmonic map flow into S 2[END_REF].

There is a huge literature on chemotaxis in biology and in mathematics. The Patlak-Keller-Segel model [START_REF] Patlak | Random walk with persistence and external bias[END_REF][START_REF] Keller | Initiation of slime mold aggregation viewed as an instability[END_REF] is used in mathematical biology to describe the motion of mono-cellular organisms, like Dictyostelium Discoideum, which move randomly but experience a drift in presence of a chemoattractant. Under certain circumstances, these cells are able to emit the chemo-attractant themselves. Through the chemical signal, they coordinate their motion and eventually aggregate. Such a selforganization scenario is at the basis of many models of chemotaxis and is considered as a fundamental mechanism in biology. Of course, the aggregation induced by the drift competes with the noise associated with the random motion so that aggregation occurs only if the chemical signal is strong enough. A classical survey of the mathematical problems in chemotaxis models can be found in [START_REF] Horstmann | From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. I[END_REF][START_REF]From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. II[END_REF]. After a proper adimensionalization, it turns out that all coefficients in the Patlak-Keller-Segel model studied in this paper can be taken equal to 1 and that the only free parameter left is the total mass. For further considerations on chemotaxis, we shall refer to [START_REF] Hillen | A user's guide to pde models for chemotaxis[END_REF] for biological models and to [START_REF] Chavanis | Nonlinear mean field Fokker-Planck equations. application to the chemotaxis of biological populations[END_REF] for physics backgrounds.

In many situations of interest, cells are moving on a substrate. The two-dimensional case is therefore of special interest in biology, but also turns out to be particularly interesting from the mathematical point of view as well, because of scaling properties, at least in the simplest versions of the Keller-Segel model. Boundary conditions induce various additional difficulties. In the idealized situation of the Euclidean plane R 2 , it is known since the early work of W. Jäger and S. Luckhaus in [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF] that solutions globally exist if the mass M is small and blow-up in finite time if M is large. The blow-up in a bounded domain is studied in [START_REF] Jäger | On explosions of solutions to a system of partial differential equations modelling chemotaxis[END_REF][START_REF] Biler | Local and global solvability of some parabolic systems modelling chemotaxis[END_REF][START_REF] Nagai | Blow-up of radially symmetric solutions to a chemotaxis system[END_REF][START_REF]Blowup of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains[END_REF][START_REF] Senba | Weak solutions to a parabolic-elliptic system of chemotaxis[END_REF]. The precise threshold for blow-up, M = 8π, has been determined in [START_REF] Dolbeault | Optimal critical mass in the two-dimensional Keller-Segel model in R 2[END_REF][START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF], with sufficient conditions for global existence if M ≤ 8π in [START_REF] Blanchet | Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions[END_REF] (also see [START_REF] Diaz | Symmetrization techniques on unbounded domains: application to a chemotaxis system on R N[END_REF] in the radial case). The key estimate is the boundedness of the free energy, which relies on the logarithmic Hardy-Littlewood-Sobolev inequality established in optimal form in [START_REF] Carlen | Competing symmetries, the logarithmic HLS inequality and Onofri's inequality on S n[END_REF]. We refer to [START_REF] Blanchet | On the parabolic-elliptic Patlak-Keller-Segel system in dimension 2 and higher[END_REF] for a review of related results. If M < 8π, diffusion dominates: intermediate asymptotic profiles and exact rates of convergence have been determined in [START_REF] Campos | Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane[END_REF]. Also see [START_REF]Convergence to self-similar solutions for a parabolic-elliptic system of drift-diffusion type in R 2[END_REF][START_REF] Fernández | Uniqueness and long time asymptotic for the Keller-Segel equation: the parabolic-elliptic case[END_REF]. In the supercritical case M > 8π, various formal expansions are known for many years, starting with [START_REF] Herrero | Chemotactic collapse for the Keller-Segel model[END_REF][START_REF]Singularity patterns in a chemotaxis model[END_REF][START_REF] Velázquez | Stability of some mechanisms of chemotactic aggregation[END_REF] which were later justified in [START_REF] Raphaël | On the stability of critical chemotactic aggregation[END_REF][START_REF] Mizoguchi | Refined asymptotic behavior of blowup solutions to a simplified chemotaxis system[END_REF], in the radial case, and in [START_REF] Collot | Refined description and stability for singular solutions of the 2D Keller-Segel system[END_REF], in the non-radially symmetric regime. This latter result is based on the analysis of the spectrum of a linearized operator done in [START_REF] Collot | Spectral analysis for singularity formation of the two dimensional Keller-Segel system[END_REF], based on the earlier work [START_REF] Dejak | On spectra of linearized operators for Keller-Segel models of chemotaxis[END_REF], and relies on a scalar product already considered in [START_REF] Raphaël | On the stability of critical chemotactic aggregation[END_REF] and similar to the one used in [START_REF] Campos | A functional framework for the Keller-Segel system: logarithmic Hardy-Littlewood-Sobolev and related spectral gap inequalities[END_REF][START_REF] Campos | Asymptotic estimates for the parabolic-elliptic Keller-Segel model in the plane[END_REF] in the subcritical mass regime. An interesting subproduct of the blow-up mechanism in [START_REF] Raphaël | On the stability of critical chemotactic aggregation[END_REF][START_REF]A blow-up mechanism for a chemotaxis model[END_REF] is that the blow-up takes the form of a concentration in the form of a Dirac distribution with mass exactly 8π at blow-up time, as was expected from [START_REF]A blow-up mechanism for a chemotaxis model[END_REF][START_REF] Dolbeault | The two-dimensional Keller-Segel model after blow-up[END_REF], but it is still an open question to decide whether this is, locally in space, the only mechanism of blow-up.

The critical mass case M = 8π is more delicate. If the second moment is infinite, there is a variety of behaviors as observed for instance in [START_REF] López-Gómez | The basin of attraction of the steady-states for a chemotaxis model in R 2 with critical mass[END_REF][START_REF]Non-trivial ω-limit sets and oscillating solutions in a chemotaxis model in R 2 with critical mass[END_REF][START_REF] Nagai | Boundedness of solutions to a parabolic-elliptic Keller-Segel equation in R 2 with critical mass[END_REF]. For solutions with finite second moment, blow-up is expected to occur as t → +∞: see [START_REF] Kavallaris | Grow-up rate and refined asymptotics for a two-dimensional Patlak-Keller-Segel model in a disk[END_REF] for grow-up rates in R 2 , and [START_REF] Souplet | Blow-up profiles for the parabolic-elliptic Keller-Segel system in dimensions n ≥ 3[END_REF] for the higher-dimensional radial case. The existence in R 2 of a global radial solution and first results of large time asymptotics were established in [START_REF] Biler | The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane[END_REF] using cumulated mass functions. In [START_REF] Blanchet | Infinite time aggregation for the critical Patlak-Keller-Segel model in R 2[END_REF], the infinite time blow-up was proved without symmetry assumptions using the free energy and an assumption of boundedness of the second moment. Also see [START_REF] Nagai | Global existence of solutions to a parabolic-elliptic system of drift-diffusion type in R 2[END_REF][START_REF] Nagai | Boundedness of solutions to a parabolic-elliptic Keller-Segel equation in R 2 with critical mass[END_REF] for an existence result under weaker assumptions, and further estimates on the solutions. Asymptotic stability of the family of steady states determined by (1.2) under the mass constraint M = 8π has been determined in [START_REF] Carlen | Stability for a GNS inequality and the log-HLS inequality, with application to the critical mass Keller-Segel equation[END_REF]. The blow-up rate λ(t) and the shape of the limiting profile U were identified in formal asymptotic expansions in [START_REF]Stability of some mechanisms of chemotactic aggregation[END_REF][START_REF]Point dynamics in a singular limit of the Keller-Segel model. II. Formation of the concentration regions[END_REF][START_REF] Sire | Thermodynamics and collapse of self-gravitating brownian particles in d dimensions[END_REF][START_REF] Chavanis | Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models[END_REF][START_REF]Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. II. Inertial models[END_REF] and also in [START_REF] Serrano | Modèles attractifs en astrophysique et biologie: points critiques et comportement en temps grand des solutions[END_REF]Chapter 8]. As already mentioned, a radial solution with rate λ(t) ∼ (log t) -1/2 was built and its stability within the radial class was established in [START_REF] Ghoul | Minimal mass blowup solutions for the Patlak-Keller-Segel equation[END_REF].

Formal derivation of the behavior of the parameters

We consider here a first approximation to a solution u(x, t) of (1.1), globally defined in time, such that on bounded sets in x,

u(x, t) = 1 λ(t) 2 U x -ξ(t) λ(t) (1 + o(1)) as t → +∞ (2.1)
for certain functions 0 < λ(t) → 0 and ξ(t) → q ∈ R 2 , where we recall that

U (y) = 8 (1 + |y| 2 ) 2 .
We know that (2.1) can only happen in the critical mass, finite second moment case: R 2 u(x, t)dx = 8π, R 2 |x| 2 u(x, t)dx < +∞, which according to the results in [START_REF] Blanchet | Infinite time aggregation for the critical Patlak-Keller-Segel model in R 2[END_REF][START_REF] Ghoul | Minimal mass blowup solutions for the Patlak-Keller-Segel equation[END_REF][START_REF] Chavanis | Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. I. Overdamped models[END_REF] is consistent with a behavior of the form (2.1). Since the second moment of U is infinite, we do not expect the approximation (2.1) be uniform in R 2 but sufficiently far, a faster decay in x should take place as we shall see next. We will find an approximate asymptotic expression for the scaling parameter λ(t) that matches with this behavior.

Let us introduce the function Γ 0 := (-∆) -1 U. We directly compute Γ 0 (y) = log 8 (1 + |y| 2 ) 2 and hence Γ 0 solves the Liouville equation

-∆Γ 0 = e Γ0 = U in R 2 .
Then ∇Γ 0 (y) ≈ -4y

|y| 2 for all large y, and hence we get, away from x = ξ,

-∇ • (u∇(-∆) -1 u) ≈ 4∇u • x -ξ |x -ξ| 2 .
Therefore, defining E(u) := ∆u -∇ • (u∇(-∆) -1 u) (2.2)

and writing in polar coordinates u(r, θ, t) = u(x, t), x = ξ(t) + re iθ ,

we find E(u) ≈ ∂ 2 r u + 5 r ∂ r u. Hence, assuming that ξ(t) → 0 sufficiently fast, equation (1.1) approximately reads

∂ t u = ∂ 2 r u + 5 r ∂ r u,
which can be idealized as a homogeneous heat equation in R 6 for radially symmetric functions. It is therefore reasonable to believe that beyond the self-similar region r √ t the behavior changes into a function of r/ √ t with fast decay at +∞ that yields finiteness of the second moment. To obtain a first global approximation, we simply cut-off the bubble (2.1) beyond the self-similar zone. We introduce a further parameter α(t) and set ū(x, t) = α(t)

λ 2 U x -ξ λ χ(x, t), (2.3) 
where

χ(x, t) = χ 0 x -ξ √ t (2.4) 
with χ 0 a smooth radial cut-off function such that

χ 0 (z) = 1 if |z| ≤ 1, 0 if |z| ≥ 2.
(2.5)

We introduce the parameter α(t) because the total mass of the actual solution should equal 8π for all t. But

1 λ 2 R 2 U x -ξ λ χ(x, t) dx = 8π + 16πΥ λ 2 t + O λ 4 t 2 , (2.6) 
as t → ∞, where Υ = ∞ 0 ( χ0 (s) -1)s -3 ds < 0, (

and χ 0 (x) = χ0 (|x|). To achieve R 2 ū(x, t) dx = 8π we set α = ᾱ where

ᾱ(t) = 1 -2Υ λ 2 t + O λ 4 t 2 .
Next we will obtain an approximate value of the scaling parameter λ(t) that is consistent with the existence of a solution u(x, t) ≈ ū(x, t) where ū is the function in (2.3) with α = ᾱ. Let us consider the "error operator" S(u) = -u t + E(u), (2.8) where E(u) is defined in (2.2). We have the following well-known identities, valid for an arbitrary function ω(x) of class C 2 (R 2 ) with finite mass and D 2 ω(x) = O(|x| -4-σ ) for large |x|. We have Let us recall the simple proof of (2.9). Integrating by parts on finite balls with large radii and using the behavior of the boundary terms we get the identities

R 2 |x| 2 E(ω) dx = 4M - M 2 2π , M = R 2 ω(x)dx (2.
R 2 |x| 2 ∆ω dx = 4M, R 2 |x| 2 ∇ • (ω∇(-∆) -1 )ω) dx = -2 R 2 x • ω∇(-∆) -1 ω dx = 1 π R 2 R 2 ω(x)ω(y) x • (x -y) |x -y| 2 dx dy = 1 2π R 2 R 2 ω(x)ω(y) (x -y) • (x -y) |x -y| 2 dx dy = M 2 2π (2.11)
and then (2.9) follows. The proof of (2.10) is even simpler. For a solution u(x, t) of (1.1) we then get

d dt R 2 u(x, t)|x| 2 dx = 4M - M 2 2π , M = R 2
u(x, t)dx.

In particular, if u(x, t) is sufficiently close to ū(x, t) and since R 2 ū(x, t)dx = 8π, we get the approximate validity of the identity

d dt R 2 ū(x, t)|x| 2 dx = 0.
This means

aI(t) := R 2 ᾱ λ 2 U x -ξ λ χ 0 x -ξ √ t |x| 2 dx = constant.
We readily check that for some constant κ

I(t) = 16πλ 2 √ t λ 0 ρ 3 dρ (1 + ρ 2 ) 2 + κ + o(1) = 16πλ 2 log √ t λ + κ + o(1) as λ → 0.
Then we conclude that λ(t) approximately satisfies λ 2 log t = c 2 = constant and hence we get at main order λ(t) = c √ log t .

We also notice that the center of mass is preserved for a true solution, thanks to (2.10):

d dt R 2 xu(x, t)dx = 0.
Since the center of mass of ū(x, t) is exactly ξ(t) we then get that approximately ξ(t) = constant = q.

3. The approximations u 0 and u 1

From now on we to consider the Keller-Segel system starting at a large t 0 :

         u t =∆u -∇ • (u∇v) in R 2 × (t 0 , ∞), v =(-∆ R 2 ) -1 u := 1 2π R 2 log 1 |x -z| u(z, t) dz, u(•, t 0 ) = u 0 in R 2 , (3.1) 
which is equivalent to (1.1). We do this so that some expansions for t large take a simpler form.

In this section we will define a basic approximation to a solution of the Keller-Segel system (3.1). Let us consider parameter functions 0 < λ(t) → 0, ξ(t) → q, α(t) → 1 as t → +∞ that we will later specify. Let us consider the functions U (y) = 8 (1 + |y| 2 ) 2 , Γ 0 (y) = log U (y) and define the approximate solution u 0 (x, t) as

u 0 (x, t) = α λ 2 U
x -ξ λ χ(x, t), (3.2)

v 0 (x, t) = (-∆ x ) -1 u 0 = 1 2π R 2 log 1 |x -x| u 0 (x, t) dx,
where χ is the cut-off function (5.3). We consider the error operator

S(u) = -∂ t u + E(u),
where

E(u) = ∆ x u -∇ x • (u∇ x v), v = (-∆ x ) -1 u.
and next measure the error of approximation S(u 0 ). We have

-∂ t u 0 (x, t) = - α λ 2 U (y)χ 0 (z) + α λ λ 3 Z 0 χ 0 (z) + α λ 3 ξ • ∇ y U (y) χ 0 (z) + α λ 2 √ t U (y) ξ • ∇ z χ 0 (z) + α 2λ 2 t U (y)∇ z χ 0 (z) • z, (3.3) 
z =

x -ξ √ t where Z 0 (y) = 2U (y) + y • ∇ y U (y), y =

x -ξ λ .

(3.4)

We also have

E(u 0 ) = ∆ x u 0 -∇ x • (u 0 ∇ x v 0 ) = 2α λ 3 t 1/2 ∇ z χ 0 (z) • ∇ y U (y) + α t 1 λ 2 ∆ z χ 0 (z)U (y) - α λ 2 √ t U (y)∇ z χ 0 (z) • ∇ x v 0 + αχ 0 (z) λ 4
(χ 0 (z)α -1)U 2 (y) -∇ y U (y) • (∇ y v 0 -∇ y Γ 0 ) .

Let us decompose v 0 (y) = αΓ 0 (y) + R(y).

(3.5)

For the term R in (3.5) we directly estimate

|∇ y R(y)| ≤ λ 2 t 1 |y| |y| ≥ √ t λ , 0 |y| ≤ √ t λ . (3.6) 
Then

E(u 0 ) = 2α λ 3 t 1/2 ∇ z χ 0 (z) • ∇ y U (y) + α t 1 λ 2 ∆ z χ 0 (z)U (y) - α λ 2 √ t U (y)∇ z χ 0 (z)∇ x v 0 + αχ 0 (z) λ 4 (α -1)U 2 (y) -(α -1)∇ y U (y) • ∇ y Γ 0 (y) + α(χ 0 (z) -1)U 2 (y) -∇ y U (y) • ∇ y R(y) .
and thus (3.7)

S(u 0 ) = - α λ 2 U (y)χ 0 (z) + α λ λ 3 Z 0 χ 0 (z) + α λ 3 ξ • ∇ y U (y) χ 0 (z) + α λ 2 √ t U (y) ξ • ∇ z χ 0 (z) + α 2λ 2 t U (y)∇ z χ 0 (z) • z + 2α λ 3 t 1/2 ∇ z χ 0 (z) • ∇ y U (y) + α t 1 λ 2 ∆ z χ 0 (z)U (y) - α λ 2 √ t U (y)∇ z χ 0 (z) • ∇ x v 0 - α(α -1)χ 0 (z) λ 4 ∇ y • (U (y)∇ y Γ 0 (y)) + αχ 0 (z) λ 4 α(χ -1)U 2 (y) -∇ y U (y) • ∇ y R(y) .
The reason for the notation is that for radial functions v = v(r), r = |ζ|, we have

∆ 6 v = ∂ 2 r v + 5 r ∂ r v,
which corresponds to Laplace's operator in R 6 on radial functions. Let φλ (ζ, t) be the (radial) solution to

     ∂ t φλ = ∆ 6 φλ + E(ζ, t) in R 2 × ( t 0 2 , ∞), φλ (•, t 0 2 ) = 0 in R 2 , (3.8) 
given by Duhamel's formula, where E(ζ, t) is the radial function

E(ζ, t; λ) = λ λ 3 Z 0 ζ λ χ 0 ζ √ t + 1 2λ 2 t U ζ λ ∇ z χ 0 (z) • z + Ẽ(x, t), (3.9) 
and

Ẽ(ζ, t; λ) = 2 λ 3 t 1/2 ∇ z χ 0 (z) • ∇ y U (y) + 1 λ 2 t ∆ z χ 0 (z)U (y) - 1 λ 3 t 1/2 U (y)∇ z χ 0 (z) • ∇ y Γ 0 (y), (3.10 
)

with z = ζ √ t , y = ζ λ . We then define ϕ λ (x, t) = φλ (x -ξ(t), t). (3.11) 
The reason to define ϕ λ for t > t0 2 is that it gives better properties for the first approximation of λ constructed in Section 7. Since λ(t) is defined naturally for t > t 0 , we will need to define λ(t) for t0 2 < t < t 0 in an appropriate way (see Proposition 5.1 and Section 7). We will write λ = λ 0 + λ 1 where both of these functions are constructed so that they are defined for t > t0

2 . The construction of λ 0 is given in Proposition 5.1. In particular λ 0 (t) = c0

√ log t (1 + o(1)) as t → ∞. Note that ϕ λ (•, t 0 ) is not zero.
We define the approximate solution

u 1 := u 0 + ϕ λ (3.12)
which depends on the parameter functions α(t), ξ(t), λ(t). Correspondingly, we write

v 1 := (-∆ x ) -1 (u 1 ) .
We will establish in the next sections that a suitable choice of these functions makes it possible to find an actual solution of (3.1) as a lower order perturbation of u 1 .

The first error of approximation

We will assume the following conditions on λ, α, ξ

               |λ(t)| + t log(t)| λ(t)| ≤ C log(t) | ξ(t)| ≤ C t γ |α(t) -1| ≤ C t log t , | α(t)| ≤ C t 2 log t , (4.1) 
where 3 2 < γ < 2. We compute

S(u 1 ) = S(u 0 + ϕ λ ) = S(u 0 ) -∂ t ϕ λ + L u0 [ϕ λ ] -∇ • (ϕ λ ∇ψ λ ).
where

L u0 [ϕ] = ∆ϕ -∇ • (ϕ∇v 0 ) -∇ • (u 0 ∇ψ), ψ λ = (-∆) -1 ϕ λ , v 0 = (-∆) -1 u 0 . Then S(u 1 ) = - α λ 2 U (y)χ + (α -1) λ λ 3 Z 0 χ + α λ 3 ξ • ∇ y U (y) χ + α λ 2 √ t U (y) ξ • ∇χ 0 + (α -1) 2t 1 λ 2 U ∇ z χ 0 • x -ξ √ t + 2(α -1) λ 3 t 1/2 ∇ z χ 0 • ∇ y U + (α -1) t ∆χ 0 1 λ 2 U - α 2 -1 λ 3 √ t U ∇ z χ 0 • ∇ y Γ 0 - α λ 3 √ t U ∇ z χ 0 • ∇ y R - α(α -1)χ λ 4 ∇ y • (U ∇ y Γ 0 ) + α 2 χ(1 -χ) λ 4 U 2 - αχ λ 4 ∇ y U • ∇ y R + ∇ϕ λ • ξ - 4 r ∂ r ϕ λ -∇ • (ϕ λ ∇v 0 ) -∇ • (u 0 ∇ψ λ ) -∇ • (ϕ λ ∇ψ λ ), (4.2) 
where R is defined in the decomposition (3.5). Then

|ϕ λ (x, t)| + (|x -ξ| + λ)|∇ϕ λ (x, t)| ≤ C 1 t log t 1 λ 2 +|x-ξ| 2 |x -ξ| ≤ √ t 1 t e -|x-ξ| 2 4t |x -ξ| ≥ √ t. (4.3) 
We also have

|∇ϕ λ (x, t)| ≤ C t log t |x -ξ| (λ + |x -ξ|) 4 , |x -ξ| ≤ √ t. (4.4) 
Proof. In terms of the function φλ defined in (3.8), with r = |x -ξ| we claim that

| φλ (r, t)| ≤ C 1 t log t 1 λ 2 +r 2 r ≤ √ t, 1 t e -r 2 4t r ≥ √ t.
For the proof of this we use barriers. Consider

ψ 1 (r, t) = 1 t log t 1 λ 2 + r 2 and note that ∂ t ψ 1 -∂ rr + 5 r ∂ r ψ 1 ≥ c λ -4 t log t(1 + r/λ) 4 , r ≤ 2δ √ t for some c > 0, δ > 0. Let χ δ √ t (r, t) = χ0 ( r δ √ t ) where χ0 ∈ C ∞ (R) is such that χ0 (s) = 1 for s ≤ 1 and χ0 (s) = 0 for s ≥ 2. Consider ψ(r, t) = ψ 1 (r, t)χ δ √ t (r, t) + C 1 t 2 log t e -r 2 4t .
The function Ẽ (3.10) can be estimated by

| Ẽ(ζ, t)| ≤ 1 λ 2 t 3 h 1 ζ √ t where h 1 (z) is a smooth function with compact support. Then E (3.9) has the estimate | Ẽ(ζ, t)| ≤ C |λ λ| (r 2 + λ 2 ) 2 + 1 λ 2 t 3 h 2 ζ √ t where h 2 (z) is a smooth function with compact support.
Then for C 1 sufficiently large

∂ t ψ -∂ rr + 5 r ∂ r ψ ≥ c|E(r, t)|,
where c > 0. By the comparison principle,

| φλ (r, t)| ≤ Cψ(r, t),
for some uniform constant C. After a suitable scaling, from standard parabolic estimates we also get

(λ + r)|∇ x φλ (r, t)| ≤ Cψ(r, t).
With these two inequalities we obtain (4.3).

To prove (4.4) we change variables y = x-ξ λ in the equation (3.8) and define φλ (r, t) = 1 λ 2 φλ r λ , t .

We get the equation, after interpreting ρ = |y|, y ∈ R 6

λ 2 ∂ t φ = ∆ R 6 φ + λ λ(2 φλ + y • ∇ y φλ ) + λ 4 E(λy, t),
where E is defined in (3.9). Differentiating with respect to y and using the bound we already have for ∇ y φλ from (4.4), and using standard parabolic estimates, we get

|D 2 y φλ (y, t)| ≤ C t log t 1 (1 + |y|) 4 , |y| ≤ t log t.
Using that ∇ φλ (0, t) = 0 we deduce that 

|∇ y φλ (y, t)| ≤ C t log t |y| (1 + |y|)
λ 4 |S(u 1 )|χ(x, t) ≤ C 1 t log t log(2 + |y|) 1 + |y| 6 , y = x -ξ λ , (4.5) 
and

|S(u 1 )|(1 -χ) ≤ C 1 t 4 log t e -c |x| 2 t , (4.6) 
for some c ∈ (0, 1 4 ).

Proof. Let us analyze the terms involving ϕ λ . We estimate, using Lemma 4.1,

λ 2 U (y)ϕ λ (ξ + λy) ≤ C 1 t log t 1 (1 + |y|) 6 , |y| ≤ t log t.
Similarly, by (3.5)

- 4 r ∂ r φλ -∇ φλ • ∇v 0 = - 4 r ∂ r φλ -∇ φλ • ∇Γ 0 -(α -1)∇ φλ • ∇Γ 0 -∇ φλ • ∇R = 4 r r 2 + λ 2 - 1 r ∂ r φλ -(α -1)∇ φλ • ∇Γ 0 -∇ φλ • ∇R. (4.7) 
By (4.4)

λ 4 4 r r 2 + λ 2 - 1 r ∂ r ϕ λ ≤ C t log t 1 (1 + |y|) 6 , |y| ≤ t log t.
The other terms in (4.7) are estimated similarly, using the hypotheses on α and the estimate on R (3.6), and we get

- 4 r ∂ r φλ -∇ φλ • ∇v 0 ≤ C t log t 1 (1 + |y|) 6 , |y| ≤ t log t.
The terms involving ψ λ = (-∆) -1 ϕ λ are estimated using the formula

∂ r ψ λ (r, t) = 1 r r 0 ϕ λ (s, t)sds.
In λ 4 S(u 1 ) we have also the term -αλ 2 U (y)χ, which thanks to (4.1) can be estimated as

λ 2 αU (y)χ ≤ Cλ 2 t 2 log t 1 (1 + |y|) 4 χ(y, t) ≤ C t log t 1 (1 + |y|) 6 χ(y, t).
The remaining terms are estimated similarly, and we obtain (4.5). The stated inequality (4.6) follows from the Gaussian decay of ϕ λ in Lemma 4.1.

The inner-outer gluing system

Let us consider the initial approximation

u 1 (x, t) = u 0 (x, t) + ϕ λ (x, t)
built in Section 3 for a given choice of the parameter functions λ(t), α(t), ξ(t) satisfying (4.1). Here u 0 is the function defined in (3.2) and ϕ λ that in (3.11). We look for a solution of the Keller-Segel equation (3.1) in the form of a small perturbation of u 1 , namely u(x, t) = u 1 (x, t) + Φ(x, t).

(5.1)

We write the perturbation Φ as a sum of an "inner" contribution, better expressed in the scale of u 0 , and a remote effect that takes into consideration the "outer" regime. Precisely, we write

Φ(x, t) = 1 λ 2 φ i (y, t)χ(x, t) + ϕ o (x, t), y = x -ξ λ , (5.2) 
where χ is the smooth cut-off

χ(x, t) = χ 0 x -ξ √ t (5.3) with χ 0 a smooth radial cut-off function such that χ 0 (z) = 1 if |z| ≤ 1, χ 0 (z) = 1 if |z| ≥ 2.
(The same as defined in (2.4).)

Recall S(u) given by

S(u) = -∂ t u + ∆u -∇ • (u∇v), v = (-∆) -1 u,
where the operators act on the original variable x unless otherwise indicated. In the computations that follow we will express the equation

S(u 1 + Φ) = 0
for Φ given by (5.2), as a parabolic system in its inner and outer contributions φ i and ϕ o . The coupling in that system will be small if φ i (y, t) decays sufficiently fast in space and time. That can only be achieved for suitable choices of the parameters α, λ, ξ that yield certain solvability conditions satisfied. The set of all these relations is what we call the inner-outer gluing system. Next we formulate this system. It will be necessary to successively refine its original expression by further decomposing φ i into two contributions with separate space decay, finally arriving at the equations (5.47), (5.48), (5.49) and (5.51) which are the ones we will actually solve.

Let us observe that

S(u 1 + Φ) = S(u 1 ) -∂ t 1 λ 2 φ i χ -∂ t ϕ o + L u1 1 λ 2 φ i χ +L u1 [ϕ o ] -∇ • (Φ∇(-∆) -1 Φ), where L u1 [ϕ] = ∆ϕ -∇ • (ϕ∇v 1 ) -∇ • (u 1 ∇(-∆) -1 ϕ), v 1 = (-∆) -1 u 1 .
We use the notation

ψ = 1 λ 2 (-∆) -1 φ i , ψ = 1 λ 2 (-∆) -1 (φ i χ), in the expressions that follow. We expand L u1 [ 1 λ 2 φ i χ] = χ 1 λ 2 ∆φ i + 2 λ 2 ∇χ • ∇φ i + 1 λ 2 φ i ∆χ -∇ • ( 1 λ 2 φ i χ∇v 1 ) -∇ • (u 1 ∇ ψ). We have ∇ • (u 1 ∇ ψ) = ∇ • ( α λ 2 U ∇ψ)χ + ∇ • ( α λ 2 U ∇( ψ -ψ))χ + α λ 2 U ∇χ • ∇ ψ + ∇ • (ϕ λ ∇ψ) + ∇ • (ϕ λ ∇( ψ -ψ))
and

∇ • ( 1 λ 2 φ i χ∇v 1 ) = ∇ • ( 1 λ 2 φ i ∇v 1 )χ + 1 λ 2 φ i ∇χ • ∇v 1 . Recall the notation v 1 = v 0 + ψ λ , v 0 = α λ 2 (-∆) -1 (U χ), ψ λ = (-∆) -1 ϕ λ ,
and also (3.5)

v 0 = αΓ 0 + R, R = α λ 2 (-∆) -1 U (χ -1) . Then ∇ • ( 1 λ 2 φ i χ∇v 1 ) = ∇ • ( 1 λ 2 φ i ∇v 0 )χ + ∇ • ( 1 λ 2 φ i ∇ψ λ )χ + 1 λ 2 φ i ∇χ • ∇v 0 + 1 λ 2 φ i ∇χ • ∇ψ λ = α λ 2 ∇ • (φ i ∇Γ 0 )χ + ∇ • ( 1 λ 2 φ i ∇R)χ + ∇ • ( 1 λ 2 φ i ∇ψ λ )χ + α λ 2 φ i ∇χ • ∇Γ 0 + 1 λ 2 φ i ∇χ • ∇R + 1 λ 2 φ i ∇χ • ∇ψ λ . Therefore L u1 [ 1 λ 2 φ i χ] = χ 1 λ 2 ∆φ i + 2 λ 2 ∇χ • ∇φ i + 1 λ 2 φ i ∆χ -∇ • ( α λ 2 φ i ∇Γ 0 )χ + ∇ • ( 1 λ 2 φ i ∇R)χ + ∇ • ( 1 λ 2 φ i ∇ψ λ )χ + α λ 2 φ i ∇χ • ∇Γ 0 + 1 λ 2 φ i ∇χ • ∇R + 1 λ 2 φ i ∇χ • ∇ψ λ -∇ • ( α λ 2 U ∇ψ)χ + ∇ • ( α λ 2 U ∇( ψ -ψ))χ + α λ 2 U ∇χ • ∇ ψ + ∇ • (ϕ λ ∇ψ) + ∇ • (ϕ λ ∇( ψ -ψ)) .
Next we expand

L u1 [ϕ o ] = ∆ϕ o -∇ • (ϕ o ∇v 1 ) -∇ • (u 1 ∇ψ o ), ψ o = (-∆) -1 ϕ o .
We have

∇ • (u 1 ∇ψ o ) = ∇ • ( α λ 2 U χ∇ψ o ) + ∇ • (ϕ λ ∇ψ o ) = ∇ • ( α λ 2 U ∇ψ o )χ + α λ 2 U ∇χ • ∇ψ o + ∇ • (ϕ λ ∇ψ o )χ + ∇ • (ϕ λ ∇ψ o )(1 -χ),
and

∇ • (ϕ o ∇v 1 ) = ∇ • (ϕ o ∇v 0 ) + ∇ • (ϕ o ∇ψ λ ) = α∇ • (ϕ o ∇Γ 0 ) + ∇ • (ϕ o ∇R) + ∇ • (ϕ o ∇ψ λ ) = ∇ϕ o • ∇Γ 0 - 1 λ 2 U ϕ o + (α -1)∇ • (ϕ o ∇Γ 0 ) + ∇ • (ϕ o ∇R) + ∇ • (ϕ o ∇ψ λ ). Therefore, L u1 [ϕ o ] = ∆ϕ o -∇ • ( α λ 2 U ∇ψ o )χ + α λ 2 U ∇χ • ∇ψ o + ∇ • (ϕ λ ∇ψ o )χ + ∇ • (ϕ λ ∇ψ o )(1 -χ) -∇ϕ o • ∇Γ 0 - 1 λ 2 U ϕ o + (α -1)∇ • (ϕ o ∇Γ 0 ) + ∇ • (ϕ o ∇R) + ∇ • (ϕ o ∇ψ λ ) .
Based on the previous formulas we formulate the inner equation

λ 4 ∂ t ( 1 λ 2 φ i ) = L[φ i ] -(α -1)∇ y • (U ∇ y ψ) -(α -1)∇ y • (φ i ∇Γ 0 ) + λ 4 S(u 1 ) -λ 2 ∇ y • (ϕ λ ∇ y ψ o ) -λ 2 ∇ y • (ϕ o ∇ y ψ λ ) + λ 2 U ϕ o -α∇ y • (U ∇ y ψ o ) -λ 2 ∇ y • (ϕ λ ∇ y ψ) -∇ y • (φ i ∇ y ψ λ ) -(α -1)λ 2 ∇ • (ϕ o ∇Γ 0 ) -α∇ y • (U ∇ y ( ψ -ψ)) -λ 2 ∇ y • (ϕ λ ∇ y ( ψ -ψ)) -∇ y • ((φ i χ + λ 2 ϕ o )∇ y ( ψ + ψ o )),
where

L[φ] = ∆ y φ -∇ y • (U ∇ y ψ) -∇ y • (φ∇Γ 0 ). (5.4)
We slightly modify the inner equation into the form

λ 2 ∂ t φ i = L[φ i ] + B 0 [φ i ] + E 1 χ + F (φ i , ϕ o , p) χ (5.5) where p = (λ, α, ξ), E 1 (y, t) = λ 4 S(u 1 (p))(x, t), y = x -ξ λ , F (φ i , ϕ o , p) = -λ 2 ∇ y • (ϕ λ ∇ y ψ o ) -λ 2 ∇ y • (ϕ o ∇ y ψ λ ) + λ 2 U ϕ o -(α -1)λ 2 ∇ y • (ϕ o ∇ y Γ 0 ) -α∇ y • (U ∇ y ψ o ) + λ ξ • ∇ y φ i -λ 2 ∇ y • (ϕ λ ∇ y ψ) -∇ y • (φ i ∇ y ψ λ ) -(α -1)∇ y • (U ∇ y ψ) -(α -1)∇ y • (φ i ∇ y Γ 0 ) -α∇ y • (U ∇ y ( ψ -ψ)) -λ 2 ∇ y • (ϕ λ ∇ y ( ψ -ψ)) -∇ y • ((φ i χ + λ 2 ϕ o )∇ y ( ψ + ψ o )), ψ = (-∆ y ) -1 (φ i χ), (5.6) 
B 0 [φ i ] = λ λ(2φ i + y • ∇ y φ i ), (5.7) 
and

χ(y, t) = χ 0 λy 2 √ t , (5.8) 
with χ 0 as in (2.5). Similarly we formulate the outer equation as

∂ t ϕ o = ∆ϕ o -∇Γ 0 • ∇ϕ o + G(φ i , ϕ o , p) (5.9) 
where

G(φ i , ϕ o , p) = S(u 1 , p)(1 -χ) + 2 λ 2 ∇χ • ∇φ i + 1 λ 2 φ i ∆χ - 1 λ 2 φ i ∂ t χ - α λ 2 φ i ∇χ • ∇Γ 0 + 1 λ 2 U ϕ o (1 -χ) -αλ 2 U ∇χ • ∇ψ o -∇ • (ϕ λ ∇ψ o )(1 -χ) -(α -1)∇ • (ϕ o ∇Γ 0 )(1 -χ) -∇ • (ϕ o ∇R) -∇ • (ϕ o ∇ψ λ )(1 -χ) - 1 λ 2 ∇ • (φ i ∇R)χ - 1 λ 2 φ i ∇χ • ∇R - 1 λ 2 φ i ∇χ • ∇ψ λ - α λ 2 U ∇χ • ∇ ψ -∇ • (ϕ λ ∇( ψ -ψ))(1 -χ) -∇(ϕ λ ∇ψ)(1 -χ) -∇ • (( 1 λ 2 φ i χ + ϕ o )∇( ψ + ψ o ))(1 -χ). (5.10) 
If φ i , ϕ o is a solution to system (5.5), (5.9), then u given by (5.1), (5.2) satisfies the Keller-Segel system (3.1).

5.1.

Choice of λ 0 and α 0 . We explain the choice of λ 0 in the context of the elliptic equation

L[φ] = h in R 2 , (5.11) 
where h is radial.

Lemma 5.1. Let h(y) be a radial function such that

(1 + |y|) γ h(y) L ∞ (R 2 ) < ∞,
for some γ > 4 and satisfying

R 2
h(y)dy = 0 (5.12)

R 2 h(y)|y| 2 dy = 0. (5.13)
Then there exists a radial solution φ(y) of equation (5.11) such that

|φ(y)| ≤ C (1 + |y|) γ h(y) L ∞ (R 2 ) 1 (1 + |y|) γ-2 , if γ = 6 (5.14) |φ(y)| ≤ C (1 + |y|) γ h(y) L ∞ (R 2 ) log(1 + |y|) (1 + |y|) 4 , if γ = 6, (5.15) 
and R 2 φ(y)dy = 0.

(5.16)

Proof. Defining g = φ U -(-∆) -1 φ we obtain the equation ∇ • (U ∇g) = h.
(5.17)

Assuming γ > 6 we choose the radial function g defined by

g(ρ) = - ∞ ρ 1 rU (r) r 0 h(s)sdsdr, ρ = |y|,
and using (5.12) we get

|g(ρ)| ≤ C (1 + |y|) γ h L ∞ (R 2 ) 1 (1 + |y|) γ-6 .

Now we solve Liouville's equation

-∆ψ -U ψ = U g in R 2 , ψ(ρ) → 0 as ρ → ∞.
(5.18)

Multiplying (5.17) by |y| 2 and using (5.13) we see that

R 2 gZ 0 dy = 1 2 R 2 h(y)|y| 2 dy = 0,
with Z 0 defined in (3.4). Then by the variations of parameter formula we find that (5.18) has a unique solution ψ, which satisfies

|ψ(y)| + (1 + |y|)|∇ψ(y)| ≤ (1 + |y|) γ h L ∞ (R 2 ) 1 (1 + |y|) γ-4 .
(

Then we see that φ defined by φ = U g + U ψ satisfies (5.11), (5.14) and (5.16) because φ = -∆ψ and ψ has the decay (5.19). If 4 < γ ≤ 6 we do almost the same, except that we define

g(ρ) = ρ 0 1 rU (r) r 0 h(s)sdsdr.
Remark 5.1. We observe that L[Z 0 ] = 0. This can also be seen in the context of the Lemma 5.1, where φ = Z 0 which corresponds to g being constant. Indeed, suppose g ≡ 1. Then from (5.18) ψ = -1 -1 2 z 0 , where z 0 is defined in (9.2). This gives φ = U g

+ U ψ = -1 U z 0 = -1 2 Z 0 . This shows that L[Z 0 ] = 0.
If h doesn't satisfy the zero second moment condition (5.13), then a solution still exists but with worse decay and non-zero mass. More precisely, if h is radial,

(1 + |y|) γ h(y) L ∞ (R 2 )
< ∞ for some γ > 6, and satisfies only (5.12), then one can construct a solution φ to (5.11), but any such solution has the estimate

|φ(y)| ≤ C (1 + |y|) γ h(y) L ∞ (R 2 ) log(1 + |y|) (1 + |y|) 4 ,
so worse decay than the one in (5.14). Moreover, the mass of φ becomes

R 2 φ = - R 2 ∆ψ = - R 2 gZ 0 = - 1 2 R 2 h(y)|y| 2 dy.
For the inner equation (5.5) it is then natural to impose that the first error S(u 1 )χ satisfies the second moment condition R 2 S(u 1 )χ|y| 2 dy = 0, for all t > t 0 .

The next lemma gives a way of expressing the second moment of u 1 .

Lemma 5.2. Let u 1 be defined in (3.12). Then

R 2 S(u 1 )|x -ξ| 2 dx = 4 R 2 ϕ λ dx -α R 2 Ẽ(x -ξ, t; λ)|x -ξ| 2 dx + R 2 ∇ϕ λ dx • ξ - α λ 2 R 2 U χ|x -ξ| 2 dx -(1 -α) R 2 E(x -ξ, t; λ)|x -ξ| 2 dx + 4 R 2 u 0 + R 2 ϕ λ 1 - 1 8π R 2 u 0 - 1 8π R 2 ϕ λ . (5.20)
where E, Ẽ are defined in (3.9), (3.10).

Proof of Lemma 5.2. Using (2.11) we see that

R 2 S(u 1 )|x -ξ| 2 dx = - R 2 ∂ t u 0 |x -ξ| 2 dx - R 2 ∂ t ϕ λ |x -ξ| 2 dx + 4 R 2 u 0 + R 2 ϕ λ 1 - 1 8π R 2 u 0 - 1 8π R 2 ϕ λ .
But recall that ϕ λ (x, t) = φλ (x -ξ(t), t) where φλ satisfies (3.8). Multiplying that equation by |ζ| 2 and integrating on R 2 results in

R 2 ∂ t φλ |ζ| 2 dζ = -4 R 2 φλ dζ + R 2 E(ζ, t)|ζ| 2 dζ. Therefore R 2 ∂ t ϕ λ |x -ξ| 2 dx = -4 R 2 ϕ λ dx - (x -ξ) • ξ |x -ξ| R 2 ∂ r φλ + R 2 E(ζ, t)|ζ| 2 dζ
and then

R 2 S(u 1 )|x -ξ| 2 dx = - R 2 ∂ t u 0 |x -ξ| 2 dx + 4 R 2 ϕ λ dx + R 2 ∇ϕ λ dx • ξ - R 2 E(x -ξ, t)|x -ξ| 2 dx + 4 R 2 u 0 + R 2 ϕ λ 1 - 1 8π R 2 u 0 - 1 8π R 2 ϕ λ .
(5.21)

But from the formula for ∂ t u 0 (3.3) and the definitions of E and Ẽ (3.9), (3.10) we get

-∂ t u 0 (x, t) = - α λ 2 U (y)χ 0 (z) + αE(x -ξ, t) -α Ẽ(x -ξ, t). Hence R 2 (∂ t u 0 + E(x -ξ, t))|x -ξ| 2 dx = R 2 (∂ t u 0 + αE(x -ξ))|x -ξ| 2 dx + (1 -α) R 2 E(x -ξ, t)|x -ξ| 2 dx = α λ 2 R 2 U χ|x -ξ| 2 dx + α R 2 Ẽ(x -ξ, t)|x -ξ| 2 dx + (1 -α) R 2 E(x -ξ, t)|x -ξ| 2 dx.
Replacing this in (5.21) we obtain (5.20).

In the definition (3.12) of u 1 we will stress the dependence on the parameters by writing p = (λ, α, ξ) and u 1 = u 1 (p). At this point we would like to construct λ 0 and α 0 so that setting p 0 = (λ 0 , α 0 , 0) we have

R 2 u 1 (p 0 )dx = 8π, (5.22) R 2 S(u 1 (p 0 ))|x -ξ| 2 dx = O 1 t 3 2 +σ , (5.23) 
for some σ > 0. The reason for allowing in (5.23) an error is that it is difficult to solve with right hand side equal to 0 and a remainder of size O(t -3 2 -σ ) with σ > 0 is sufficiently small to proceed with the rest of the construction.

Assuming that (5.22) holds, we get

R 2 S(u 1 )|x -ξ| 2 dx = 4 R 2 ϕ λ dx -α R 2 Ẽ(x -ξ, t; λ)|x -ξ| 2 dx + R 2 ∇ϕ λ dx • ξ - α λ 2 R 2 U χ|x -ξ| 2 dx -(1 -α) R 2 E(x -ξ, t; λ)|x -ξ| 2 dx.
It turns out that the main terms in the expression for R 2 S(u 1 )|x -ξ| 2 dx are the first two. So the equation

R 2 S(u 1 (p 0 ))|x -ξ| 2 dx = 0 is at main order given by 4 R 2 ϕ λ dx - R 2
Ẽ|x -ξ| 2 dx = 0.

It will be shown later that

R 2 Ẽ|x -ξ| 2 dx = -64πΥ λ 2 t + O λ 4 t 2 , (5.24) 
see Lemma 7.5, where Υ is given in (2.7), so that the equation we want to solve becomes at main order,

R 2 ϕ λ dx + 16πΥ λ 2 t = 0.
In §7 we will show that 

R 2 ϕ λ dx = -4π t-λ 2 t/2
d dt λ * (t) 2 log t = 0.
The error left out in the approximation (5.26) is too big. We give next a result that shows that for an appropriate modification of λ * we can achieve a smaller error. Let us write Ẽ(λ) the expression defined in (3.10) with the explicit dependence on λ. Proposition 5.1. Let c 0 > 0 be fixed. For t 0 > 0 sufficiently large there exists

λ 0 : [ t0 2 , ∞) → (0, ∞) such that R 2 ϕ λ0 dx - 1 4 R 2 Ẽ(λ 0 )|x -ξ| 2 dx = O 1 t 3 2 +σ , t > t 0 , (5.27) 
for some σ > 0. Moreover, for arbitrarily ε > 0 small, λ 0 has the expansion

λ 0 (t) = c 0 √ log t + O 1 (log t) 3 2 -ε , λ0 (t) = - c 0 2t(log t) 3/2 + O 1 t(log t) 5 2 -ε , | λ0 (t)| ≤ C t 2 (log t) 3/2 , as t → ∞.
We will prove this result in §7.1. Once λ 0 is constructed in Proposition 5.1 we choose α 0 so that (5.22) holds, by imposing

α 0 (t) R 2 U (y)χ 0 λ 0 (t)y √ t dy + R 2 ϕ λ0 (x, t) dx = 8π, t > t 0 .
(5.28)

We note that by (2.6), (5.27) and (5.24) we get

α 0 (t) = O 1 t 3 2 +σ
as t → ∞. A byproduct of the proof of Proposition 5.1 is that

d dt R 2 ϕ λ0 dx ≤ C t 2 , (5.29) 
and from this and (5.28) we get

| α0 (t)| ≤ C t 2 .
(5.30)

As a corollary of Proposition 5.1 we get:

Corollary 5.1. Let p 0 = (λ 0 , α 0 , 0) with α 0 defined by (5.22) and λ 0 be given by Proposition 5.1. Then

R 2 S(u 1 (p 0 ))|x -ξ| 2 dx = O 1 t 3 2 +σ , for some σ > 0.
Proof. Using Lemma 5.2 we have

R 2 S(u 1 )|x -ξ| 2 dx = 4 R 2 ϕ λ0 dx - R 2 Ẽ(x -ξ, t; λ 0 )|x -ξ| 2 dx - α0 λ 2 R 2 U χ|x -ξ| 2 dx -(1 -α 0 ) R 2 E(x -ξ, t; λ 0 )|x -ξ| 2 dx = O 1 t 3 2 +σ , for some σ > 0, since α0 (t) = O( 1 t 2 log t ) and R 2 E(x -ξ, t; λ 0 )|x -ξ| 2 dx = O λ 2 0
t by (5.24) and a direct estimate for the remaining terms in E (c.f. (3.9)).

5.2.

A further improvement of the approximation. We introduce a correction φ i 0 (y), y = x-ξ λ in the inner approximation to eliminate the radial part of S(u 1 (p)) (defined in (4.2)), which we define as .31) With this definition

S 0 (u 1 (p)) = - α λ 2 U (y)χ + (α -1) λ λ 3 Z 0 χ + (α -1) 2t 1 λ 2 U ∇ z χ 0 • x -ξ √ t + 2(α -1) λ 3 t 1/2 ∇ z χ 0 • ∇ y U + (α -1) t ∆χ 0 1 λ 2 U - α 2 -1 λ 3 √ t U ∇ z χ 0 • ∇ y Γ 0 - α λ 3 √ t U ∇ z χ 0 • ∇ y R - α(α -1)χ λ 4 ∇ y • (U ∇ y Γ 0 ) + α 2 χ(1 -χ) λ 4 U 2 - αχ λ 4 ∇ y U • ∇ y R. - 4 r ∂ r ϕ λ -∇ • (ϕ λ ∇v 0 ) -∇ • (u 0 ∇ψ λ ) -∇ • (ϕ λ ∇ψ λ ). ( 5 
S(u 1 ) = S 0 (u 1 ) + α λ 3 ξ • ∇ y U (y) χ + α λ 2 √ t U (y) ξ • ∇χ 0 ,
and the terms not in S(u 1 ) correspond to α λ 3 ξ • ∇ y U (y) χ + α λ 2 √ t U (y) which are in mode 1. Then we want φ i 0 to be an appropriate solution to the equation

L[φ i 0 ] + λ 4 S 0 (u 1 (p 0 ))(x, t) = c 0 (t)W 2 in R 2 , x = ξ + λy, (5.32) 
where L is the linear operator (5.4), t > t 0 is regarded as a parameter, W 2 (y) is a fixed smooth radial function with compact support, and

R 2 W 2 (y)dy = 0, R 2 W 2 (y)|y| 2 dy = 1.
(5.33) By Lemma 5.2 and Proposition 5.1, the choice p = p 0 is so that (5.22), (5.23) hold. Since the difference between S(u 1 ) and S 0 (u 1 ) contains terms in mode 1 only, we get from Corollary 5.1

R 2 λ 4 S 0 (u 1 (p 0 ))|y| 2 dy = O 1 t 3 2 +σ .
(5.34)

In (5.32) we select c 0 (t) such that

R 2 [λ 4 S 0 (u 1 (p 0 )) + c 0 (t)W 2 ]|y| 2 dy = 0, t > t 0
and thanks to (5.34) we have

|c 0 (t)| ≤ C t 3 2 +σ , t > t 0 .
(5.35)

Note that we have

R 2 S 0 (u 1 (p 0 ))dx = 0,
which follows from the constant mass in time of u 1 (p 0 ) in (5.22) and the form of the operator S 0 (5.31). We let φ i 0 be the solution to (5.32) constructed in Lemma 5.1. By (5.15) and (4.5)

|φ i 0 (y, t)| ≤ C t log(1 + |y|) 1 + |y| 4 , (5.36) and R 2 
φ i 0 (y, t)dy = 0, t > t 0 .

5.3. Reformulation of the system. In the outer problem (5.9) we would like to separate the effect of the initial condition from the coupling G(φ i , ϕ o , p).

We take the initial condition in (5.9) to be ϕ o (•, t 0 ) = ϕ * 0 , and let ϕ * (x, t) denote the solution of

   ∂ t ϕ * = ∆ϕ * -∇ x Γ 0 x -ξ λ • ∇ϕ * in R 2 × (t 0 , ∞) ϕ * (•, t 0 ) = ϕ * 0 in R 2 .
(5.37)

The initial condition ϕ * 0 (x) will be later used to prove the stability claimed in Theorem 1.1. The topology for ϕ * 0 will be specified later on. Note that ∇ x Γ 0 ( x-ξ λ ) = -4 x-ξ |x-ξ| 2 +λ 2 so that ϕ * is a function of the parameters λ, ξ. Therefore we will write ϕ * (x, t; p) when convenient.

We decompose

     φ i = φ i 0 + φ ϕ o = ϕ * + ϕ p = p 0 + p 1 (5.38)
where p 0 = (λ 0 , α 0 , 0), p 1 = (λ 1 , α 1 , ξ 1 ), with λ 0 the function constructed in Proposition 5.1 and α 0 chosen so that (5.22) holds.

We substitute the expressions for φ i , ϕ o and p in (5.38) into the equations (5.5), (5.9), and are led to the following problem for φ, ϕ

λ 2 ∂ t φ = L[φ] + B 0 [φ] + E 2 χ2 + F 2 (φ, ϕ, p 1 , ϕ * 0 ) χ in R 2 × (t 0 , ∞) φ(•, t 0 ) = φ 0 in R 2 (5.39)    ∂ t ϕ = ∆ϕ -∇ x Γ 0 ( x -ξ λ ) • ∇ϕ + G 2 (φ, ϕ, p 1 , ϕ * 0 ) in R 2 × (t 0 , ∞) ϕ(•, t 0 ) = 0 in R 2 , (5.40)
where χ is defined in (5.8),

E 2 = -∂ t φ i 0 + B 0 [φ i 0 ] + c 0 (t)W 2 F 2 (φ, ϕ, p 1 , ϕ * 0 ) = F (φ i 0 + φ, ϕ * + ϕ, p 0 + p 1 ) + λ 4 [S 0 (u 1 (p 0 + p 1 )) -S 0 (u 1 (p 0 ))] + λα ξ1 • ∇ y U (y) χ + αλ 2 √ t U (y) ξ1 • ∇χ 0 (5.41) G 2 (φ, ϕ, p 1 , ϕ * 0 ) = G(φ i 0 + φ, ϕ * + ϕ, p 0 + p 1 ) + λ -4 E 2 (1 -χ2 )χ (5.42) χ2 (x, t) = χ 0 x -ξ t 1 
2 -δ , δ > 0 is a small constant to be fixed later on, and χ 0 is as in (2.5). We recall that F and G are defined in (5.6) and (5.10). The expressions for F 2 and G 2 depend on the initial condition ϕ * 0 through ϕ * (5.37) and φ 0 . The role of φ 0 will be clarified later on.

By the estimate for λ0 in Proposition 5.1 and (5.35) we get

|E 2 (y, t)| ≤ C t 2 (log t) 2 log(1 + |y|) 1 + |y| 4 + C t 3 2 +σ |W 2 (y)|, |y| ≤ C t log t.
(

The reason that we introduce the cut-off χ2 is to achieve

|E 2 χ2 (y, t)| ≤ C t ν (1 + |y|) 6+σ , if ν < 1 + 2δ -σ
2 . We will choose δ and σ positive small numbers such that 2δ -σ 2 > 0 so that we can find 1 < ν < 1 + 2δ -σ 2 .

5.4. Splitting the inner solution φ. We perform one more change in the formulation (5.39), (5.40), which consists in decomposing

φ = φ 1 + φ 2 .
The function φ 1 will solve an equation with part of the right hand side of (5.39), which will be projected so that it satisfies the zero second moment condition. For any h(y, t) with sufficient spatial decay we define

m 0 [h](t) = R 2 h(y, t)dy, m 2 [h](t) = R 2 h(y, t)|y| 2 dy, (5.44) 
and

m 1,j [h](t) = R 2
h(y, t)y j dy, j = 1, 2, which denote the mass, second moment and center of mass of h.

Let W 0 ∈ C ∞ (R 2 ) be radial with compact support such that R 2 W 0 dy = 1, R 2 W 0 |y| 2 dy = 0.
Let W 1,j , j = 1, 2 be a smooth functions with compact support and with the form W 1,j (y) = W (|y|)y j so that

R 2 W 1,j (y)y j = 1.
We recall that W 2 defined in (5.33).

Then, h -m 0 [h]W 0 has zero mass, h -m 2 [h]W 2 has zero second moment, and h -m 1,1 [h]W 1,1 - m 1,2 [h]W 1,2 has zero center of mass.
We modify of the operator B 0 appearing in (5.39), and defined in (5.7) and a term with no radial mode φ 1 = φ -[φ] rad . We note that the other linear terms in the equation behave well with this decomposition. Then we define

B[φ] = λ λ(2[φ] rad + y • ∇[φ] rad ) + λ λ(2φ 1 + y • ∇φ 1 )χ 0 λy 5 √ t (5.46)
where χ 0 is a smooth cut-off in R with χ 0 (s) = 1 for s ≤ 1 and χ 0 (s) = 1 for s ≥ 2.

With these definitions we introduce the following system for

φ 1 , φ 2 , ϕ, p 1 ,                  λ 2 ∂ t φ 1 = L[φ 1 ] + B[φ 1 ] + F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 ) -m 0 [F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 )]W 0 -m 2 [F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 )]W 2 -m 1,1 [F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 )]W 1,1 -m 1,2 [F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 )]W 1,2 in R 2 × (t 0 , ∞) φ 1 (•, t 0 ) = 0 in R 2 ,
(5.47)

λ 2 ∂ t φ 2 = L[φ 2 ] + B[φ 2 ] + m 2 [F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 )]W 2 in R 2 × (t 0 , ∞) φ 2 (•, t 0 ) = φ 0 in R 2 ,
(5.48)

∂ t ϕ = ∆ϕ -∇Γ 0 • ∇ϕ + G 2 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 ) in R 2 × (t 0 , ∞) ϕ(•, t 0 ) = 0 in R 2 , (5.49) 
where

F 3 (φ, ϕ, p 1 , ϕ * 0 ) = E 2 χ2 + F 2 (φ, ϕ, p 1 , ϕ * 0 ) χ, (5.50) 
A solution φ 1 , φ 2 , ϕ to (5.47), (5.48) and (5.49) gives a solution to the system (5.39), (5.40) provided p 1 is such that the following equations are satisfied

0 = m 0 [F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 )] 0 = m 1,j [F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 )], j = 1, 2.
(5.51) 5.5. Mass and second moment. In this section we derive some formulas for the mass and second moment appearing in the right hand side of (5.47).

In the computation of m 0 [F 3 (φ, ϕ, p 1 , ϕ * 0 )] and m 2 [F 3 (φ, ϕ, p 1 , ϕ * 0 )], the following formulas will be useful.

Lemma 5.3. We have

R 2 S(u 1 (p))dx = -∂ t R 2 u 0 dx -∂ t R 2 ϕ λ dx = -∂ t 8πα 1 + 2Υ λ 2 t + αe 1 λ 2 t + R 2 ϕ λ dx and R 2 (S(u 1 (p)) -S(u 1 (p 0 )))dx = -∂ t α 1 8π 1 + 2Υ λ 2 t + e 1 λ 2 t + 16πα 0 Υ λ 2 -λ 2 0 t + α 0 e 1 λ 2 t -e 1 λ 2 0 t + R 2 (ϕ λ -ϕ λ0 )dx ,
where e 1 (s) is defined by

R 2 u 0 dx = 8πα 1 + 2Υ λ 2 t + αe 1 λ 2 t .
(5.52)

Recall that Υ is given in (2.7) and note that e 1 (s) = O(s 2 ), as s → 0.

Proof. For this we recall that (c.f. (2.8))

S(u 1 (p)) = -∂ t u 0 -∂ t ϕ λ + E(u 0 + ϕ λ ), so R 2 S(u 1 (p))dx = -∂ t R 2 u 0 dx -∂ t R 2 ϕ λ dx = -∂ t 8πα 1 + 2Υ λ 2 t + αe 1 λ 2 t + R 2 ϕ λ dx . Therefore R 2 (S(u 1 (p)) -S(u 1 (p 0 )))dx = -∂ t α 1 8π 1 + 2Υ λ 2 t + e 1 λ 2 t + 16πα 0 Υ λ 2 -λ 2 0 t + α 0 e 1 λ 2 t -e 1 λ 2 0 t + R 2 (ϕ λ -ϕ λ0 )dx .
Lemma 5.4. We have

λ 4 m 2 [S 0 (u 1 (p 0 + p 1 )) -S 0 (u 1 (p 0 ))] = -32πα 1 - α λ 2 R 2 U ( x -ξ λ )χ 0 ( x -ξ λ )|x -ξ| 2 dx + α0 λ 2 0 R 2 U ( x λ 0 )χ( x λ 0 )|x| 2 dx -4 αe 1 λ 2 t -α 0 e 1 λ 2 0 t -αe 2 λ 2 t -α 0 e 2 λ 2 0 t - R 2 (ϕ λ -ϕ λ0 ) dx 2 -(1 -α) R 2 E(x -ξ, t, λ)|x -ξ| 2 dx + (1 -α 0 ) R 2 E(x, t, λ 0 )|x| 2 dx -|ξ| 2 R 2 S(u 1 (p 0 ))dx.
Proof. We have defined the second moment m 2 (5.44) integrating with respect to y. Note that

λ 4 R 2 f (y)|y| 2 dy = R 2 f x -ξ λ |x -ξ| 2 dx,
and therefore

λ 4 m 2 [S 0 (u 1 (p 0 + p 1 )) -S 0 (u 1 (p 0 ))] = λ 4 R 2 S 0 (u 1 (p 0 + p 1 ))(ξ + λy)|y| 2 dy -λ 4 R 2 S 0 (u 1 (p 0 ))(ξ + λy)|y| 2 dy = R 2 S 0 (u 1 (p 0 + p 1 ))(x)|x -ξ| 2 dy - R 2 S 0 (u 1 (p 0 ))(x)|x -ξ| 2 dy.
We have by Lemma 5.2,

R 2 S(u 1 )|x -ξ| 2 dx = 4 R 2 ϕ λ dx -α R 2 Ẽ(x -ξ, t; λ)|x -ξ| 2 dx + R 2 ∇ϕ λ dx • ξ - α λ 2 R 2 U χ|x -ξ| 2 dx -(1 -α) R 2 E(x -ξ, t; λ)|x -ξ| 2 dx + 4 R 2 u 0 + R 2 ϕ λ 1 - 1 8π R 2 u 0 - 1 8π R 2 ϕ λ . (5.53)
where E, Ẽ are defined in (3.9), (3.10). Let

m = R 2 (u 0 + ϕ λ )dx, δm = m -8π. Since R 2
(u 0 + ϕ λ0 )dx = 8π, by (5.22), we have

δm = R 2 (ϕ λ -ϕ λ0 ) dx.
Replacing m in (5.53) we get 

R 2 S(u 1 (p))|x -ξ| 2 dx = 32π -4 R 2 u 0 dx - 1 2π (δm) 2 -α R 2 Ẽ(x -ξ, t; λ)|x -ξ| 2 dx + R 2 ∇ϕ λ dx • ξ - α λ 2 R 2 U χ|x -ξ| 2 dx -(1 -α) R 2 E(x -ξ, t; λ)|x -ξ| 2 dx. ( 5 
R 2 S(u 1 (p))|x -ξ| 2 dx = 32π(1 -α) - 1 2π (δm) 2 - α λ 2 R 2 U χ|x -ξ| 2 dx + R 2 ∇ϕ λ dx • ξ -(1 -α) R 2 E(x -ξ, t; λ)|x -ξ| 2 dx -4αe 1 λ 2 t -αe 2 λ 2 t .
We can apply this formula to p = p 0 and get

R 2 S(u 1 (p 0 ))|x| 2 dx = 32π(1 -α 0 ) - α0 λ 2 0 R 2 U ( x λ 0 )χ|x| 2 dx -(1 -α 0 ) R 2 E(x, t; λ 0 )|x| 2 dx -4α 0 e 1 λ 2 0 t -α 0 e 2 λ 2 0 t . Note that R 2 S 0 (u 1 (p 0 ))|x -ξ| 2 dx = R 2 S 0 (u 1 (p 0 ))|x| 2 dx + |ξ| 2 R 2 S 0 (u 1 (p 0 ))dx = R 2 S 0 (u 1 (p 0 )|x| 2 dx + |ξ| 2 R 2 S(u 1 (p 0 )dx because R 2 S 0 (u 1 (p 0 )x j dx = 0. Therefore, R 2 [S(u 1 (p)) -S(u 1 (p 0 ))]|x -ξ| 2 dx = -32πα 1 - α λ 2 R 2 U ( x -ξ λ )χ 0 ( x -ξ λ )|x -ξ| 2 dx + α0 λ 2 0 R 2 U ( x λ 0 )χ( x λ 0 )|x| 2 dx -4 αe 1 λ 2 t -α 0 e 1 λ 2 0 t -αe 2 λ 2 t -α 0 e 2 λ 2 0 t - R 2 (ϕ λ -ϕ λ0 ) dx 2 -(1 -α) R 2 E(x -ξ, t, λ)|x -ξ| 2 dx + (1 -α 0 ) R 2 E(x, t, λ 0 )|x| 2 dx -|ξ| 2 R 2
S(u 1 (p 0 )dx.

6. Proof of Theorem 1.1

Next we define norms, which are suitably adapted to the terms in the inner linear problems (5.47), (5.48). Let us write the linearized versions of these problems as

λ 2 ∂ t φ = L[φ] + B[φ] + h(y, t) in R 2 × (t 0 , ∞), φ(•, t 0 ) = 0 in R 2 . ( 6.1) 
Given positive numbers ν, p, and m ∈ R, we let

h 0,ν,m,p, = inf K such that (6.2) |h(y, t)| ≤ K t ν (log t) m 1 (1 + |y|) p      1 |y| ≤ √ t log t, (t log t) /2 |y| |y| ≥ √ t log t.
We also defie

φ 1,ν,m,p, = inf K such that |φ(y, t)| + (1 + |y|)|∇ y φ(y, t)| ≤ K t ν (log t) m 1 (1 + |y|) p      1 |y| ≤ √ t log t, (t log t) /2 |y| |y| ≥ √ t log t.
We develop a solvability theory of problem (6.1) that involves uniform space-time bounds in terms of the above norms. We will establish two results: one in which the solution "loses" one power of t on bounded sets with respect to the time-decay of h, under radial symmetry and the condition of spatial average 0 at all times. Our second result states that for a general h this loss is only t 1 2 if in addition the center of mass and second-moment of h are zero at all times.

For the first result we introduce a parameter in the problem in order to get a fast decay of the solution:

λ 2 ∂ t φ = L[φ] + B[φ] + h(y, t) in R 2 × (t 0 , ∞), φ(•, t 0 ) = c 1 Z0 in R 2 , (6.3) 
where Z0 is defined as

Z0 (ρ) = (Z 0 (ρ) -m Z0 U )χ 0 ρ 3λ(t 0 ) √ t 0 ,
where m Z0 is such that

R 2 Z0 = 0.
Proposition 6.1. Assume (4.1). Let σ > 0, > 0 with σ+ < 2 and 1 < ν < 7 4 . Let 0 < q < 1. Then there exists a number C > 0 such that for t 0 sufficiently large and all radially symmetric h = h(|y|, t) with h 0,ν,m,6+σ, < ∞ and R 2 h(y, t)dy = 0, for all t > t 0 , there exists c 1 ∈ R and solution φ(y, t) = T i,2 p [h] of problem (6.3) that defines a linear operator of h and satisfies the estimate

φ 1,ν-1,m+q-1,4,2+σ+ ≤ C (log t 0 ) 1-q h 0,ν,m,6+σ, .
Moreover c 1 is a linear operator of h and

|c 1 | ≤ C 1 t ν-1 0 (log t 0 ) m h 0,ν,m,6+σ, .
Proposition 6.2. Assume (4.1). Let 0 < σ < 1, > 0 with σ+ < 3 2 and 1 < ν < min(1+ 2 , 3-σ 2 , 5 4 ). Let 0 < q < 1. Then there is C such that for t 0 large the following holds. Suppose that h satisfies h 0,ν,m,6+σ, < ∞ and

R 2 h(y, t)dy = 0, R 2 h(y, t)|y| 2 dy = 0, R 2
h(y, t)y j dy = 0, j = 1, 2, for all t > t 0 .

Then there exists a solution φ(y, t) = T i,1 p [h] of problem (6.1) that defines a linear operator of h and satisfies

φ 1,ν-1 2 ,m+ q-1 2 ,4,2+σ+ ≤ C h 0,ν,m,6+σ, .
The proof of the Propositions 6.1 and 6.2 is divided into different steps and presented in sections 8-12.

Next we consider the linear outer problem:

∂ t φ o = L o [φ o ] + g(x, t), in R 2 × (t 0 , ∞) φ o (•, t 0 ) = φ o 0 , in R 2 . (6.4)
where

L o [ϕ] := ∆ x ϕ -∇ x Γ 0 x -ξ(t) λ(t) • ∇ x ϕ.
For a given function g(x, t) we consider the norm g * * ,o defined as the least K ≥ 0 such that for all (x, t

) ∈ R 2 × (t 0 , ∞) |g(x, t)| ≤ K 1 t a (log t) β 1 1 + |ζ| b , ζ = x -ξ(t) √ t . (6.5) 
Accordingly, we consider for a function φ o (x, t) the norm φ * ,o defined as the least K ≥ 0 such that

|φ o (x, t)| + (λ + |x -ξ|)|∇ x φ o (x, t)| ≤ K 1 t a-1 (log t) β 1 1 + |ζ| b , ζ = x -ξ √ t (6.6) for all (x, t) ∈ R 2 × (t 0 , ∞).
We assume that the parameters a, b, β satisfy the constraints

1 < a < 4, 2 < b < 6, a < 1 + b 2 , β ∈ R. (6.7)
Proposition 6.3. Assume that the parameter functions p = (λ, α, ξ) satisfy conditions (4.1) and the numbers a, b, β satisfy (6.7). Then there is a constant C so that for t 0 sufficiently large and for g * * ,o < ∞, there exists a solution φ o = T o p [g] of (6.4) with φ o 0 = 0, which defines a linear operator of g and satisfies

φ o * ,o ≤ C g * * ,o .
For the initial condition φ o 0 in (6.4) we consider the norm ϕ o 0 * ,b defined as

φ o 0 * ,b = inf K such that |φ o 0 (x)| + (λ(t 0 ) + |x|)|∇ x φ o (x)| ≤ K (1 + |x| √ t ) b .
We have an estimate for the solution of (6.4) with g = 0 and φ o 0 * ,b < ∞. Proposition 6.4. Assume that the parameter functions p = (λ, α, ξ) satisfy conditions (4.1) and the numbers a, b, β satisfy (6.7). Then there is a constant C so that for t 0 sufficiently large and for φ o 0 * ,b < ∞ there exists a solution φ o of (6.4), which defines a linear operator of φ o 0 and satisfies

φ o * ,o ≤ Ct a-1 0 (log t 0 ) β φ o 0 * ,b .
The proofs of Propositions 6.3 and 6.4 are contained in Section [START_REF]Virial theorem and dynamical evolution of self-gravitating Brownian particles in an unbounded domain. II. Inertial models[END_REF].

In what follows we work with p 1 of the form

p 1 = (0, α 1 , ξ 1 ), that is, we take λ = λ 0 , α = α 0 + α 1 , ξ = ξ 1
, where λ 0 and α 0 have been fixed in Section 5.1, and we write p = p 0 + p 1 .

Next we define suitable operators that allow us to formulate the system of equations (5.47), (5.48), (5.49), and (5.51) as a fixed point problem. We let

A i1 [φ 1 , φ 2 , ϕ, p 1 ] = T i,1 p F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 ) -m 0 [F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 )]W 0 -m 2 [F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 )]W 2 -m 1,1 [F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 )]W 1,1 -m 1,2 [F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 )]W 1,2 A i2 [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ] = T i,2 p [m 2 [F 3 (φ 1 + φ 2 , ϕ, p 1 ), ϕ * 0 ]W 2 ] A o [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ] = T o p [G 2 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 )
]. Then the equations (5.47), (5.48),(5.49) can be written as

φ 1 = A i1 [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ] φ 2 = A i2 [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ] ϕ = A o [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 .]
Next we consider the equations (5.51), that is,

m 0 [F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 )](t) ≡ 0 and m 1,j [F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 )](t) ≡ 0. By (5.50) and (5.41) m 0 [F 2 (φ, ϕ, p 1 , ϕ * 0 ) χ] = λ 4 0 m 0 [S 0 (u 1 (p 0 + p 1 )) -S 0 (u 1 (p 0 ))] + m 0 [E 2 χ2 ] + m 0 [F (φ i 0 + φ, ϕ * + ϕ, p 0 + p 1 ) χ] + λ 4 0 m 0 [(S 0 (u 1 (p 0 + p 1 )) -S 0 (u 1 (p 0 )))( χ - 1 
)], and using Lemma 5.3,

m 0 [F 2 (φ, ϕ, p 1 , ϕ * 0 ) χ] = -λ 2 0 ∂ t α 1 8π 1 + 2Υ λ 2 0 t + e 1 λ 2 0 t + m 0 [E 2 χ2 ] + m 0 [F (φ i 0 + φ, ϕ * + ϕ, p 0 + p 1 ) χ] + λ 4 0 m 0 [(S 0 (u 1 (p 0 + p 1 )) -S 0 (u 1 (p 0 )))( χ -1)
]. This motivates the definition

A p,α1 [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ] = - 1 8π(1 + 2Υ λ 2 0 t ) + e 1 ( λ 2 0 t ) ∞ t 1 λ 2 0 m 0 [E 2 χ2 ](s) + m 0 [F (φ i 0 + φ, ϕ * + ϕ, p 0 + p 1 ) χ](s) + λ 4 0 m 0 [(S 0 (u 1 (p 0 + p 1 )) -S 0 (u 1 (p 0 )))( χ -1)](s) ds (6.8)
Similarly, by (5.50) and (5.41)

m 1,j [F 2 (φ, ϕ, p 1 , ϕ * 0 ) χ] = λ 0 α ξ1,j R 2 ∂ yj U (y)y j χdy + αλ 2 0 √ t ξ1,j R 2 U (y)∂ zj χ 0 ( λy √ t )y j dy + m 1,j [E 2 χ2 ] + m 1,j [F (φ i 0 + φ, ϕ * + ϕ, p 0 + p 1 ) χ].

This motivates the definition

A p,ξ1 [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ] = ∞ t 1 λ 0 α R 2 ∂ yj U (y)y j χdy αλ 2 0 √ t ξ1,j R 2 U (y)∂ zj χ 0 ( λy √ t )y j dy + m 1,j [E 2 χ2 ](s) + m 1,j [F (φ i 0 + φ, ϕ * + ϕ, p 0 + p 1 ) χ](s) ds (6.9)
Then we define A p by

A p [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ] = (0, A p,α1 [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ], A p,ξ1 [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ]). (6.10) Then p 1 = A p [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ] is equivalent to the equations (5.51).
We write φ = (φ 1 , φ 2 , ϕ, p 1 ), and

A[ φ] = (A i1 [ φ, ϕ * 0 ], A i2 [ φ, ϕ * 0 ], A o [ φ, ϕ * 0 ], A p [ φ, ϕ * 0 ]
), and the objective is to find φ such that φ = A[ φ]. The operator A depends on the initial condition ϕ * 0 appearing in the parabolic problem (5.37), and we will stress its dependence later on when proving the stability assertion in Theorem 1.1.

We define the spaces on which we will consider the operator A to set up the fixed point problem. For certain choices of constants ν, q, σ, , a, b, β, γ, Υ that we will make precise later, we let

X i = φ ∈ L ∞ (R 2 × (t 0 , ∞)) | ∇ y φ ∈ L ∞ (R 2 × (t 0 , ∞)), φ 1,ν-1 2 , q-1 2 ,4,2+σ+ < ∞, R 2 φ(y, t)dy = 0, R 2 φ(y, t)ydy = 0, t > t 0 , X o = {ϕ ∈ L ∞ (R 2 × (t 0 , ∞)) | ∇ y φ ∈ L ∞ (R 2 × (t 0 , ∞)), ϕ * ,o < ∞ }, X p = { (0, α 1 , ξ 1 ) ∈ C 1 ([t 0 , ∞)) | α 1 C 1 ,ν+ 1 2 ,Υ < ∞, ξ 1 C 1 ,γ,0 < ∞ } where the norms φ 1,ν-1 2 , q-1
2 ,4,2+σ+ and ϕ * ,o are defined in (6.2), (6.5) and ξ 1 C 1 ,µ,m is defined by

g C 0 ,µ,m = sup t≥t0 t µ (log t) m |g(t)|. g C 1 ,µ,m = g C 0 ,µ,m + ġ C 0 ,µ+1,m . for a function g ∈ C 1 ([t 0 , ∞)).
We choose in the definition of the outer norm (6.6)

a = ν + 5 2 , 2ν + 3 < b < 6, β < 1 + q 2 . (6.11)
With these choices we see that (6.7) are satisfied. Also ν will be in the range 1 < ν < 3 2 so the interval for b is not empty in (6.11).

We use the following notation: for p 1 = (0, α 1 , ξ 1 )

p 1 Xp = α 1 C 1 ,ν+ 1 2 ,Υ + ξ 1 C 1 ,1+γ,0 , and for φ = (φ 1 , φ 2 , ϕ, p 1 ) φ X = φ 1 1,ν-1 2 , q-1 2 ,4,2+σ+ + φ 2 1,ν-1 2 , q-1 2 ,4,2+σ+ + ϕ * ,o + p 1 Xp . (6.12)
With the above notation, given ϕ * 0 with ϕ * 0 * ,b sufficiently small, we consider the fixed point problem

φ = A[ φ], (6.13) 
with φ in a suitable close ball of X. A solution of this fixed point problem yields a solution of the system of equations (5.47), (5.48), (5.49), (5.51), which in turn gives a solution to (3.1). We claim that for some constant

C independent of t 0 1, if t a-1 0 (log t 0 ) β ϕ * 0 * ,b ≤ 1, and φ X ≤ 1, then A i1 [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ] 1,ν-1 2 , q-1 2 ,4,2+σ+ ≤ C t ϑ 0 + C(log t 0 ) σ 2 t ν+1+ σ 2 0 ϕ * 0 * ,b , (6.14) 
for some ϑ > 0 small, a constant C independent of t 0 , and t 0 sufficiently large. Indeed, by Proposition 6.2 we have

A i1 [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ] 1,ν-1 2 , q-1 2 ,4,2+σ+ ≤ C F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 ) 0,ν,6+σ, .
We recall the expansion of F 3 in (5.50). To estimate E 2 χ2 we use (5.43) to get

E 2 χ 0,ν,0,6+σ, ≤ C t 1+2δ-σ 2 -ν 0 (log t 0 ) 2 (6.15)
where δ, σ are positive small constants and are assumed to satisfy 2δ -σ 2 > 0. Then we take ν in the range

1 < ν < 1 + 2δ - σ 2 , (6.16 
)

with ν close to 1. Let us consider the term λ 4 [S 0 (p 0 + p 1 ) -S 0 (p 0 )] in F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 ) (c.f. (5.50)). The formula λ 4 [S 0 (p 0 + p 1 ) -S 0 (p 0 )] (c.f. (5.31)) contains for example the term, evaluated at y = x-ξ1 λ0 , -λ 2 0 αU (y)χ 0 λ 0 y √ t + λ 2 0 α0 U ξ 1 + λ 0 y λ 0 χ 0 ξ 1 + λ 0 y √ t = -λ 2 0 α1 U (y)χ 0 λ 0 y √ t -λ 2 0 α0 U (y) -U ξ 1 + λ 0 y λ 0 χ 0 λ 0 y √ t -λ 2 0 α0 U ξ 1 + λ 0 y λ 0 χ 0 ξ 1 + λ 0 y √ t -χ 0 λ 0 y √ t (6.17) But -λ 2 0 α1 U (y)χ 0 λ 0 y √ t ≤ C 1 t ν+ 1-σ 2 (log t) Υ-σ 2 1 (1 + |y|) 6+σ χ 0 λ 0 y √ t α 1 C 1 ,ν+ 1 2 ,Υ , so -λ 2 0 α1 U (y)χ 0 λ 0 y √ t 0,ν,6+σ, ≤ C t ϑ 0 α 1 C 1 ,ν+ 1 2 ,Υ ,
for some ϑ > 0. Similarly,

-λ 2 0 α0 U (y) -U ξ 1 + λ 0 y λ 0 χ 0 λ 0 y √ t ≤ C 1 log t 1 t 2 log t 1 (1 + |y|) 5 |ξ 1 | λ 0 χ 0 λ 0 y √ t ≤ C 1 t 2+γ (log t) 3 2 (t log t) 1+σ 2 (1 + |y|) 6+σ χ 0 λ 0 y √ t ξ 1 C 1 ,γ,0 ≤ C 1 t 3-σ 2 +γ (log t) 1-σ 2 1 (1 + |y|) 6+σ χ 0 λ 0 y √ t ξ 1 C 1 ,γ,0 so -λ 2 0 α0 U (y) -U ξ 1 + λ 0 y λ 0 χ 0 λ 0 y √ t 0,ν,6+σ, ≤ C t ϑ 0 α 1 C 1 ,ν+ 1 2 ,Υ ,
for some ϑ > 0. The last term in the expression (6.17) is similar.

The terms in λ 4 [S 0 (p 0 + p 1 ) -S 0 (p 0 )] that contain the function ϕ λ0 are

λ 0 4 - 4 r ∂ r ϕ λ0 -∇ • (ϕ λ0 ∇v 0 ) -∇ • (u 0 ∇ψ λ0 ) -∇ • (ϕ λ0 ∇ψ λ0 ) = 4 λ 0 2 ρ(ρ 2 + 1) ∂ ρ ϕ λ0 -(α -1)λ 0 2 ∇ y ϕ λ0 • ∇ y Γ 0 + λ 0 2 ∇ y ϕ λ0 • ∇ y R + 2λ 0 2 U χϕ λ0 -α∇ y (U χ) • ∇ y ψ λ0 -λ 0 2 ∇ y (ϕ λ0 ∇ y ψ λ0 ).
In λ 0 4 [S 0 (p 0 + p 1 ) -S 0 (p 0 )] these terms appear evaluated at y and then at ξ1 λ0 + y. Using estimates for the the second derivative of ϕ λ0 similar to Lemma 4.1 and assuming

σ < 1, ν < 1 + γ, (6.18) 
we get

λ 4 [S 0 (p 0 + p 1 ) -S 0 (p 0 )] 0,ν,6+σ, ≤ C 1 t ϑ 0 φ X .
The main term in (5.38). Then we have

F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 ) that depends on the outer solution is λ 2 U ϕ o with ϕ o = ϕ * + ϕ defined in
|λ 2 U ϕ(y, t) χ| ≤ λ 2 t a-1 (log t) β 1 (1 + |y|) 4 χ ϕ * ,o ≤ C 1 t ν+ 3 2 (log t) β+1 1 (1 + |y|) 4 χ ϕ * ,o ≤ C (t log t) 1+ σ 2 t ν+ 3 2 (log t) β+1 1 (1 + |y|) 6+σ χ ϕ * ,o ≤ C 1 t ν+ 1-σ 2 (log t) β-σ 2 1 (1 + |y|) 6+σ χ ϕ * ,o . Therefore λ 2 U ϕ χ 0,ν,6+σ, ≤ C 1 t 1-σ 2 0 (log t 0 ) β-σ 2 ϕ * ,o .
Regarding the function ϕ * (c.f. (5.37)) we note that it has the estimate

|ϕ * (x, t)| ≤ t a-1 0 (log t 0 ) β ϕ * 0 * ,b 1 t a-1 (log t) β 1 1 + |ζ| b , ζ = x -ξ √ t (6.19)
by Proposition 6.4, provided (6.7) holds, and therefore

λ 2 U ϕ * χ 0,ν,6+σ, ≤ Ct ν+1+ σ 2 0 (log t 0 ) σ 2 ϕ * 0 * ,b .
Let us analyze some of the terms in F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 ) that depend on the inner solutions φ 1 and φ 2 . For instance

(α -1)∇ y • (φ j ∇ y Γ 0 ) = (α -1)∇ y φ j • ∇ y Γ 0 -(α -1)φ j U.
We have the estimate

|(α -1)∇ y φ j • ∇ y Γ 0 χ| ≤ C t log t 1 t ν-1 2 (log t) q-1 2 1 (1 + |y|) 6 φ j 1,ν-1 2 , q-1 2 ,4,2+σ+ ≤ C 1 t ν+ 1 2 -σ 2 (log t) 1+ q-1 2 -σ 2 1 (1 + |y|) 6+σ φ j 1,ν-1 2 , q-1 2 ,4,2+σ+ , and we get (α -1)∇ y φ j • ∇ y Γ 0 χ 0,ν,6+σ, ≤ C t ϑ 0 φ j 1,ν-1 2 , q-1
2 ,4,2+σ+ , for some ϑ > 0.

We also have, writing

φ = φ 1 + φ 2 , λ ξ1 ∇φ χ 0,ν,6+σ, ≤ C t ϑ 0 φ 1,ν-1 2 , q-1 2 ,4,2+σ+
for some ϑ > 0, if

γ > σ 2 . (6.20)
Let us estimate the term ∇ y • (U ∇ y ( ψ -ψ)) χ appearing in (5.6), where ψ = (-∆) -1 (λ -2 φ i χ), ψ = (-∆) -1 (λ -2 φ i ). We recall that φ i = φ i 0 + φ , c.f. (5.38), and therefore we can decompose ψ = ψi 0 + ψ1 where ψi 0 = (-∆) -1 (λ -2 φ i 0 χ) and ψ1 = (-∆) -1 (λ -2 φχ). Similarly, we can decompose

ψ = ψ i 0 + ψ 1 where ψ i 0 = (-∆) -1 (λ -2 φ i 0 ) and ψ 1 = (-∆) -2 (λ -1 φ). By linearity we need to estimate separately ∇ y • (U ∇ y ( ψi 0 -ψ i 0 )) and ∇ y • (U ∇ y ( ψ1 -ψ 1 )
). Let us consider the latter one. Note that ψ1 -

ψ 1 = (-∆) -1 [λ -2 φ(1 -χ)].
From the definition of the norm φ 1,ν-

1 2 , q-1 2 ,4,2+σ+ |φ(y, t)| ≤ φ 1,ν-1 2 , q-1 2 ,4,2+σ+ 1 
t ν-1 2 (log t) q-1 2 1 (1 + |y|) 4 (6.21)
and so

|∇ y ( ψ1 -ψ 1 )(y, t)| ≤ C φ 1,ν-1 2 , q-1 2 ,4,2+σ+ 1 
t ν-1 2 (log t) q-1 2 1 (t log t) 3 2 
, for |y| ≤ 2

√ t λ .
Then

|∇ y U • ∇ y ( ψ1 -ψ 1 ))(y, t)| ≤ C φ 1,ν-1 2 , q-1 2 ,4,2+σ+ 1 
t ν+ 1-σ 2 (log t) q+1-σ 2 1 (1 + |y|) 6+σ , for |y| ≤ 2 √ t λ .
This and a similar estimate for U φ(1 -χ) give

∇ y • (U ∇ y ( ψ1 -ψ 1 )) χ 0,ν,6+σ, ≤ C t ϑ 0 φ 1,ν-1 2 , q-1 2 ,4,2+σ+
for some ϑ > 0. A similar estimate is obtained for

∇ y • (U ∇ y ( ψi 0 -ψ i 0 )) χ 0,ν,6+σ, using (5.36). Let us estimate next the term λ 2 ∇ y • (ϕ λ ∇ y ψ) χ, where we recall, ψ = (-∆) -1 (λ -2 φ).
To do this we use that φ = φ 1 + φ 2 has zero mass and center of mass, that is,

R 2 φ(y, t) dy = R 2 φ(y, t)y j dy = 0, t > t 0 .
This and the estimate (6.21) imply

|ψ(y, t)| + (1 + |y|)|∇ y ψ(y, t)| ≤ C φ 1,ν-1 2 , q-1 2 ,4,2+σ+ 1 
t ν-1 2 (log t) q-1 2 log(2 + |y|) (1 + |y|) 2 ,
by an argument similar to Remark 9.1. On the other hand, from (4.3)

|∇ y ϕ λ (y, t)| ≤ C t log t 1 (1 + |y|) 3 , |y| ≤ 2 √ t λ .
Therefore

|λ 2 (∇ y ϕ λ • ∇ y ψ)(y, t)| ≤ C φ 1,ν-1 2 , q-1 2 ,4,2+σ+ λ 2 t ν+ 1 2 (log t) q+1 2 log(2 + |y|) (1 + |y|) 6 ≤ C φ 1,ν-1 2 , q-1 2 ,4,2+σ+ 1 
t ν+ 1-σ 2 (log t) q+1-σ 2 1 (1 + |y|) 6+σ , |y| ≤ 2 √ t λ .
From this coupled with a similar estimate for λ 2 ϕ λ φ we get

λ 2 ∇ y • (ϕ λ ∇ y ψ) χ 0,ν,6+σ, ≤ C t ϑ 0 φ 1,ν-1 2 , q-1 2 ,4,2+σ+
for some ϑ > 0.

The remaining terms in F 3 (φ 1 +φ 2 , ϕ, p 1 , ϕ * 0 ) are estimated in a similar way and we get the validity (6.14).

Proceeding in the same way we get a Lipschitz bound. Assuming t a-1 0

(log t 0 ) β ϕ * 0 * ,b ≤ 1, for φ 1 X ≤ 1 and φ 2 X ≤ 1 we have A i1 [ φ 1 , ϕ * 0 ] -A i1 [ φ 2 , ϕ * 0 ] 1,ν-1 2 , q-1 2 ,4,2+σ+ ≤ C t ϑ 0 φ 1 -φ 2 X ,
for some ϑ > 0 small, a constant C independent of t 0 , and t 0 sufficiently large. Indeed, the Lipschitz estimate with respect to φ 1 , φ 2 , and ϕ is direct from the explicit dependence of F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 ) on these variables, which is either linear or quadratic. The Lipschitz dependence on ξ 1 (where

p 1 = (α 1 , ξ 1 )) is also direct from the explicit form of F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 )
. The Lipschitz condition with respect to α 1 appears as an explicit dependence on this variable in

F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 ).
Let us estimate the operator A i2 . We claim that if t a-1 0

(log t 0 ) β ϕ * 0 * ,b ≤ 1 and φ X ≤ 1, then A i2 [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ] 1,ν-1 2 , q-1 2 ,4,2+σ+ ≤ C(log t 0 ) -1-q 2 -Υ + Ct a-1 0 (log t 0 ) 1-q 2 ϕ * 0 * ,b . (6.22)
Indeed, we apply Proposition 6.1 to get

A i2 [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ] 1,ν-1 2 , q-1 2 ,4,2+σ+ ≤ C (log t 0 ) 1-q m 2 [F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 )]W 2 0,ν+ 1 2 , 1-q 2 ,6+σ,
and since W 2 has compact support,

A i2 [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ] 1,ν-1 2 , q-1 2 ,4,2+σ+ ≤ C (log t 0 ) 1-q sup t>t0 t ν+ 1 2 (log t) 1-q 2 |m 2 [F 3 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 )](t)|.
Using the definition of F 3 (5.50)

m 2 [F 3 (φ, ϕ, p 1 , ϕ * 0 )] = m 2 [E 2 χ2 ] + m 2 [F 2 (φ, ϕ, p 1 , ϕ * 0 ) χ] We have by (5.43) (assuming σ < 1 2 ), |m 2 [E 2 χ2 ](t)| ≤ C t 3+σ 2
.

Therefore, asking that

ν + 1 2 < 3 + σ 2 ⇔ ν < 1 + σ 2 (6.23) we get sup t>t0 t ν+ 1 2 (log t) 1-q 2 |m 2 [E 2 χ2 ](t)| ≤ C t ϑ 0 ,
for some ϑ > 0. By (5.41)

m 2 [F 2 (φ, ϕ, p 1 , ϕ * 0 ) χ] = λ 4 m 2 [S 0 (u 1 (p 0 + p 1 )) -S 0 (u 1 (p 0 ))] + m 2 [F (φ i 0 + φ, ϕ * + ϕ, p 0 + p 1 ) χ] + λ 4 m 2 [(S 0 (u 1 (p 0 + p 1 )) -S 0 (u 1 (p 0 )))( χ -1)].
Of these terms, the largest is the first one. By Lemma 5.4, and since λ = λ 0 , we get

λ 4 m 2 [S 0 (u 1 (p 0 + p 1 )) -S 0 (u 1 (p 0 ))] = -32πα 1 - α1 λ 2 0 R 2 U ( x -ξ λ 0 )χ 0 ( x -ξ λ 0 )|x -ξ| 2 dx + α 1 R 2 E(x -ξ, t, λ 0 )|x -ξ| 2 dx -|ξ| 2 R 2 S(u 1 (p 0 ))dx. (6.24) But sup t>t0 t ν+ 1 2 (log t) 1-q 2 |α 1 (t)| ≤ C(log t 0 ) 1-q 2 -Υ α 1 C 1 ,ν+ 1 2 ,Υ , (6.25) 
under the assumption

Υ > 1 -q 2 . (6.26)
The second term in (6.24) ia much smaller. For the last term in (6.24) we use Lemma 5.3 and (5.29), (5.30) to get

R 2 S(u 1 (p 0 ))dx ≤ C t 2 (6.27)
and therefore

|ξ(t)| 2 R 2 S(u 1 (p 0 ))dx ≤ C t 2+2γ ξ 1 2 C 1 ,γ,0 .
Combining (6.24), (6.25) and (6.27) we get

C (log t 0 ) 1-q sup t>t0 t ν+ 1 2 (log t) 1-q 2 λ 4 |m 2 [S 0 (u 1 (p 0 + p 1 )) -S 0 (u 1 (p 0 ))](t)| ≤ C(log t 0 ) -1-q 2 -Υ p 1 Xp . Let's estimate the remaining terms in m 2 [F 3 (φ, ϕ, p 1 , ϕ * 0 )]. Consider A(t) := R 2 ∇ y • (λ 2 ϕ λ ∇ y (-∆ y ) -1 φ) χ|y| 2 dy + R 2 ∇ y • (φ∇ y ψ λ ) χ|y| 2 dy
which appears in the definition of F , where φ = φ 1 + φ 2 . It is convenient to write

A(t) = A 1 (t) -A 2 (t) -A 3 (t)
where

A 1 (t) = R 2 ∇ y • [(λ 2 ϕ λ + φ)∇ y (ψ λ + (-∆ y ) -1 φ)] χ|y| 2 dy A 2 (t) = R 2 ∇ y • [λ 2 ϕ λ ∇ y ψ λ ] χ|y| 2 dy A 3 (t) = R 2 ∇ y • [φ∇ y (-∆ y ) -1 φ ] χ|y| 2 dy.
We have, writing

ψ = (-∆ y ) -1 φ, A 2 (t) = R 2 ∆ y ψ∇ y ψ • (|y| 2 ∇ χ + 2 χy)dy = R 2 ∆ y ψ∇ y ψ • y λ|y| 2 √ t χ 0 λy 2 √ t + 2 χ0 λy 2 √ t dy.
Using Pohozaev's identity

|A 2 (t)| = R 2 ∇ y ∇ y ψ(y • ∇ψ) -y |∇ y ψ| 2 2 λ|y| 2 √ t χ 0 λy 2 √ t + 2 χ0 λy 2 √ t dy = R 2 ∇ y ψ(y • ∇ψ) -y |∇ y ψ| 2 2 • ∇ y λ|y| 2 √ t χ 0 λy 2 √ t + 2 χ0 λy 2 √ t dy ≤ C 2 √ t/λ≤|y|≤4 √ t/λ
|∇ y ψ| 2 dy.

Using that ψ = (-∆) -1 φ, and

R 2 φ(y, t)dy = 0, R 2 
φ(y, t)ydy = 0, we have (see Remark 9.1) for any > 0 small,

|∇ψ(y, t)| ≤ C 1 + |y| 2- 1 t ν-1 2 (log t) q-1 2 φ 1,ν-1 2 , q-1 2 ,4,2+σ+ .
Then

2 √ t/λ≤|y|≤4 √ t/λ |∇ y ψ| 2 dy ≤ C t 2ν-(log t) q-φ 2 1,ν-1 2 , q-1 2 ,4,2+σ+
and so

|A 2 (t)| ≤ C t ν+ 1 2 +ϑ
. The estimates of the other terms, A 1 and A 2 is similar, except that ϕ λ doesn't have mass equal to zero. Instead, we use that ϕ λ , and ψ λ are radial and 

R 2 ϕ λ dx ≤ C t
m 2 [λ 2 U ϕ * χ]W 2 0,ν+ 1 2 , 1-q 2 ,6+σ, ≤ Ct a-1 0 (log t 0 ) 1-q 2 ϕ * 0 * ,b , under the condition β > 1 -q 2 . (6.28)
The other terms in m 2 are estimated in a similar way and we get (6.22).

Similarly we get that if t a-1 0

(log t 0 ) β ϕ * 0 * ,b ≤ 1, then for φ 1 X ≤ 1 and φ 2 X ≤ 1 we have A i2 [ φ 1 ] -A i2 [ φ 2 ] 0,ν-1 2 , q-1 2 ,4,2+σ+ ≤ C(log t 0 ) -1-q 2 -Υ φ 1 -φ 2 X ,
for a constant C independent of t 0 , where t 0 sufficiently large.

Let us estimate the operator

A o [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ]. We claim that if t a-1 0 (log t 0 ) β ϕ * 0 * ,b ≤ 1, then for φ X ≤ 1, A o [ φ, ϕ * 0 ] * ,o ≤ C (log t 0 ) q+1 2 -β + Ct a-2 0 (log t 0 ) β-1 ϕ * 0 * ,b , (6.29) 
and for φ 1 X ≤ 1, φ 2 X ≤ 1 and t a-1 0

(log t 0 ) β ϕ * 0 * ,b ≤ 1, A o [ φ 1 , ϕ * 0 ] -A o [ φ 2 , ϕ * 0 ] * ,o ≤ C (log t 0 ) q+1 2 -β φ 1 -φ 2 X .
Note that q+1 2 -β > 0 by (6.11). Indeed, by Proposition 6.3

A o [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ] * ,o ≤ C G 2 (φ 1 + φ 2 , ϕ, p 1 , ϕ * 0 ) * * ,o
, where we recall G 2 defined in (5.42).

We start with the term λ -4 E 2 (1 -χ2 )χ. Using the estimate (5.43) we get

λ -4 E 2 (1 -χ2 )χ * * ,o ≤ C t ϑ 0
for some ϑ > 0 provided a < 4(1 -δ). We also directly get from (4.6)

S(u 1 )(1 -χ) * * ,o ≤ C t ϑ 0 for some ϑ > 0 if a < 4.
Regarding the terms in G (c.f. (5.10)) that the depend linearly on φ i = φ i 0 + φ, we have for

φ 1,ν-1 2 , q-1 2 ,4,2+σ+ < ∞ 1 λ 2 φ∆χ (x, t) ≤ C λ 2 1 t ν-1 2 (log t) q-1 2 1 (|x -ξ|/λ|) 4 1 t ∆ z χ 0 ( x -ξ √ t ) φ 1,ν-1 2 , q-1 2 ,4,2+σ+ ≤ C 1 t ν+ 5 2 (log t) q+1 2 1 (1 + |x -ξ|/ √ t) b φ 1,ν-1 2 , q-1 2 ,4,2+σ+ (6.30) 
which implies 1

λ 2 φ∆χ * * ,o ≤ C (log t 0 ) q+1 2 -β φ 1,ν-1 2 , q-1 2 ,4,2+σ+ , since β < q+1
2 , which is one of the conditions in (6.11). We also have, using (5.36), 1

λ 2 φ i 0 ∆χ * * ,o ≤ C t ϑ 0 for some ϑ > 0 if a < 4.
A similar estimate holds for the other terms depending on φ i . Some of the terms in G that depend on

ϕ o = ϕ * + ϕ are 1 λ 2 U ϕ o (1 -χ) ≤ C λ 2 |x -ξ| 4 1 t a-1 (log t) β 1 (1 + |x -ξ|/ √ t) b (1 -χ) ϕ o * ,o ≤ C t 0 log t 0 1 t a (log t) β 1 (1 + |x -ξ|/ √ t) b ( ϕ * * ,o + ϕ * ,o ) which implies that 1 λ 2 U ϕ o (1 -χ) * * ,o ≤ C t 0 log t 0 ϕ * ,o + Ct a-2 0 (log t 0 ) β-1 ϕ * 0 * ,b ,
by Proposition 6.4. Other terms are estimated in a similar way.

Let us estimate the operator A p , which is defined by the equations (6.10). We claim that if

(0, α1 , ξ1 ) = A p [φ 1 , φ 2 , ϕ, p 1 ] and t a-1 0 (log t 0 ) β ϕ * 0 * ,b ≤ 1, φ X ≤ 1, φ = (φ 1 , φ 2 , ϕ, p 1 ), then α1 C 1 ,ν+ 1 2 ,Υ ≤ C(log t 0 ) Υ-β + Ct a-1 0 (log t 0 ) Υ ϕ * 0 * ,b ξ1 * ,γ,0 ≤ C t ϑ 0 + Ct 1+γ 0 (log t 0 ) 1 2 ϕ * 0 * ,b , (6.31) 
for some ϑ > 0. Similarly, we have the following Lipschitz estimate. If t a-1 0 (log t 0 ) β ϕ * 0 * ,b ≤ 1, then for some ϑ > 0, and for

φ 1 X ≤ 1, φ 2 X ≤ 1, A p [ φ 1 , ϕ * 0 ] -A p [ φ 2 , ϕ * 0 ] Xp ≤ C(log t 0 ) Υ-β φ 1 -φ 2 X , (6.32) 
for some ϑ > 0. Indeed, by (6.8)

|A p,α1 [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ](t)| ≤ |I 1 (t)| + |I 2 (t)| + |I 3 (t)| where I 1 (t) = ∞ t 1 λ 2 0 m 0 [E 2 χ2 ](s)ds I 2 (t) = ∞ t 1 λ 2 0 m 0 [F (φ i 0 + φ, ϕ * + ϕ, p 0 + p 1 ) χ](s)ds I 3 (t) = ∞ t λ 2 0 m 0 [(S 0 (u 1 (p 0 + p 1 )) -S 0 (u 1 (p 0 )))( χ -1)](s)ds.
Using (5.43) and

R 2 E 2 dy = 0 we get 1 λ 2 0 m 0 [E 2 χ2 ](t) ≤ C 1 t 3-2δ .
This gives

I 1 C 1 ,ν+ 1 2 ,Υ ≤ Ct ν-3 2 +2δ 0 , (6.33) 
under the assumption

ν < 3 2 -2δ.
The largest contribution in I 2 comes from the term

λ 2 U ϕ o in F (φ i 0 + φ, ϕ * + ϕ, p 0 + p 1 ) (c.f. (5.6)). The estimate of this term is 1 λ 2 0 (t) R 2 λ 0 (t) 2 U (y)ϕ o (y, t)dy ≤ C 1 t ν+ 3 2 (log t) β ϕ o * ,o
and so

R 2 U (y)ϕ o (y, t)dy C 1 ,ν+ 1 2 ,Υ ≤ C(log t 0 ) Υ-β ϕ o * ,o ,
under the assumption

Υ < β. (6.34)
Similar estimates for the remaining terms give

I 2 C 1 ,ν+ 1 2 ,Υ ≤ C(log t 0 ) Υ-β φ X + Ct a-1 0 (log t 0 ) Υ ϕ * 0 * ,b . (6.35) 
Regarding I 3 , using (4.5) we have

λ 2 0 m 0 [S 0 (u 1 (p))( χ -1)] ≤ C t 3 log t . (6.36)
Putting together (6.33), (6.35), and (6.36) we get

A p,α1 [φ 1 , φ 2 , ϕ, p 1 , ϕ * 0 ] C 1 ,ν+ 1 2 ,Υ ≤ C(log t 0 ) Υ-β φ X + Ct a-1 0 (log t 0 ) Υ ϕ * 0 * ,b
assuming also that ν < 3 2 .

The computations leading to (6.31) are very similar, under the assumption

γ < ν - 1 2 . (6.37)
This restriction arises when considering the largest term in the expression (6.9), namely comes from estimating the term λ 2 0 m 1,j [ϕ λ0 φ χ] (λ 2 0 ϕ λ0 φ is one of the terms in (5.6))

1 λ 0 λ 2 0 |m 1,j [ϕ λ0 φ χ](t)| ≤ Cλ 0 R 2 |ϕ λ0 φy j |dy ≤ Cλ 0 1 t(log t) 2 1 t ν-1 2 (log t) q-1 2 φ 1,ν-1 2 , q-1 2 ,4,2+σ+
Let us summarize the restrictions on the parameters. We let 0 < q < 1 be fixed. We take 0 < δ < σ < min(1, 4δ), and

1 < ν < min 1 + 2δ - σ 2 , 3 2 , 1 + γ, 1 + σ 2 .
because of (6.16), (6.18), (6.23). We also need 1 -q 2 < Υ < β < 1 + q 2 by (6.26), (6.34) and by (6.28) and (6.11). We take σ 2 < γ < ν -1 2 by (6.20) and (6.37).

Together with the above inequalities we want also the relations σ + < 2, ν + 1 2 < 7 4 for Proposition 6.1 and

σ + < 3 2 , ν < min(1 + 2 , 3 -σ 2 , 5 4 
) for Proposition 6.2. The condition (6.7) for Propositions 6.3 and 6.4 hold by (6.11). We see that all these restrictions are satisfied by choosing first δ, σ > 0 small so that 2δ -σ 2 > 0. Then we take ν > 1 close to 1, then let a = ν + 5 2 and b satisfying (6.11). Then Υ, β and γ can be selected. Note that with the above procedure we are getting the restriction b > 5.

We already have all elements to solve the fixed point problem (6.13), which we recall

φ = A[ φ], φ ∈ B,
where B is the closed unit ball in the Banach space of functions φ with φ X < +∞ and the norm defined in (6.12). Thus

B = { φ ∈ X | φ X ≤ 1 }. Let ϕ * 0 be such that t a-1 0 (log t 0 ) β ϕ * 0 * ,b ≤ 1.
Estimates (6.14), (6.22), (6.29) and (6.32), imply that, enlarging the parameter t 0 if necessary, A maps B into itself. We also get that A is a contraction mapping on B. The contraction mapping principle yields the existence of a unique fixed point in B, which then yields the required existence result. Remark 6.1. The computations above provide the estimates necessary to show that A has a fixed point on B. We show here why the scheme works restricting our attention to the most delicate terms only. We adopt a strategy slightly different to that of finding a fixed point of A: we consider the inner equations (5.47) and (5.48) as a system where ϕ is an operator of φ = φ 1 + φ 2 , which is found by solving the outer problem (5.49). In the system (5.47) and (5.48) we regard α 1 and ξ 1 as operators of φ, ϕ[φ] given by the formulas α 1 = A p,α1 defined in (6.8) and ξ 1 = A p,ξ1 defined in (6.9).

It is natural so use the same norm for φ 1 and φ 2 , since it is φ = φ 1 + φ 2 that appears in the right hand side of the outer problem (5.49). Then estimate (6.15) and Proposition 6.2 suggest that

φ j 1,ν-1 2 , q-1 2 ,4,2+σ+ε < ∞,
where we have ignored all other terms in (5.47). The term 1 λ 2 φ∆χ in (5.49), the computation in (6.30) and Proposition 6.3 give that

|ϕ(x, t)| ≤ C 1 t ν+ 3 2 (log t) q+1 2 1 (1 + |x -ξ|/ √ t) b [ φ 1,ν-1 2 , q-1 2 ,4,2+σ+ε + C(ϕ * 0 )], (6.38) 
where C(ϕ * 0 ) denotes a constant that depends on the initial condition ϕ * 0 , and whose exact form we don't need now.

Considering ϕ as an operator of φ we examine the effect of the therm λ 2 U ϕ. This term appears in the right hand side of (5.47), where the effect is less important, and in the computation of α 1 . Ignoring all but this term, we find from (6.38) the estimate

|α 1 [φ](t)| ≤ C ∞ t R 2 U (y)|ϕ(ξ + λy)|dy ≤ C 1 t ν+ 1 2 (log t) q+1 2 [ φ 1,ν-1 2 , q-1 2 ,4,2+σ+ε + C(ϕ * 0 )].
We consider now the effect of |α 1 [φ](t)| in the right hand side of (5.48), where thanks to Lemma 5.4 appears mainly as α 1 (t)W 2 (y), where W 2 is radial with compact support. Then Proposition 6.1 gives

|φ 2 (y, t)| ≤ C 1 (log t 0 ) 1-q 1 t ν-1 2 (log t) q+1 2 +q-1 1 (1 + |y|) 4 min 1, (t log t) 1/2 |y| 2+σ+ • [ φ 1,ν-1 2 , q-1 2 ,4,2+σ+ε + C(ϕ * 0 )].
Because we want to use the norm

1,ν-1 2 , q-1
2 ,4,2+σ+ε we get

φ 2 1,ν-1 2 , q-1 2 ,4,2+σ+ε ≤ C 1 log t 0 [ e + φ 1,ν-1 2 , q-1 2 ,4,2+σ+ε + C(ϕ * 0 )].
The e > 0 on the right hand is there because of the term E 2 χ2 in equation (5.39). It can be chosen to be a small constant taking t 0 large. The estimate for φ 1 is actually better, and therefore

φ 1 1,ν-1 2 , q-1 2 ,4,2+σ+ε + φ 2 1,ν-1 2 , q-1 2 ,4,2+σ+ε ≤ C 1 log t 0 [ φ 1 1,ν-1 2 , q-1 2 ,4,2+σ+ε + φ 2 1,ν-1 2 , q-1 2 ,4,2+σ+ε + C(ϕ * 0 )].
This indicates that the problem for φ 1 , φ 2 may be solved by the contraction mapping principle.

Stability. If we solve system (5.47), (5.48), (5.49), (5.51) for a given ϕ * 0 and write p = p(ϕ * 0 ), we have a solution of problem (3.1), which blows up in infinite time as described in Theorem 1.1, with initial condition

u * (x, ; ϕ * 0 ) = α(t 0 ; ϕ * 0 ) λ 0 (t 0 ) 2 U x -ξ(t 0 ; ϕ * 0 ) λ 0 (t 0 ) + φ i 0 x -ξ(t 0 ; ϕ * 0 ) λ 0 (t 0 ) + c 1 (ϕ * 0 ) Z0 x -ξ(t 0 ) λ 0 (t 0 ) • χ 0 x -ξ(t 0 ; ϕ * 0 ) √ t 0 + φλ0 (x -ξ(t 0 ; ϕ * 0 ), t 0 ) + ϕ * 0 (x).
where we recall that φλ was defined in (3.8) and ϕ λ (x, t) = φλ (x -ξ(t), t). The function φ doesn't depend on ξ and is radial about the origin. We let u * 0 (x) = u * (x; 0) and

I 0 = R 2 u * 0 (x)|x| 2 dx.
Note that u * 0 is radial and so it has center of mass at the origin. To prove stability we first show the following claim: if v : R 2 → R satisfies v * ,b < t 1-a 0 (log t 0 ) -β , has mass zero, and

R 2 v(x)x j dx = 0, R 2 v(x)|x| 2 dx = 0, then u * 0 + v = u * (ϕ * 0 )
for some ϕ * 0 with mass zero and ϕ * 0 * ,b < t 1-a 0 (log t 0 ) -β . Indeed, the equation for ϕ * 0 has the form

α(t 0 ; ϕ * 0 ) λ 0 (t 0 ) 2 U x -ξ(t 0 ; ϕ * 0 ) λ 0 (t 0 ) + φ i 0 x -ξ(t 0 ; ϕ * 0 ) λ 0 (t 0 ) + c 1 (ϕ * 0 ) Z0 x -ξ(t 0 ) λ 0 (t 0 ) • χ 0 x -ξ(t 0 ; ϕ * 0 ) √ t 0 + φλ0 (x -ξ(t 0 ; ϕ * 0 ), t 0 ) + ϕ * 0 (x) = α(t 0 ; 0) λ 0 (t 0 ) 2 U x λ 0 (t 0 ) + φ i 0 x λ 0 (t 0 ) + c 1 (0) Z0 x λ 0 (t 0 ) • χ 0 x √ t 0 + ϕ λ0 (x, t 0 ) + v.
A solution to this equation is ϕ * 0 = v. Indeed, with this choice, computing the center of mass we find that ξ(t 0 ; ϕ * 0 ) = 0, computing the mass we find that α(t 0 ; ϕ * 0 ) = α(t 0 ; 0) and computing the second moment we obtain c 1 (ϕ * 0 ) = c 1 (0). Now consider a general v with v * ,b < 1 M t 1-a 0 (log t 0 ) -β and mass zero (where M > 0 is a constant to be chosen). We want to show that the initial condition u * 0 + v produces a solution to (3.1) with infinite time blow as described in Theorem 1.1. To prove this, consider

u Λ,p (x) = 1 Λ 2 u * 0 x -p Λ + v x -p Λ ,
where p ∈ R 2 and Λ > 0. Note that u Λ,p has mass 8π. Then we select Λ and p such that

R 2 u Λ,p (x)x j dx = 0, R 2 u Λ,p (x)|x| 2 dx = I 0 . Note that |Λ -1| ≤ C M t 1-a 0 (log t 0 ) -β and |p| ≤ C M t 1-a 0 (log t 0 ) -β . Then we expand u Λ,p (x) = u * 0 + w and w satisfies w * ,b ≤ C M t 1-a 0
(log t 0 ) -β , has mass zero, center of mass zero and second moment equal to I 0 . Choosing M = C, by the previous claim, there is

ϕ * 0 with ϕ * 0 * ,b < t 1-a 0 (log t 0 ) -β such that u Λp = u * (ϕ * 0 ). The initial condition u * (ϕ * 0 )
is such that the solution to (3.1) blows up as in Theorem 1.1. Then the same is true for the initial condition u * 0 + v after a scaling and translation in space.

The mass of ϕ λ

We devote this section to prove Proposition 5.1. To that purpose, a basic step is to derive a formula for the mass of ϕ λ defined in (3.11).

Let us write

ϕ λ = ϕ (1) λ + ϕ (2) λ (7.1)
where ϕ

(1)

λ and ϕ (2)
λ are the solutions, given by Duhamel's formula, of the following problems

     ∂ t ϕ (1) 
λ = ∆ 6 ϕ (1) λ + λ λ 3 Z 0 ( x λ )χ 0 (z) in R 2 × ( t0 2 , ∞) ϕ (1) λ (•, t0 2 ) = 0 (7.2)      ∂ t ϕ (2) λ = ∆ 6 ϕ (2) λ + 1 2λ 2 t U ∇ z χ 0 (z) • z + Ẽ, in R 2 × ( t0 2 , ∞), z = x √ t , ϕ (2) 
λ (•, t0 2 ) = 0 (7.3)
where the operator ∆ 6 is defined in (3.7) and Ẽ in (3.10). We let ϕ[p, λ](r, t) be the solution of the problem

   ∂ t ϕ[p, λ] = ∆ 6 ϕ[p, λ] + p λ 4 Z 0 r λ χ r √ t in R 2 × ( t0 2 , ∞), ϕ[p, λ](•, t0 2 ) = 0 in R 2 , (7.4) 
given by Duhamel's formula. By definition, we have

ϕ (1) λ = ϕ[λ λ, λ].
In definitions (7.2), (7.3), (7.4), the parameter function λ(t) is assumed to be defined for t > t0 2 . In the rest of this section we also assume the validity of the condition stated for λ in (4.1), namely

|λ(t)| + t log(t)| λ(t)| ≤ C log(t) , t > t 0 2 , (7.5) 
for some fixed constant C. Let us define

p γ,m = sup t≥t0/2 t γ (log t) m |p(t)|. (7.6) 
In what follows we shall only deal with radial functions on R 2 and sometimes we will consider them as radial functions on R 6 . For a fixed constant c 0 > 0 we let

λ * (t) = c 0 √ log t . (7.7)
The following expansion holds.

Lemma 7.1. Assume that λ satisfies (7.5). Let 0 < γ < 2, m ∈ R and suppose that p γ,m < ∞. Then

R 2 ϕ[p, λ](x)dx = -4π t-λ(t) 2 t/2 p(s) t -s ds + R[p, λ] where R[p, λ] satisfies R[p, λ] γ,m ≤ C p γ,m . If λ 1 , λ 2 satisfy λ j λ * L ∞ (t0/2,∞) < 1 2 , j = 1, 2,
then we also have

R[p, λ * + λ 1 ] -R[p, λ * + λ 2 ] γ,m ≤ C p γ,m λ 1 -λ 2 λ * L ∞ (t0/2,∞) . (7.8)
For the proof of the above result we will need the following calculation.

Lemma 7.2. Let f (w) = 1 (4π) 3 R 6 e -|z| 2 4 1 |w -z| 4 dz, w ∈ R 6 . Then f (w) = 1 |w| 4 1 -e -|w| 2 4 1 + |w| 2 4 . (7.9) 
Proof. Let ϕ 0 be given by

ϕ 0 (x, t) = 1 (4π) 3 1 t 3 R 6 e -|y| 2 4t 1 |x -y| 4 dy, x ∈ R 6 , t > 0, which solves ∂ t ϕ 0 = ∆ R 6 ϕ 0 in R 6 × (0, ∞) ϕ 0 (x, 0) = 1 |x| 4 . Then f (w) = ϕ 0 (w, 1). Write ϕ 0 (x, t) = 1 t 2 q |x| √ t . Then q (s) + 5 s q (s) + s 2 q (s) + 2q(s) = 0
and we want q(s) bounded for s → 0, q(s) = s -4 (1 + o(1)) as s → ∞. A calculation using the explicit element in the kernel of the linear operator, s -4 , gives

q(s) = 1 s 4 1 -e -s 2 4 1 + s 2 4 , s > 0,
and then (7.9) follows.

Proof of Lemma 7.1. The solution ϕ[p, λ] of (7.4) has the formula

ϕ[p, λ](x, t) = 1 (4π) 3 t t0/2 p(s) λ 4 (s) 1 (t -s) 3 R 6 e -|x-y| 2 4(t-s) Z 0 y λ(s) χ y √ s dyds, x ∈ R 6 . Writing ϕ = ϕ[p, λ]
we have

R 2 ϕ(x, t) dx = 2 π 2 R 6 ϕ(x, t)|x| -4 dx = 2 π 2 1 (4π) 3 t t0/2 p(s) λ 4 (s) 1 (t -s) 3 R 6 R 6 e -|x-y| 2 4(t-s) |x| -4 dxZ 0 y λ(s) χ y √ s dyds = 2 π 2 1 (4π) 3 t t0/2 p(s) λ(s) 4 R 6 R 6 e -|z| 2 4 1 |y - √ t -sz| 4 dzZ 0 y λ(s) χ y √ s dyds
Using (7.9) we have

R 2 ϕ(x, t)dx = 2 π 2 t t0/2 p(s) λ(s) 4 R 6 1 (t -s) 2 f ((t -s) -1/2 |y|)Z 0 y λ(s) χ y √ s dyds = 2π t t0/2 p(s) λ(s) 4 ∞ 0 1 -e -r 2 4(t-s) 1 + r 2 4(t -s) Z 0 r λ(s) χ r √ s rdrds. Let us notice that 1 2π R 2 ϕ(x, t)dx = t t0/2 p(s)(t -s) λ(s) 4 ∞ 0 1 -e -z 2 4 1 + z 2 4 Z 0 z √ t -s λ(s) χ z √ t -s √ s zdzds.
We decompose

1 2π R 2 ϕ(x, t)dx = I 1 + I 2 + I 3
where

I 1 = t/2 t0/2
...

I 2 = t-λ(t) 2 t/2
...

I 3 = t t-λ(t) 2
... and separately estimate each term. To estimate I 1 we note that for s ≤ t/2 we have s t-s ≤ 1. Assuming that χ(x) = 0 for x ≥ 2 we obtain

∞ 0 1 -e -z 2 4 1 + z 2 4 Z 0 z √ t -s λ(s) χ z √ t -s √ s zdz = 2 √ s √ t-s 0 ... We estimate for s ≤ t/2, 2 √ s √ t-s 0 1 -e -z 2 4 1 + z 2 4 Z 0 z √ t -s λ(s) χ z √ t -s √ s zdz ≤ C 2 √ s √ t-s 0 z 4 λ(s) 4 (t -s) 2 z 4 zdz ≤ C λ(s) 4 s (t -s) 3 ,
where we have used that Z 0 (ρ) ≤ C/ρ 4 and 1 -e -z 2 4 (1 + z 2 4 ) ≤ Cz 4 . Therefore

|I 1 | ≤ t/2 t0/2 |p(s)|s (t -s) 2 ds ≤ p γ,m t/2 0 s 1-γ (t -s) 2 (log s) m ds ≤ C t γ (log t) m p γ,m .
Let us analyze I 2 . We write

I 2 = I 2, * + I 2,a + I 2,b + I 2,c + I 2,d
where

I 2, * = -16 t-λ(t) 2 t/2 p(s)(t -s) λ(s) 4 ∞ 0 1 -e -z 2 4 1 + z 2 4 λ(s) 4 (t -s) 2 z 4 zdzds and I 2,a = t-λ(t) 2 t/2 p(s)(t -s) λ(s) 4 λ(s) √ t-s 0 1 -e -z 2 4 1 + z 2 4 Z 0 z √ t -s λ(s) χ z √ t -s √ s zdzds I 2,b = 16 t-λ(t) 2 t/2 p(s)(t -s) λ(s) 4 λ(s) √ t-s 0 1 -e -z 2 4 1 + z 2 4 λ(s) 4 (t -s) 2 z 4 χ z √ t -s √ s zdzds I 2,c = t-λ(t) 2 t/2 p(s)(t -s) λ(s) 4 ∞ λ(s) √ t-s 1 -e -z 2 4 1 + z 2 4 Z 0 z √ t -s λ(s) + 16 λ(s) 4 (t -s)z 4 zdzds I 2,d = t-λ(t) 2 t/2 p(s)(t -s) λ(s) 4 ∞ 0 1 -e -z 2 4 1 + z 2 4 Z 0 z √ t -s λ(s) χ z √ t -s √ s -1 zdzds
A calculation gives that

I 2, * = -2 t-λ(t) 2 t/2
p(s) t -s ds.

(7.10)

Next we find a bound for I 2,a . Using that Z 0 is a bounded function and |1 -e -z 2 4 (1

+ z 2 4 )| ≤ Cz 4 , we get λ(s) √ t-s 0 1 -e -z 2 4 1 + z 2 4 Z 0 z √ t -s λ(s) χ z √ t -s √ s zdz ≤ C λ(s) √ t-s 0 z 5 dz ≤ C λ(s) 6 (t -s) 3 .

It follows that

|I 2,a | ≤ C t-λ(t) 2 t/2 |p(s)|λ(s) 2 (t -s) 2 ds ≤ C t γ (log t) m p γ,m t-λ(t) 2 t/2 λ(s) 2 (t -s) 2 ds ≤ C t γ (log t) m p γ,m . Using that |1 -e -z 2 4 (1 + z 2 4 )| ≤ Cz 4 , we get λ(s) √ t-s 0 1 -e -z 2 4 1 + z 2 4 λ(s) 4 (t -s) 2 z 4 χ z √ t -s √ s zdz C ≤ λ(s) 4 (t -s) 2 λ(s) √ t-s 0 zdz ≤ C λ(s) 6 (t -s) 3 ,
and similarly as before,

|I 2,b | ≤ C t γ (log t) m p γ,m .
Using that

Z 0 z √ t -s λ(s) = -16 λ(s) 4 (t -s) 2 z 4 + O λ(s) 6 (t -s) 3 z 6 , z √ t -s λ(s) ≥ 1,
we get

|I 2,c | ≤ C t-λ(t) 2 t/2 p(s)(t -s) λ(s) 4 ∞ λ(s) √ t-s 1 -e -z 2 4 1 + z 2 4 λ(s) 6 (t -s) 3 z 6 χ z √ t -s √ s zdz ≤ C t-λ(t) 2 t/2 p(s)λ(s) 2 (t -s) 2 ∞ λ(s) √ t-s 1 -e -z 2 4 1 + z 2 4 1 z 5 dz.
But λ(s) √ t-s ≤ 2 in the considered range of s, and then

|I 2,c | ≤ C t-λ(t) 2 t/2 |p(s)|λ(s) 2 (t -s) 2 log λ(s) 2 t -s ds ≤ C t γ (log t) m p γ,m t-λ(t) 2 t/2 λ(s) 2 (t -s) 2 log λ(s) 2 t -s ds ≤ C t γ (log t) m p γ,m . Finally, for I 2,d , ∞ 0 1 -e -z 2 4 1 + z 2 4 Z 0 z √ t -s λ(s) χ z √ t -s √ s -1 zdz ≤ ∞ 2 √ s/ √ t-s 1 -e -z 2 4 1 + z 2 4 λ(s) 4 (t -s) 2 z 4 zdz ≤ λ(s) 4 (t -s) 2 ∞ 2 √ s/ √ t-s z -3 dz ≤ C λ(s) 4 (t -s)s . Then |I 2,d | ≤ C t-λ(t) 2 t/2 |p(s)|(t -s) λ(s) 4 λ(s) 4 (t -s)s ds ≤ C t γ (log t) m p γ,m .
Finally we estimate

|I 3 | = t t-λ(t) 2 p(s) λ(s) 2 ∞ 0 1 -e -ρ 2 λ 2 4(t-s) 1 + ρ 2 λ 2 4(t -s) Z 0 (ρ)χ λρ √ s ρdρds ≤ C t t-λ(t) 2 |p(s)| λ(s) 2 ds ≤ C t γ (log t) m p γ,m .
In summary, by (7.10) we have written

1 2π R 2 ϕ(x, t)dx = -2 t-λ(t) 2 t/2 p(s) t -s ds + I 1 + I 2,a + I 2,b + I 2,c + I 2,d + I 3 ,
and each of the expressions I 1 , I 2,a , I 2,b , I 2,c , I 2,d , I 3 are linear operators of p with the estimate

I j [p] γ,m ≤ C p γ,m .
The proof of (7.8) follows from the explicit expressions for the terms I j in R, and similar estimates as before.

Lemma 7.3. Suppose that λ satisfies (7.5) and ϕ

(2) λ be given by (7.3). Then 

ϕ (2) λ (0, t; λ) = - λ(t) 2 4t 2 + O 1 t 2 (log t) 2 , ( 7 
λ j λ * L ∞ (t0/2,∞) < 1 2 , j = 1, 2,
then we also have

|ϕ (2) λ * +λ1 (0, t) -ϕ (2) 
λ * +λ2 (0, t)| ≤ C t 2 log t λ 1 -λ 2 λ * L ∞ (t0/2,∞) . (7.12)
Proof. For simplicity of notation let us write ϕ(x, t; λ) = ϕ

(2) λ (x, t). Let us write the right hand side of equation (7.3) in the following form

E 2 (x, t; λ) = - 1 2λ 2 t U (y)∇ z z 0 (z) • z + 2 λ 3 t 1/2 ∇ z χ 0 (z) • ∇ y U (y) + 1 λ 2 t ∆ z χ 0 (z)U (y) - 1 λ 3 t 1/2 U (y)∇ z χ 0 (z) • ∇ y Γ 0 (y), y = x λ , z = x √ t .
To compute ϕ(0, t; λ) let us define the following approximation of it φ(r, t) = λ 2 φ(r, t),

where φ(r, t) solves the radial heat equation in dimension 6:

   ∂ t φ = ∂ 2 r φ + 5 r ∂ r φ + 1 t 3 h r √ t , φ(r, 0) = 0, (7.13) 
and

h(ζ) = 8 ζ 4 χ 0 - 3 ζ χ 0 (ζ) + ζ 2 χ 0 (ζ) .
The solution φ(r, t) to problem (7.13) can be expressed in self-similar form as

φ(r, t) = 1 t 2 g(ζ), ζ = r √ t .
We find for g the equation

g + 5 ζ g + ζ 2 g + 2g + h(ζ) = 0, ζ ∈ (0, ∞). (7.14)
Using that the function 1 ζ 4 is in the kernel of the homogeneous equation, we find the explicit solution of (7.14), 

g 0 (ζ) = - 1 ζ 4 ζ 0 x 3 e -1 4 x 2 x 0 h(y)e
φ(0, t) = - λ(t) 2 4t 2 . (7.16)
Then, using a barrier for the equation satisfied by ϕ(x, t; λ) -φ(x, t) we get

|ϕ(x, t; λ) -φ(x, t)| ≤ C 1 t 2 (log t) 2 e -c |x| 2 t , (7.17) 
for t ≥ 2, where 0 < c < 1 4 . From (7.16) and (7.17) we obtain (7.11). The proof of (7.12) is similar.

Lemma 7.4. Suppose that λ satisfies (7.5) and ϕ

(2) λ be given by (7.3). Then

R 2 ϕ (2) λ = -2π λ 2 t -16πΥ λ 2 t + O 1 t 2 (log t) 2 . (7. 18 
)
where Υ is defined in (2.7), that, is, Υ = ∞ 0 (χ 0 (s) -1)s -3 ds.

Proof. Integrating (7.3)

d dt R 2 ϕ (2) λ = -4ϕ (2) 
λ (0, t) -

1 2λ 2 t R 2 U (y)∇ z χ 0 (z) • zdx + R 2
Ẽdx.

From (7.11) 2 and integrating we get

ϕ (2) λ (0, t) = - λ(t) 2 4t 2 + O 1 t 2 (log t) 2 and we compute - 1 2λ 2 t U (y)∇ z χ 0 (z) • z + Ẽ = - 1 λ 2 U (y)∇ z χ 0 (z) • z + 2 λ 2 ∇ x χ • ∇ x U + 1 λ 2 ∆ x χU - 1 λ 2 U ∇χ • ∇Γ 0 = 4 λ 2 t 3 χ 0 (s) 1 s 3 -64 λ 2 t 3 χ 0 (s) 1 s 5 + 8 λ 2 t 3 (χ 0 (s) + 1 s χ 0 (s)) 1 s 4 + 32 λ 2 t 3 χ 0 (s) 1 s 5 + O λ 4 t 4 χ {1≤s≤2} = 8 λ 2 t 3 1 s 4 s 2 χ 0 (s) - 3 s χ 0 (s) + χ 0 (s) + O λ 4 t 4 χ {1≤s≤2} where s = r √ t . Then - 1 2λ 2 t R 2 U (y)∇ z χ 0 (z) • zdx + R 2 Ẽdx = 2π 8λ 2 t 2 ∞ 0 1 s 4 s 2 χ 0 (s) - 3 s χ 0 (s) + χ 0 (s) sds + O λ 4 t 3 = 16π λ 2 t 2 ∞ 0 (χ 0 (s) -1)s -3 ds + ∞ 0 (s -3 χ 0 ) ds +O λ 4 t 3 = 16π λ 2 t 2 Υ + O λ 4 t 3 . Therefore d dt R 2 ϕ (2) λ = 2π λ(t) 2 t 2 + 16πΥ λ 2 t 2 + O 1 t 3 (log t)
R 2 ϕ (2) λ = -2π λ 2 t -16πΥ λ 2 t + O 1 t 2 (log t) 2 .
This is the desired expansion (7.18).

As a corollary from Lemma 7.1 and Lemma 7.4 we get:

Corollary 7.1. Assume λ satisfies (7.5). Then R 2 ϕ λ dx = -4π t-λ(t) 2 t/2 λ λ(s) t -s ds -2π λ 2 (t) t -16πΥ λ 2 (t) t + O 1 t 2 (log t) 2 + R[λ λ, λ],
where R is as in Lemma 7.1.

Lemma 7.5. Let Ẽ be defined by (3.10). Assume that λ satisfies (7.5). Then

R 2 Ẽ|x| 2 dx = -64πΥ λ 2 t + O 1 t 2 (log t) 2 . (7.19)
Proof. Similarly to the proof of Lemma 7.4 we have

Ẽ = 8 λ 2 t 3 1 s 4 - 3 s χ 0 (s) + χ 0 (s) + O λ 4 t 4 χ {1≤s≤2} , where r = |x|, s = r √ t , and so R 2 Ẽ|x| 2 dx = 16π λ 2 t ∞ 0 1 s 4 - 3 s χ 0 (s) + χ 0 (s) s 3 ds + O λ 4 t 2 = -64π λ 2 t Υ + O λ 4 t 2 .
This is (7.19).

Lemma 7.6. Let E be defined by (3.9). Assume that λ satisfies (7.5). Then

R 2 E|x| 2 dx ≤ C t log(t)
.

Proof. We have from (3.9)

E(ζ, t; λ) = λ λ 3 Z 0 ζ λ χ 0 ζ √ t + 1 2λ 2 t U ζ λ ∇ z χ 0 (z) • z + Ẽ(x, t),
and we have already computed R 2 Ẽ|x| 2 dx. We have

R 2 Z 0 ζ λ χ 0 ζ √ t |ζ| 2 dζ = 2πλ 4 ∞ 0 Z 0 (ρ)χ 0 λρ √ t ρ 3 dρ = O(λ 4 log(t)),
and so λ

λ 3 R 2 Z 0 ζ λ χ 0 ζ √ t |ζ| 2 dζ ≤ C t log t .
7.1. Proof of Proposition 5.1. Let

I[λ] = 4 R 2 ϕ λ dx - R 2 Ẽ(λ)|x| 2 dx.
For the proof we proceed by linearization, that is we look for a function λ 0 satisfying

|I[λ 0 ](t)| ≤ C 1 t 3 2 +σ , t > t 0 with the expansion λ 0 (t) = λ * (t) + λ0 (t)
where λ * was defined in (7.7), that is, λ * (t) = c0 √ log t and λ0 (t), t > t0 2 , is a correction. Here c 0 > 0 is a fixed constant.

We claim that

|I[λ * ](t)| ≤ C log(log t) t(log t) 2 , t > t 0 2 , (7.20) 
with C independent of t 0 . In the rest of the proof C will be a constant independent of t 0 (for t 0 large). Indeed, using the decomposition (7.1) and the notation (7.4) we have

R 2 ϕ λ * dx = R 2 ϕ (1) λ * dx + R 2 ϕ (2) λ * dx and R 2 ϕ ( 1 
)
λ * dx = R 2 ϕ[p * , λ * ]dx, p * = λ * λ * . By Lemma 7.1 we have R 2 ϕ[p * , λ * ]dx + 4π t-λ * (t) 2 t/2 p * (s) t -s ds ≤ C 1 t(log t) 2 , t > t 0 2 . Therefore R 2 ϕ[p * , λ * ]dx + 4π log(t)p * (t) ≤ C log(log t) t(log t) 2 , t > t 0 2 .
On the other hand, by Lemma 7.4 we have 2 , and by Lemma 7.5

R 2 ϕ ( 2 
)
λ * dx = -2π λ * (t) 2 t -16πΥ λ * (t) 2 t + O 1 t(log t)
R 2 Ẽ(λ * )|x| 2 dx = -64πΥ λ * (t) 2 t + O 1 t 2 (log t) 2 .
Using the explicit form of λ * and the previous formulas we deduce (7.20).

Next let us rewrite slightly the operator I[λ] as follows. We have

I[λ] = 4 R 2 ϕ[λ λ, λ]dx + 4 R 2 ϕ (2) λ dx - R 2 Ẽ(λ)|x| 2 dx. Let us define R[p, λ] = R 2 ϕ[p, λ]dx + 4π t-λ * (t) 2 t/2 p(s) t -s ds.
This is similar to the decomposition given in Lemma 7.1, but we have changed the interval of integration to [ t 2 , t -λ * (t) 2 ]. We decompose the integral

t-λ * (t) 2 t/2 p(s) t -s ds = t-t 1-ϑ t/2 p(s) t -s ds + t-λ * (t) 2 t-t 1-ϑ p(s) t -s ds = t-t 1-ϑ t/2 p(s) t -s ds + p(t) t-λ * (t) 2 t-t 1-ϑ 1 t -s ds - t-λ * (t) 2 t-t 1-ϑ p(t) -p(s) t -s ds
where 0 < ϑ < 1 2 is a fixed constant. We change variables µ = λ 2 , so that

I[λ] = -8π μ(t)((1 -ϑ) log(t) -2 log(λ * (t))) -8π t-t 1-ϑ t/2 μ(s) t -s ds + 4 R 2 ϕ (2) 
√ µ dx + 2R[ μ, √ µ] - R 2 Ẽ( √ µ)|x| 2 dx + 8π t-λ * (t) 2 t-t 1-ϑ μ(t) -μ(s) t -s ds.
Let η be a smooth cut-off such that η(t) = 0 for t < 3 4 t 0 , η(t) = 1 for t > t 0 . We define

Ĩ[µ] = -8π μ(t)((1 -ϑ) log(t) -2 log(λ * (t))) -8πη(t) t-t 1-ϑ t/2 μ(s) t -s ds + 4η(t) R 2 ϕ ( 2 
)
√ µ dx + 2η(t)R[ μ, √ µ] -η(t) R 2 Ẽ( √ µ)|x| 2 dx + 8πη(t) t-λ * (t) 2 t-t 1-ϑ μ(t) -μ(s) t -s ds which we write Ĩ[µ] = [µ] + N [µ] + R[µ],
where

[µ](t) = -8π μ(t)((1 -ϑ) log(t) -2 log(λ * (t))) -8πη(t) t-t 1-ϑ t/2 μ(s) t -s ds N [µ](t) = 4η(t) R 2 ϕ ( 2 
)
√ µ dx + 2η(t)R[ μ, √ µ] -η(t) R 2 Ẽ( √ µ)|x| 2 dx R[µ](t) = 8πη(t) t-λ * (t) 2 t-t 1-ϑ μ(t) -μ(s) t -s ds. Note that I[λ](t) = Ĩ[λ 2 ](t) for t ≥ t 0 .
Instead of finding λ such that I[λ] = 0 for t > t 0 we are going to construct µ such that

| Ĩ[µ](t)| ≤ C t 3 2 +σ , t > t 0 2 ,
for some σ > 0.

Let µ * = (λ * ) 2 where λ * is defined in (7.7). In a first step we will find µ 1 so that

[µ * + µ 1 ] + N [µ * + µ 1 ] + R[µ * ] = 0, t > t 0 2 . ( 7.21) 
We will look for µ 1 with µ 1 * ,γ,m < ∞ where, for a function

µ 1 ∈ C 1 ([ t0 2 , ∞)) with lim t→∞ µ 1 (t) = 0 we define µ 1 * ,γ,m = sup t≥t0/2 t γ (log t) m | μ1 (t)| = μ1 γ,m . Equation (7.21) takes the form 0 = -8π μ1 ((1 -ϑ) log(t) -2 log(λ * (t))) -8πη(t) t-t 1-ϑ t/2 μ1 (s) t -s ds + η(t)e 1 (t) + η(t)F 1 [µ 1 ](t), t > t 0 2 , (7.22) 
where e 1 (t) = Ĩ[µ * ] and F 1 is an operator with the following properties:

F 1 [μ 1 ] γ,m ≤ C μ1 * ,γ,m , (7.23 
)

F 1 [μ 1 ] -F 1 [μ 2 ] γ,m ≤ C μ1 -μ2 * ,γ,m , (7.24) 
for μj satisfying μj * ,γ,m ≤ 1, with 0 < γ < 2, m ∈ R, where γ,m is defined in (7.6). From (7.20) we find

|e 1 (t)| ≤ C log(log t) t(log t) 2 , t > t 0 2 .
Now we apply the contraction mapping principle to the equation (7.22) written in the form

μ1 = -η(t)I r [ μ1 ] + 1 8π((1 -ϑ) log(t) -2 log(λ * (t))) η(t) e 1 (t) + F [µ 1 ](t) , t > t 0 2 , (7.25) 
where

I r [ μ1 ] = 1 ((1 -ϑ) log(t) -2 log(λ * (t)) t-t 1-ϑ t/2 μ1 (s) t -s ds.
We directly check that

I r [ μ] γ,m ≤ ϑ 1 -ϑ μ1 γ,m .
Let X be the space

X = {µ 1 ∈ C 1 ([ t0 2 , ∞)) | lim t→∞ µ 1 (t) = 0} with the norm µ 1 X = µ 1 * ,1,3-ε , where 0 < ε < 1. It follows that if ϑ < 1
2 the equation (7.25) has a unique solution µ 1 in the ball B 1 (0) of X.

Therefore we have found

µ 1 with µ 1 * ,1,3-ε ≤ 1 so that µ = µ * + µ 1 satisfies Ĩ[µ] = -8πη(t) t-λ * (t) 2 t-t 1-ϑ μ1 (t) -μ1 (s) t -s ds. (7.26) 
To estimate this remainder we then need a bound for μ. Differentiating with respect to t in the decompositions used in Lemmas 7.1, 7.4, 7.5 we obtain

| ė1 (t)| ≤ C log(log t) t 2 (log t) 2 , t > t 0 2 .
Differentiating in t equation (7.25) and using the contraction mapping principle we get that for any ε > 0 small

|μ 1 (t)| ≤ C t 2-ε .
Using this we find that the remainder (7.26) has the estimate

t-λ * (t) 2 t-t 1-ϑ μ(t) -μ(s) t -s ds ≤ C t 1+ϑ-ε , t > t 0 2
,

where µ = µ * + µ 1 .
Next we introduce another correction µ 2 to improve the decay of the remainder. We consider µ = µ * + µ 1 + µ 2 and we consider the following equation for µ 2 :

[µ * + µ 1 + µ 2 ] + N [µ * + µ 1 + µ 2 ] + R[µ * + µ 1 ] = 0, t > t 0 2 .
Similarly as before, this equation can be written as

0 = -8π μ2 ((1 -ϑ) log(t) -2 log(λ * (t))) -8πη(t) t-t 1-ϑ t/2 μ2 (s) t -s ds + η(t)e 2 (t) + η(t)F 2 [µ 2 ](t), t > t 0 2 , (7.27) 
where F 2 satisfies the same estimate (7.23) (7.24), and e 2 has the estimate

|e 2 (t)| ≤ C t 1+ϑ-ε , t > t 0 2 .
Using again the contraction mapping principle we find a solution µ 2 of (7.27) with µ 2 * ,1+ϑ-ε,1 ≤ 1.

Then for

µ = µ * + µ 1 + µ 2 Ĩ[µ](t) = -8πη(t) t-λ * (t) 2 t-t 1-ϑ μ2 (t) -μ2 (s) t -s ds.
To estimate this remainder we need the following bound for μ2

|μ 2 (t)| ≤ C t 2+ϑ-ε (7.28)
which is obtained from an estimate for ė2 , differentiating with respect to t equation (7.27). The estimate for ė2 is obtained from an analogous estimate for d 3 µ1 dt 3 . From (7.28) we find

| Ĩ[µ](t)| ≤ C t 1+2ϑ-ε t > t 0 2 ,
where we recall that 0 < ϑ < 1 2 is arbitrary.

Thus letting λ 0 = √ µ, µ = µ * + µ 1 + µ 2 we obtain |I[λ 0 ]| ≤ C t 1+2ϑ-ε t > t 0 .
Choosing ϑ > 1 4 and ε > 0 small, we obtain the properties stated in Proposition 5.1.

Inner linear theory

In this section we consider the problem

λ 2 ∂ t φ = L[φ] + B[φ] + h(y, t) in R 2 × (t 0 , ∞) φ(•, t 0 ) = 0 in R 2 . (8.1)
that appears in the inner equations (5.47) and (5.48), where, we recall

L[φ] = ∇ • U ∇ φ U -(-∆) -1 φ , (-∆) -1 φ(y, t) = 1 2π R 2 log 1 |y -z| φ(z, t)dz. (8.2) 
Slightly more general than the operator B defined in (5.46) we will consider

B[φ] = ζ 1 (t)[φ] rad + ζ 2 (t)y • ∇[φ] rad + (ζ 1 (t)φ 1 + ζ 2 (t)y • ∇φ 1 )χ 0 λy 5 √ t
where [φ] rad is the radial part of φ (defined in (5.45)) and φ 1 = φ -[φ] rad , and where χ 0 is the smooth cut-off function defined in (2.5). In the sequel we will keep the same notation for B.

In what follows we will analyze the linear initial value problem (8.1) where we assume that the functions λ(t), ζ i (t) are continuous, t 0 > 1 and that for some positive numbers c, C we have

c √ log t ≤ λ(t) ≤ C √ log t for all t > t 0 , |ζ i (t)| ≤ C t log 2 t
for all t > t 0 .

Next we change the time variable into

τ = τ 0 + t t0 1 λ(s) 2 ds,
where τ 0 = t 0 log t 0 . Then c1 t log t ≤ τ ≤ c2 t log t for some c1 , c2 > 0. Identifying φ(y, t) and h(y, t) with φ(y, τ ) and h(y, τ ) we rewrite (8.1) as

∂ τ φ = L[φ] + B[φ] + h in R 2 × (τ 0 , ∞) φ(•, τ 0 ) = 0 in R 2 , (8.3) 
We consider problem (8.3) for functions h(y, τ ) that have fast decay in space. More precisely, we assume that for all T > 0 there is

C T such that |h(y, τ )| ≤ C T 1 + |y| 6 for all (y, τ ) ∈ R 2 × (τ 0 , T ).
In this case, by a solution φ(y, τ ) of ( 8.3) we understand a continuous function φ(y, τ ), of class C 1 in y, such that for any T > τ 0 there exists a C T > 0 with

|φ(y, τ )| + (1 + |y|)|∇ y φ(y, τ )| ≤ C T 1 + |y| 6 for all (y, τ ) ∈ R 2 × (τ 0 , T ), (8.4) 
and satisfies the integral equation

φ(y, τ ) = τ τ0 R 2 G(y -z, τ -s) [-∇φ∇Γ 0 -∇U ∇(-∆) -1 φ (8.5) 
+ 2U φ + B[φ] + h](z, s) dzds,
where (-∆) -1 φ is defined in (8.2) and G(y, τ ) designates the two-dimensional heat kernel,

G(y, τ ) = 1 4πτ e -|y| 2 4τ .
From the formula

∇(-∆) -1 h(y) = - 1 2π R 2 y -z |y -z| 2 h(z)dz we see that if |φ(y)| ≤ C 1+|y| 6 then |∇(-∆) -1 φ(y)| ≤ C 1 + |y| (1 + |y| 6 )φ L ∞ (R 2 ) .
Using this estimate, existence and uniqueness of a solution of (8.5) satisfying (8.4) are standard. For a short time T > τ 0 this is established by a contraction mapping argument in an appropriate L ∞ -weighted space. Then a direct linear continuation procedure applies.

A first natural condition to impose on h in (8.3) is that R 2 h(y, τ )dy = 0 for all τ > τ 0 , in order to achieve that the solution has also zero mass at all times.

We want to find solutions to (8.3) that have fast decay in space and time. For this we need to assume fast space-time decay of the right hand side, which we do by working with the following class of norms.

Given positive numbers ν, p, and m ∈ R, we let h ν,m,p, denote the least K ≥ 0 such that for all τ > τ 0 and for all y ∈ R 2

|h(y, τ )| ≤ K τ ν (log τ ) m 1 (1 + |y|) p      1 |y| ≤ √ τ , τ /2 |y| |y| ≥ √ τ . (8.6)
This is similar to the norm introduced in (6.2) but defined using τ instead of t. We will give the results in Sections 9-12 using the norm (8.6).

Still, fast decay of the right hand side doesn't imply fast decay of the solution. For example, consider equation (8.1) without the operator B, that is,

∂ τ φ = L[φ] + h(y, t) in R 2 × (τ 0 , ∞) φ(•, τ 0 ) = 0 in R 2 , (8.7) 
and suppose that h has compact support in space and time, and that φ has sufficient space-time decay. Then, multiplying (8.7) by |y| 2 and integrating in

R 2 × (τ 0 , ∞) gives ∞ τ0 R 2 h(y, τ )|y| 2 dydτ = 0,
because if φ is a regular function with fast decay, then

R 2 L[φ]|y| 2 dy = 0,
see Remark 9.2 below. It is then necessary to impose a condition on h, or to adjust a parameter in the problem in order to get a fast decay of the solution. We develop here the theory by adjusting the parameter c 1 in the equation below

∂ τ φ = L[φ] + B[φ] + h(y, t) in R 2 × (τ 0 , ∞), φ(•, t 0 ) = c 1 Z0 in R 2 , (8.8) 
where Z0 is defined as

Z0 (ρ) = (Z 0 (ρ) -m Z0 U )χ 0 ρ √ τ 0 ,
where m Z0 is such that

R 2 Z0 = 0.
Proposition 8.1. Let σ > 0, > 0 with σ + < 2 and 1 < ν < 7 4 . Let 0 < q < 1. Then there exists a number C > 0 such that for t 0 sufficiently large and all radially symmetric h = h(|y|, τ ) with h ν,m,6+σ, < ∞ and R 2 h(y, τ )dy = 0, for all τ > τ 0 , there exists c 1 ∈ R and solution φ(y, τ ) = T i,2 p [h] of problem (8.8) that defines a linear operator of h and satisfies the estimate

φ ν-1,m+q,4,2+σ+ ≤ C (log τ 0 ) 1-q h ν,m,6+σ, .
Moreover c 1 is a linear operator of h and

|c 1 | ≤ C 1 τ ν-1 0 (log τ 0 ) m+1 h ν,m,6+σ, .
We have stated this result only in the radial setting, because this is what is needed, but there is a version of it in the non-radial case.

The next result is for the problem

∂ τ φ = L[φ] + B[φ] + h(y, τ ) in R 2 × (τ 0 , ∞), φ(•, τ 0 ) = 0 in R 2 , (8.9) 
and holds without the radial symmetry assumption but assuming orthogonality of the right hand side with respect to all elements in the kernel and for all times.

Proposition 8.2. Let 0 < σ < 1, > 0 with σ + < 3 2 and 1 < ν < min(1 + 2 , 3 -σ 2 , 5 4 ). Let 0 < q < 1. Then there is C such that for τ 0 large the following holds. Suppose that h satisfies h ν,m,6+σ, < ∞ and

R 2 h(y, τ )dy = 0, R 2 h(y, τ )|y| 2 dy = 0, R 2
h(y, τ )y j dy = 0, j = 1, 2, for all τ > τ 0 .

Then there exists a solution φ(y, τ ) = T i,1 p [h] of problem (8.9) that defines a linear operator of h and satisfies φ ν-1 2 ,m+ q 2 ,4,2+σ+ ≤ C h ν,m,6+σ, . Propositions 6.1 and 6.2 given in Section 6 are direct corollaries of Propositions 8.1 and 8.2. The only changes are due to the change in the time variable, because τ ∼ t log t, and the fact that the norms for the solutions in Propositions 6.1 and 6.2 include a gradient term. The estimate for the gradient follows from the weighted L ∞ estimate, scaling and standard parabolic estimates.

The proofs of Propositions 8.1 and 8.2 are contained in Sections 9-12. They are based on an energy inequality obtained by multiplying the equation by a suitable test function, and using an inequality for a quadratic form. Section 9 contains some preliminaries on this quadratic form.

In Proposition 10.1, we obtain an additive decomposition of the solution φ(y, τ ) of (8.8) into a part with a relatively slow space decay that loses τ 1/2 with respect to the time decay of the right hand side, and a term along Z 0 (y) that loses an entire power of τ . This is the key element for the proof of Proposition 8.1 in Section 10 (p.73).

Then the proof of Proposition 8.2 in the radial case uses Proposition 10.1 after formally applying the operator L -1 to the original equation and performing a concentration procedure that improves the space decay of the resulting error. This is done on Section 11, and we give there a proof of Proposition 8.2 in the case of radial functions.

The proof of Proposition 8.2 in the general case is in Section 12 (p.89).. The idea is that the decomposition obtained in Proposition 10.1 for solutions with no radial mode does not contain the term along Z 0 , which allows us to obtain a much better estimate.

Preliminaries for the linear theory

A central ingredient in obtaining good estimates for the linearized parabolic operator associated to the inner problem is the analysis of the quadratic form

φ → R 2 gφ, g = φ U -(-∆) -1 φ. (9.1) 
This quadratic form arises when considering the linearized Keller-Segel problem (8.1). Indeed, L[φ] = ∇ • (U ∇g) and it is natural to test the equation (8.1) with g, since

R 2 L[φ]g = R 2 ∇ • (U ∇g) = - R 2 U |∇g| 2 .
But from the time derivative we get λ 2 R 2 ∂ t φg, which leads to (9.1). We observe that g has degeneracy directions. Indeed, if ψ = (-∆) -1 φ then ∆ψ + U (y)ψ = -U g in R 2 .

The operator ∆ψ + U (y)ψ is classical. It corresponds to linearizing the Liouville equation

∆v + e v = 0 in R 2 ,
around the solution Γ 0 = log U . It is well known that the bounded kernel of this linearization is spanned by the generators of rigid motions, namely dilation and translations of the equation, which are precisely the functions z 0 , z 1 , z 2 defined by

z 0 (y) = ∇Γ 0 (y) • y + 2 z j (y) = ∂ yj Γ 0 (y), j = 1, 2. (9.2)
Note that g is precisely annihilated at the linear combinations of these functions. In the rest of this section we will state and prove several estimates that take into account this issue, which will be crucial later on. The quadratic form (9.1) can be naturally transformed into a similar one in S 2 by stereographic projection Π :

S 2 \ {(0, 0, 1)} → R 2 Π(y 1 , y 2 , y 3 ) = y 1 1 -y 3 , y 2 1 -y 3 .
For ϕ : R 2 → R we write φ = ϕ • Π, φ : S 2 \ {(0, 0, 1)} → R.

Then we have the following formulas 

S 2 φ = 1 2 R 2 ϕU S 2 Ũ |∇ S 2 φ| 2 = R 2 U |∇ R 2 ϕ| 2 1 2 Ũ ∆ S 2 φ = (∆ R 2 ϕ) • Π.
(ω) = c j ω j , j = 1, 2, z0 (ω) = c 0 ω 3 , ω = (ω 1 , ω 2 , ω 3 ) ∈ S 2 .
By standard elliptic theory, if h ∈ L p (S 2 ), p > 2, then exists a solution ψ0 ∈ W 2,p (S 2 ) to (9.4) in S 2 if and only if h satisfies

S 2 hz j = 0, j = 1, 2, 3.
This solution is unique if we normalize it such that S 2 ψ0 zj = 0, j = 1, 2, 3, and then satisfies the estimate ψ0

C 1,α (S 2 ) ≤ C h L p (S 2 )
where α = 1 -2 p . By subtracting off a suitable linear combination of the functions zj , j = 0, 1, 2 we obtain the unique solution ψ1 to (9.4) in S 2 satisfying ψ1 (P ) = 0, ∇ S 2 ψ1 (P ) = 0. (9.5)

For this solution we also have the estimate ψ1 C 1,α (S 2 ) ≤ C h L p (S 2 ) . (9.6) Lemma 9.1. Let 0 < σ < 1. Then there is C such that if ψ satisfies (9.3) and ψ(y

) → 0 as |y| → ∞ with h satisfying (1 + |y|) 3+σ h L ∞ (R 2 ) < +∞ and R 2 (U ψ + h(y))dy = 0, R 2 (U ψ + h(y))y j dy = 0, j = 1, 2, (9.7) 
then

(1 + |y|) 1+σ ψ L ∞ (R 2 ) ≤ C (1 + |y|) 3+σ h L ∞ (R 2 ) . Remark 9.1. Let h : R 2 → R satisfy (1 + |y|) 2+σ h L ∞ (R 2 ) < +∞ where 0 < σ < 1. If R 2 h(y)dy = 0 then |(-∆) -1 h(y)| ≤ C (1 + |y|) σ (1 + |y|) 2+σ h L ∞ (R 2 ) . If h : R 2 → R satisfy (1 + |y|) 3+σ h L ∞ (R 2 )
< +∞ where 0 < σ < 1 and in addition to mass zero we have

R 2 h(y)y j dy = 0, j = 1, 2, then |(-∆) -1 h(y)| ≤ C (1 + |y|) 1+σ (1 + |y|) 3+σ h L ∞ (R 2 ) .
The first claim is standard. For the second, write

(-∆) -1 h(x) = 1 2π R 2 (log |x| -log |x -y| + y • x |x| 2 )h(y)dy
and estimate the integral after splitting it into the regions |y| < |x| 2 and its complement.

Proof of Lemma 9.1. We claim that ψ = (-∆) -1 (U ψ + h). Indeed the function ψ -(-∆) -1 (U ψ + h) is harmonic in R 2 and decays to 0 at infinity, and therefore it is equal to 0. The assumptions (9.7) and Remark 9.1 imply that

(1 + |y|) 1+σ ψ L ∞ (R 2 ) ≤ C (1 + |y|) 3+σ h L ∞ (R 2 ) + C ψ L ∞ (R 2 ) . (9.8) 
Let ψ = ψ • Π, so that it satisfies (9.4) in S 2 \ {P } with h = (U -1 h) • Π. Note that h ∈ L p (S 2 ) for some p > 2. More precisely

h L p (S 2 ) ≤ C (1 + |y|) 3+σ h L ∞ (R 2 ) , (9.9) 
with p < 2 1-σ . The singularity at P is removable and thus ψ satisfies (9.4) in S 2 . By elliptic regularity ψ ∈ C 1,α (S 2 ) for some α > 0. Since ψ decays at infinity, ψ(P ) = 0. By (9.8) we have also ∇ S 2 ψ(P ) = 0.

We let ψ1 denote the solution to (9.4) satisfying (9.5). The solution to (9.4) in S 2 satisfying (9.5) is unique, so that we have ψ = ψ1 and by estimate (9.6), (9.9) and (9.8) we obtain

(1 + |y|) 1+σ ψ L ∞ (R 2 ) ≤ C (1 + |y|) 3+σ h L ∞ (R 2 ) .

A quadratic form.

Here we discuss properties of the quadratic form (9.1). For this we consider a function φ : R 2 → R with sufficient decay, in the form,

|φ(y)| ≤ 1 (1 + |y|) 2+σ , (9.10) 
with 0 < σ < 1, and zero mass: We recall g defined in (9.1) g = φ U -(-∆) -1 φ, and use the notation

ψ = (-∆) -1 φ so that -∆ψ -U ψ = U g in R 2 .
We next introduce a normalized version of g, namely g ⊥ defined by

g ⊥ = g + a,
where a ∈ R is chosen so that

R 2 g ⊥ U dy = 0.
As shown in Lemma 9.3 below, the quadratic form

R 2 φg is equivalent to R 2 U (g ⊥ ) 2
. It will be convenient to work with functions φ ⊥ , ψ ⊥ , which are analogues of φ, ψ but associated to g ⊥ . In particular, we want a choice of ψ ⊥ such that

-∆ψ ⊥ -U ψ ⊥ = U g ⊥ , ψ ⊥ (y) → 0 as |y| → ∞.
(9.12)

Let ψ 0 = 1 + 1 2 z 0 , where z 0 is defined in (9.2), and observe that -∆ψ 0 -U ψ 0 = -U, ψ 0 (y) → 0 as |y| → ∞.

Then ψ ⊥ defined by

ψ ⊥ = ψ -a 1 + 1 2 z 0 = ψ -aψ 0 ,
indeed satisfies (9.12). Define

φ ⊥ = U (g ⊥ + ψ ⊥ ),
and obtain the relations

φ = φ ⊥ + a 2 U z 0 , -∆ψ ⊥ = φ ⊥ , R 2 φ ⊥ = 0.
We note that φ -φ ⊥ = a 2 U z 0 is a constant times Z 0 = U z 0 , which is in the kernel of the operator L. Lemma 9.2. If φ : R 2 → R satisfies (9.10) and (9.11), then

R 2 gU z j = R 2 g ⊥ U z j = 0, j = 0, 1, 2,
where z j are the functions defined in (9.2).

Proof. By the definition of ψ and from (9.10), (9.11) we have

|ψ(y)| + (1 + |y|)|∇ψ(y)| ≤ C (1 + |y|) σ ,
and hence also

|ψ ⊥ (y)| + (1 + |y|)|∇ψ ⊥ (y)| ≤ C (1 + |y|) σ . (9.13)
We multiply (9.12) by z j , integrate in the ball B R (0) and let R → ∞. Since z j is in the kernel of ∆ + U we just have to check that

∂B R ∂ψ ⊥ ∂ν z j -ψ ⊥ ∂z j ∂ν → 0, as R → ∞,
where ν is the exterior normal vector to ∂B R . This follows from (9.13), and the explicit bounds

|z 0 (y)| ≤ C, |z j (y)| ≤ C (1 + |y|) , j = 1, 2, |∇z j (y)| ≤ C (1 + |y|) 2 .
A consequence of the previous lemma is the following. Remark 9.2. Suppose that φ : R 2 → R satisfies (9.10) and (9.11). Then 

R 2 L[φ]|y| 2 dy = 0. Indeed, integrating on B R , with the notation g = φ U -(-∆) -1 φ, B R L[φ]|y| 2 dy = B R ∇ • (U ∇g)|y| 2 dy = -2 B R U ∇g • ydy + R 2 ∂B R U ∇g • νdS(y) = 2 B R gZ 0 dy -2 ∂B R U gy • νdy + R 2 ∂B R U ∇g • νdS(y).
c 1 R 2 U (g ⊥ ) 2 ≤ R 2 φg ⊥ ≤ c 2 R 2 U (g ⊥ ) 2 . (9.14) Proof. By Lemma 9.2 R 2 φg = R 2 (φ ⊥ + a 2 U z 0 )g = R 2 φ ⊥ (g ⊥ + a) = R 2 φ ⊥ g ⊥ = R 2 U (g ⊥ + ψ ⊥ )g ⊥ .
We transform g⊥ = g ⊥ • Π, ψ⊥ = ψ ⊥ • Π and write (9.12) as

-∆ S 2 ψ⊥ -2 ψ⊥ = 2g ⊥ , in S 2 . (9.15)
We also get

1 2 R 2 φg = S 2 [(g ⊥ ) 2 + ψ⊥ g⊥ ].
Multiplying (9.15) by ψ⊥ we find that

S 2 g⊥ ψ⊥ = 1 2 S 2 |∇ S 2 ψ⊥ | 2 - S 2
( ψ⊥ ) 2 and hence

1 2 R 2 φg = S 2 (g ⊥ ) 2 + 1 2 S 2 |∇ S 2 ψ⊥ | 2 - S 2 ( ψ⊥ ) 2 .
We recall that the eigenvalues of -∆ on S 2 are given by {k(k + 1) | k ≥ 0}. The eigenvalue 0 has a constant eigenfunction and the eigenvalue 2 has eigenspace spanned by the coordinate functions π i (x 1 , x 2 , x 3 ) = x i , for (x 1 , x 2 , x 3 ) ∈ S 2 and i = 1, 2, 3. Let (λ j ) j≥0 denote all eigenvalues, repeated according to multiplicity, with λ 0 = 0, λ 1 = λ 2 = λ 3 = 2, and let (e j ) j≥0 denote the corresponding eigenfunctions so that they form an orthonormal system in L 2 (S 2 ), and e 1 , e 2 , e 3 are multiples of the coordinate functions π 1 , π 2 , π 3 . We decompose ψ and g:

ψ⊥ = ∞ j=0 ψ⊥ j e j , g⊥ = ∞ j=0 g⊥ j e j , (9.16) 
where ψ⊥ j = ψ⊥ , e j L 2 (S 2 ) , g⊥ j = g⊥ , e j L 2 (S 2 ) .

Then

1 2 R 2 φg = ∞ j=0 (g ⊥ j ) 2 + 1 2 ∞ j=0 (λ j -2)( ψ⊥ j ) 2 = ∞ j=0 (g ⊥ j ) 2 -( ψ⊥ 0 ) 2 + 1 2 ∞ j=4 (λ j -2)( ψ⊥ j ) 2 .
Equation (9.15) gives us that

(λ j -2) ψ⊥ j = 2g ⊥ j , (9.17) 
and then

1 2 R 2 φg = ∞ j=1 (g ⊥ j ) 2 + ∞ j=4 2 λ j -2 (g ⊥ j ) 2 .
By Lemma 9.2 g⊥

1 = g⊥ 2 = g⊥ 3 = 0. Therefore 1 2 R 2 φg = ∞ j=4 λ j λ j -2 (g ⊥ j ) 2 (9.18) and 1 2 R 2 (g ⊥ ) 2 U = ∞ j=4 (g ⊥ j ) 2 .
This proves (9.14).

Lemma 9.4. There exist positive constants c 1 , c 2 such that if φ : R 2 → R is radially symmetric and satisfies (1 + |y|) 3+σ φ ∈ L ∞ (R 2 ) with 0 < σ < 1, and

R 2 φ(y)dy = 0, then c 1 R 2 U (g ⊥ ) 2 ≤ R 2 U -1 (φ ⊥ ) 2 ≤ c 2 R 2 U (g ⊥ ) 2 , (9.19) R 2 U (ψ ⊥ ) 2 ≤ c 2 R 2 U (g ⊥ ) 2 . (9.20)
Proof. Using the same notation as in the proof of Lemma 9.3, we have

1 2 R 2 U -1 (φ ⊥ ) 2 = 1 2 R 2 U [(ψ ⊥ ) 2 + 2ψ ⊥ g ⊥ + (g ⊥ ) 2 ] = S 2 [( ψ⊥ ) 2 + 2 ψ⊥ g⊥ + (g ⊥ ) 2 ] = ∞ j=0 [( ψ⊥ j ) 2 + 2 ψ⊥ j g⊥ j + (g ⊥ j ) 2 ].
As in the previous proof, g⊥ j = 0 for j = 0, 1, 2, 3. Using (9.17) we get

1 2 R 2 U -1 (φ ⊥ ) 2 = 3 j=0 ( ψ⊥ j ) 2 + ∞ j=4 λ 2 j (λ j -2) 2 (g ⊥ j ) 2 .
This formula already gives

R 2 U (g ⊥ ) 2 ≤ C R 2 U -1 (φ ⊥ ) 2 .
We observe that ψ⊥ 1 = ψ⊥ 2 = 0 by radial symmetry. We also have ψ⊥ 0 = 0, by (9.17). Let ψ = ∞ j=4 ψ⊥ j e j and note that it satisfies

-∆ S 2 ψ -2 ψ = 2g ⊥ in S 2 .
By (9.17), ψ L 2 (S 2 ) ≤ C g⊥ L 2 (S 2 ) , and from elliptic estimates

ψ C α (S 2 ) ≤ C g⊥ L 2 (S 2 ) , (9.21) 
for any 0 < α < 1. Since (1 + |y|) 3+σ φ ∈ L ∞ (R 2 ) and φ has total mass 0, we have (1 + |y|) 1+σ ψ ∈ L ∞ (R 2 ) (here the functions are radial) and also (1

+ |y|) 1+σ ψ ⊥ ∈ L ∞ (R 2
). It follows that ψ⊥ (P ) = 0 where P = (0, 0, 1). Since ψ⊥ and ψ differ by a constant times π 3 we have ψ⊥ = ψψ(P )

π 3 (P ) π 3 ,
where π 3 (x 1 , x 2 , x 3 ) = x 3 . This implies, by (9.21), ψ⊥

L 2 (S 2 ) ≤ C ψ L 2 (S 2 ) + C| ψ(P )| ≤ C g⊥ L 2 (S 2
) . This proves the other inequality in (9.19) and (9.20). Lemma 9.5. Suppose that φ = φ(y, t), y ∈ R 2 , t > 0 is a function satisfying

|φ(y, t)| ≤ 1 (1 + |y|) 2+σ , with 0 < σ < 1, R 2 φ(y, t) dy = 0, ∀t > 0,
and that φ is differentiable with respect to t and φ t satisfies also

|φ t (y, t)| ≤ 1 (1 + |y|) 2+σ . Then R 2 φ t g = 1 2 ∂ t R 2 φg
where for each t, g(y, t) is defined as

g = φ U -(-∆ -1 )φ + c(t) and c(t) ∈ R is chosen so that R 2
g(y, t)U (y) dy = 0.

Proof. Using the notation of the previous lemma, we have

R 2 φ t g = R 2 U (g t + ψ t )g = 2 S 2
(g t g + ψt g).

We have

-∆ S 2 ψ -2 ψ = 2g, in S 2 .
And differentiating in t we get

-∆ S 2 ψt -2 ψt = 2g t , in S 2 . (9.22)
Multiplying by g and integrating we find that

S 2 ψt g = - 1 2 S 2 ∆ ψt g - S 2 gt g. Thus R 2 φ t g = - S 2

∆ ψt g

Decompose as in (9.16) and find that

R 2 φ t g = ∞ j=0
λ j ( ψj ) t gj But from (9.22)

(λ j -2)( ψj ) t = 2(g j ) t .
We note that gj = 0 for j = 0, 1, 2, 3. Indeed, this is true for j = 0 by the assumption R 2 gU = 0. By Lemma 9.2 this is true also for j = 1, 2, 3. Then

1 2 R 2 φ t g = ∞ j=4 λ j λ j -2 (g j ) t gj
and the desired conclusion follows from (9.18).

A Poincaré inequality.

Lemma 9.6. Let B R (0) ⊂ R 2 be the open ball centered at 0 of radius R. There exists C > 0 such that, for any R > 0 large and any g ∈

H 1 (B R ) with B R g U dx = 0 we have C R 2 B R g 2 U ≤ B R |∇g| 2 U.
Proof. Using a Fourier decomposition we only need to consider the radial case, that is, we claim that if g(r) satisfies R 0 g(r) r (1 + r 2 ) 2 dr = 0, (9.23) then there is C such that for all R large

R 0 g(r) 2 r (1 + r 2 ) 2 dr ≤ CR 2 R 0 g (r) 2 r (1 + r 2 ) 2 dr.
Let 0 < δ < 1 to be fixed later on. From (9.23) we have

R δ g(r) r (1 + r 2 ) 2 dr = - δ 0 g(r) r (1 + r 2 ) 2 dr. But R δ g(r) r (1 + r 2 ) 2 dr = - 1 2 R δ g(r)
d dr

1 1 + r 2 dr = - 1 2 g(R) 1 + R 2 + 1 2 g(δ) 1 + δ 2 + 1 2 R δ g (r) 1 1 + r 2 dr. Therefore 1 2 |g(δ)| 1 + δ 2 ≤ 1 2 |g(R)| 1 + R 2 + 1 2 R δ |g (r)| 1 1 + r 2 dr + δ 0 |g(r)| r (1 + r 2 ) 2 dr.
By the Cauchy-Schwarz inequality

R δ |g (r)| 1 1 + r 2 dr ≤ R δ g (r) 2 r (1 + r 2 ) 2 dr 1/2 (log R -log δ) 1/2 δ 0 |g(r)| r (1 + r 2 ) 2 dr ≤ δ δ 0 g(r) 2 r (1 + r 2 ) 2 dr 1/2 . Hence g(δ) 2 ≤ 2 g(R) 2 R 4 + 2(log R -log δ) R δ g (r) 2 r (1 + r 2 ) 2 dr + 4δ 2 δ 0 g(r) 2 r (1 + r 2 ) 2 dr. (9.24) 
We compute now

R δ g(r) 2 r (1 + r 2 ) 2 dr = - 1 2 R δ g(r) 2 d dr 1 1 + r 2 dr = - 1 2 g(R) 2 1 + R 2 + 1 2 g(δ) 2 1 + δ 2 + R δ g(r)g (r) 1 1 + r 2 dr.
Using (9.24) and the Cauchy-Schwartz inequality we get

R δ g(r) 2 r (1 + r 2 ) 2 dr ≤ - 1 2 g(R) 2 1 + R 2 + g(R) 2 R 4 + (log R -log δ) R δ g (r) 2 r (1 + r 2 ) 2 dr + 2δ 2 δ 0 g(r) 2 r (1 + r 2 ) 2 dr + AR 2 R δ g (r) 2 r (1 + r 2 ) 2 dr + 1 AR 2 R δ g(r) 2 1 r dr. But 1 AR 2 r ≤ 1 2 r (1+r 2 ) 2 for r ∈ [δ, R] if A = 4(1 + 1 δ 2 ) and R ≥ 1. Choosing A = 4(1 + 1 δ 2 ) and R ≥ 2 we have R δ g(r) 2 r (1 + r 2 ) 2 dr ≤ [2AR 2 + 2(log R -log δ)] R δ g (r) 2 r (1 + r 2 ) 2 dr + 4δ 2 δ 0 g(r) 2 r (1 + r 2 ) 2 dr (9.25)
With δ > 0 still to be chosen we get from (9.24) for 0 < x < δ

g(x) 2 ≤ 2 g(R) 2 R 4 + 2(log R -log x) R 0 g (r) 2 r (1 + r 2 ) 2 dr + 4x 2 δ 0 g(r) 2 r (1 + r 2 ) 2 dr.

Integrating we get

δ 0 g(r) 2 r (1 + r 2 ) 2 dr ≤ δ 2 g(R) 2 R 4 + 2 log R R 0 g (r) 2 r (1 + r 2 ) 2 dr + δ 4 δ 0 g(r) 2 r (1 + r 2 ) 2 dr. (9.26)
Using the condition (9.23) we obtain

R 0 g(r) r (1 + r 2 ) 2 dr = 1 2 R 0 g(r) d dr r 2 1 + r 2 dr = 1 2 g(R) R 2 1 + R 2 - 1 2 R 0 g (r) r 2 1 + r 2 dr. Then g(R) 2 ≤ 4R 4 R 0 g (r) 2 r (1 + r 2 ) 2 dr.
Using this combined with (9.26) we get

δ 0 g(r) 2 r (1 + r 2 ) 2 dr ≤ δ 2 4 R 0 g (r) 2 r (1 + r 2 ) 2 dr + 2 log R R 0 g (r) 2 r (1 + r 2 ) 2 dr + δ 4 δ 0 g(r) 2 r (1 + r 2 ) 2 dr. Taking δ = 1 2 (this fixes A) gives δ 0 g(r) 2 r (1 + r 2 ) 2 dr ≤ 4(log R + 1) R 0 g (r) 2 r (1 + r 2 ) 2 dr.
Combining this with (9.25) we get

R 0 g(r) 2 r (1 + r 2 ) 2 dr ≤ CR 2 R 0 g (r) 2 r (1 + r 2 ) 2 dr.

Linear theory: a decomposition

Here we consider

∂ τ φ = L[φ] + B[φ] + h, in R 2 × (τ 0 , ∞), φ(•, τ 0 ) = φ 0 in R 2 .
(10.1)

The results of this section are going to be used later only in the case of radial functions, so we make this assumption here. We write in the rest of this section φ = φ(y, τ ) = φ(ρ, τ ), where y ∈ R 2 , ρ = |y|.

The operator B is assumed to be one of the following two:

B[φ] = ζ(τ )(2φ + y • ∇φ) = ζ(τ )∇ • (yφ), (10.2) 
or

B[φ] = ζ(τ )y • ∇φ, (10.3) 
where

ζ(τ ) = - ζ 0 τ log τ + O 1 τ (log τ ) 1+σ0 , as τ → ∞, for some constants ζ 0 > 0, 0 < σ 0 < 1.
We assume that h * * < ∞ where

h * * = inf K, such that |h(y, τ )| ≤ K 1 τ ν (log τ ) m 1 (1 + |y|) 6+σ min 1, τ /2 |y| , τ > τ 0 , y ∈ R 2 ,
where ν > 1, > 0, σ > 0, m ∈ R. This is the same norm as in (8.6).

We also assume that h has zero mass φ(y, τ )dy = 0 for all τ > τ 0 .

We recall the decomposition of φ introduced in §9.2. Given φ : R 2 → R with sufficient decay and mass zero, we let g = φ U -(-∆ -1 )φ, and define a so that R 2 (g + a)U dy = 0. Then define g ⊥ = g + a, ψ ⊥ = ψ -a(1 + 1 2 z 0 ), and

φ ⊥ = φ - a 2 Z 0 . (10.6)
Actually a is directly computed by

a = - 1 8π R 2 U g = 1 8π R 2 U (-∆) -1 φ = 1 8π R 2 Γ 0 φ. (10.7)
In the time dependent situation a = a(τ ) and all functions depend on y ∈ R 2 and τ .

A difficulty to obtain estimates is the presence of a kernel in the linear operator if B = 0, since Z 0 satisfies L[Z 0 ] = 0. It can be proved that the solution φ of (10.1) with zero initial condition and h * * < ∞ has the bound sup

y |φ(y, τ )| ≤ C log τ 0 log τ 2ζ0-σ0 h * * ,
and probably this estimate cannot be improved much. Also φ has a some decay at spatial infinity and in particular it has finite second moment

R 2 |φ(y, τ )| |y| 2 dy < ∞, τ > τ 0 .
Therefore Z 0 doesn't describe well the class of solution we want to consider, even for the case B = 0, in which ζ(τ ) ≡ 0.

A better candidate to describe the solutions φ of (10.1) with zero initial condition and h * * < ∞ is obtained by considering the initial value problem

∂ τ Z B = L[Z B ] + B[Z B ], in R 2 × (τ 0 , ∞), Z B (•, τ 0 ) = Z0 in R 2 . (10.8)
where Z0 is defined as

Z0 (ρ) = (Z 0 (ρ) -m Z0 U )χ 0 ρ √ τ 0 , (10.9) 
and m Z0 is selected so that

R 2 Z0 dy = 0.
Note that since Z 0 has mass zero and decays like 1/ρ 4 we have m Z0 = O( 1 τ0 ). We will then consider the problem

∂ τ φ = L[φ] + B[φ] + h, in R 2 × (τ 0 , ∞), φ(•, τ 0 ) = c 1 Z0 in R 2 , ( 10.10) 
for radial functions φ, h, φ 0 , where c 1 ∈ R is a parameter. We assume that h * * < ∞.

Proposition 10.1. Let us assume that 1 < ν < 7 4 . Then there is C > 0 such that for any τ 0 sufficiently large the following holds. Suppose that h * * < ∞ is radially symmetric and satisfies the zero mass condition (10.4). Then there exists c 1 such that the solution φ = φ ⊥ + a 2 Z 0 of (10.10) satisfies .11) where R(τ ) > 0 is defined by

|a(τ )| ≤ C f (τ )R(τ ) 2 (log τ 0 ) 1-q h * * , |φ ⊥ (ρ, τ )| ≤ Cf (τ )R(τ ) 1 1 + |y| 2 h * * . ( 10 
R(τ ) 2 = τ (log τ ) q ,
(10.12)

where 0 < q < 1, and

f (τ ) = 1 τ ν (log τ ) m . (10.13)
Moreover c 1 is a linear function of h and satisfies

|c 1 | ≤ C f (τ 0 )R(τ 0 ) 2 (log τ 0 ) 1-q h * * .
We always decompose φ as in (10.6):

φ = φ ⊥ + a(τ ) 2 Z 0
and write

g = φ U -(-∆) -1 φ, g ⊥ = φ ⊥ U -(-∆) -1 φ ⊥ .
Let us denote

ω(τ ) = R 2 \B R(τ ) (0) U g(τ ) 2 1/2 . (10.14)
The strategy for the proof of Proposition 10.1 is contained in the following lemmas. The first one is an a-priori estimate for the solution, assuming that a(T 2 ) = 0 for some T 2 .

Lemma 10.1. There is C such that for τ 0 large the following holds. Suppose that h * * < ∞ is radially symmetric and satisfies the zero mass condition (10.4) and consider (10.10). Let φ ⊥ , a be the decomposition (10.6). Suppose that for some

c 1 ∈ R there is T 2 > τ 0 is such that a(T 2 ) = 0. Then |a(τ )| ≤ C f (τ )R(τ ) 2 (log τ 0 ) 1-q h * * , τ ∈ [τ 0 , T 2 ] (10.15) |ω(τ )| ≤ C f (τ )R(τ ) (log τ 0 ) 1-q h * * , τ ∈ [τ 0 , T 2 ] (10.16
)

|c 1 | ≤ C f (τ 0 )R(τ 0 ) 2 (log τ 0 ) 1-q h * * .
(10.17)

The constant C is independent of T 2 and c 1 .

There is a variant of the previous lemma, where the hypothesis a(T 2 ) = 0 is replaced by an assumption about its time decay.

Lemma 10.2.

There is C such that for τ 0 large the following holds. Suppose that h * * < ∞ is radially symmetric and satisfies the zero mass condition (10.4) and consider (10.10). Let φ ⊥ , a be the decomposition (10.6). Suppose that for some

c 1 ∈ R, a f R 2 ∈ L ∞ (τ 0 , ∞). Then |a(τ )| ≤ C f (τ )R(τ ) 2 (log τ 0 ) 1-q h * * , τ > τ 0 (10.18) |ω(τ )| ≤ C f (τ )R(τ ) (log τ 0 ) 1-q h * * , τ > τ 0 , (10.19 
)

|c 1 | ≤ C f (τ 0 )R(τ 0 ) 2 (log τ 0 ) 1-q h * * . (10.20)
Lemma 10.3. Let Z B be the solution to (10.8) and write it as Z B = Z ⊥ B + a Z 2 Z 0 according to the decomposition (10.6). Then a Z (τ ) = 0 for all τ ≥ τ 0 .

Lemma 10.4.

There is C such that for τ 0 large the following holds. Suppose that h * * < ∞ is radially symmetric and satisfies the zero mass condition (10.4). Then there is a unique c 1 ∈ R such that the solution φ = φ ⊥ + a 2 Z 0 of (10.10) (as in (10.6)) satisfies (10.18), (10.19) and (10.20).

In the first results we do some computations and obtain some estimates, which are used as technical steps in the main argument.

The next lemma is a calculation to help us deal with the term B when we multiply the equation by a suitable test function. It holds for operators more general than B as in (10.2) and (10.3)

. Let B[φ] = ζ 1 (τ )φ + ζ 2 (τ )y • ∇φ, with ζ 1 (τ ), ζ 2 (τ ) satisfying |ζ i (τ )| ≤ C τ log τ
for all τ > τ 0 . (10.21)

Lemma 10.5. We have

R 2 B[φ]g ⊥ ≤ C τ log τ R 2 U (g ⊥ ) 2 dy + C |a(τ )| τ log τ ∇g ⊥ U 1 2 L 2 . (10.22)
Proof. We have

R 2 B[φ]g ⊥ dy = R 2 [ζ 1 (τ )φ + ζ 2 (τ )y • ∇φ]g ⊥ dy.
By Lemma 9.3 and the hypothesis (10.21) we have

ζ 1 (τ ) R 2 φg ⊥ dy ≤ C τ log τ R 2 U (g ⊥ ) 2 dy. (10.23)
Let us write

R 2 y • ∇φ(y)g ⊥ (y)dy = R 2 y • ∇φ ⊥ (y)g ⊥ (y)dy + a(τ ) 2 R 2 y • ∇Z 0 (y)g ⊥ (y)dy.
We claim that

R 2 y • ∇φ ⊥ (y)g ⊥ (y)dy ≤ C R 2 (g ⊥ ) 2 U dy. (10.24) 
Indeed, we write

R 2 y • ∇φ ⊥ (y)g ⊥ (y)dy = R 2 y • ∇(U g ⊥ )g ⊥ (y)dy + R 2 y • ∇(U ψ ⊥ )g ⊥ (y)dy. (10.25) But R 2 y • ∇(U g ⊥ )g ⊥ (y)dy = R 2 y • ∇U (g ⊥ ) 2 (y)dy + R 2 U y • ∇g ⊥ g ⊥ (y)dy = R 2 y • ∇U (g ⊥ ) 2 (y)dy + 1 2 R 2 U y • ∇[(g ⊥ ) 2 ](y)dy = 1 2 R 2 y • ∇U (g ⊥ ) 2 (y)dy - R 2 U (g ⊥ ) 2 (y)dy,
and so

R 2 y • ∇(U g ⊥ )g ⊥ (y)dy ≤ C R 2 (g ⊥ ) 2 U dy. (10.26)
The second term in (10.25) is:

R 2 y • ∇(U ψ ⊥ )g ⊥ (y)dy = R 2 (y • ∇U )ψ ⊥ g ⊥ (y)dy + R 2 U (y • ∇ψ ⊥ )g ⊥ (y)dy.
We estimate the first term above

R 2 (y • ∇U )ψ ⊥ g ⊥ (y)dy ≤ C R 2 (ψ ⊥ ) 2 U dy 1/2 R 2 (g ⊥ ) 2 U dy 1/2 ≤ C R 2 (g ⊥ ) 2 U dy, (10.27) 
by (9.20). To estimate R 2 U (y • ∇ψ ⊥ )g ⊥ (y)dy we write it using radial symmetry:

R 2 U (y • ∇ψ ⊥ )g ⊥ (y)dy = 2π ∞ 0 U (ρ)(ψ ⊥ ) (ρ)g ⊥ (ρ)ρ 2 dρ.
We use that ψ ⊥ satisfies

-∆ψ ⊥ -U ψ ⊥ = U g ⊥ in R 2 , ψ ⊥ (ρ, τ ) → 0 as ρ → ∞.
Then, by the variations of parameters formula, since that R 2 U g ⊥ z 0 dy = 0, we have

(ψ ⊥ ) (ρ) = z 0 (ρ) ∞ ρ U (r)g ⊥ (r)z 0 (r)r dr + z 0 (ρ) ρ 0 U (r)g ⊥ (r)z 0 (r)r dr,
where z0 is a second linear independent function in the kernel of ∆ + U satisfying

|z 0 (ρ)| ≤ C(| log ρ| + 1).
We then compute

∞ 0 U (ρ)(ψ ⊥ ) (ρ)g ⊥ (ρ)ρ 2 dρ = I 1 + I 2
where

I 1 = ∞ 0 ∞ ρ U (ρ)U (r)z 0 (ρ)z 0 (r)g ⊥ (r)g ⊥ (ρ)ρ 2 rdrdρ I 2 = - ∞ 0 ∞ ρ U (ρ)U (r)z 0 (ρ)z 0 (r)g ⊥ (r)g ⊥ (ρ)ρ 2 rdrdρ.
We directly check that

|I 1 | + |I 2 | ≤ C R 2 (g ⊥ ) 2 U dy.
From this we get that Next we claim that

R 2 U (y • ∇ψ ⊥ )g ⊥ (y)dy ≤ C R 2 (g ⊥ ) 2 U dy. ( 10 
R 2 y • ∇Z 0 (y)g ⊥ (y)dy ≤ C ∇g ⊥ U 1 2 L 2 . (10.29)
Indeed, write

y • ∇Z 0 = ∇ • (yZ 0 ) -2Z 0 = ∇ • (yZ 0 -2∇z 0 ) -4Z 0
where z 0 is defined in (9.2) and satisfies the linearized Liouville equation ∆z 0 + U z 0 = 0. We have used here that Z 0 = U z 0 . So

R 2 y • ∇Z 0 (y)g ⊥ (y)dy = - R 2 (yZ 0 -2∇z 0 )∇g ⊥ dy -4 R 2 g ⊥ Z 0 dy. But R 2 Z 0 g ⊥ dy = R 2 U z 0 g ⊥ dy = 0 by Lemma 9.2, and |yZ 0 -2∇z 0 | ≤ C |y| 4 , so R 2 y • ∇Z 0 (y)g ⊥ (y)dy ≤ C R 2 1 (1 + |y|) 4 |∇g ⊥ | 2 dy 1 2 ≤ C ∇g ⊥ U 1 2 L 2 .
This proves (10.29).

From (10.23), (10.24) and ( 10.29) we conclude the validity of (10.22).

In the next lemma we get an estimate for R 2 φg ⊥ , but with right hand side that depends on the solution.

Lemma 10.6. We make the same assumptions of Proposition 10.1. Let f be given by (10.13), ω be defined in (10.14) and let R : [τ 0 , ∞) → (0, ∞) be continuous. There is c > 0 , ε > 0 and C > 0 such that for τ 0 sufficiently large, if

sup τ ≥τ0 R 2 (τ ) τ log τ ≤ ε (10.30) then ∂ τ R 2 φg ⊥ + c R 2 R 2 φg ⊥ ≤ Cf (τ ) 2 h 2 * * + C a(τ ) 2 R 4 + C ω(τ ) 2 R 2 ,
for some constant c > 0.

Proof. Equation (10.10) can be written in the form

∂ τ φ = ∇ • (U ∇g ⊥ ) + B[φ] + h, in R 2 × (τ 0 , ∞).
We multiply this equation by g ⊥ and integrate on R 2 , using Lemma 9.5:

1 2 ∂ τ R 2 φg ⊥ + R 2 U |∇g ⊥ | 2 = R 2 B[φ]g ⊥ + R 2 hg ⊥ . (10.31)
Let H = (-∆) -1 h, and observe that, since h is radial and

R 2 hdy = 0, |∇H(ρ, τ )| = 1 ρ ∞ ρ h(s, τ )sds ≤ Cf (τ ) h * * 1 (1 + ρ) 5+σ . It follows that R 2 hg ⊥ = R 2 ∇ • ∇Hg ⊥ = R 2 ∇H • ∇g ⊥ ≤ 1 2 R 2 U |∇g ⊥ | 2 + C R 2 |∇H| 2 U -1 ≤ 1 2 R 2 U |∇g ⊥ | 2 + Cf (τ ) 2 h 2 * * .
This combined with (10.31) gives

1 2 ∂ τ R 2 φg ⊥ + 1 2 R 2 U |∇g ⊥ | 2 ≤ R 2 B[φ]g ⊥ + Cf (τ ) 2 h 2 * * . (10.32)
We use the inequality in Lemma 9.

6 to get c R 2 B R (g ⊥ -ḡ⊥ R ) 2 U ≤ R 2 U |∇g ⊥ | 2 , (10.33) 
for some c > 0, where

ḡ⊥ R = 1 B R U B R g ⊥ U. From B R (g ⊥ ) 2 U = B R (g ⊥ -ḡ⊥ R ) 2 U + 2 B R g ⊥ ḡ⊥ R U - B R (ḡ ⊥ R ) 2 U we get B R (g ⊥ ) 2 U ≤ 2 B R (g ⊥ -ḡ⊥ R ) 2 U + C(ḡ ⊥ R ) 2 .
so, using (10.33),

c R 2 B R (g ⊥ ) 2 U ≤ R 2 U |∇g ⊥ | 2 + C 1 R 2 (ḡ ⊥ R ) 2 , for a new c > 0. This implies c R 2 R 2 (g ⊥ ) 2 U ≤ R 2 U |∇g ⊥ | 2 + C 1 R 2 (ḡ ⊥ R ) 2 + C 1 R 2 R 2 \B R U (g ⊥ ) 2 .
Using that

g ⊥ = g + a we get c R 2 R 2 (g ⊥ ) 2 U ≤ R 2 U |∇g ⊥ | 2 + C 1 R 2 (ḡ ⊥ R ) 2 + C ω 2 R 2 + C a 2 R 4 . (10.34) But R 2 g ⊥ U dy = 0 and this implies ḡ⊥ R = - 1 B R U R 2 \B R g ⊥ U so (ḡ ⊥ R ) 2 ≤ C R 2 R 2 \B R (g ⊥ ) 2 U ≤ Ca 2 R 4 + C R 2 R 2 \B R g 2 U.
This combined with (10.34) gives

c R 2 R 2 (g ⊥ ) 2 U ≤ R 2 U |∇g ⊥ | 2 + C a 2 R 4 + C ω 2 R 2 .
We use this together with (10.32) to obtain (for a new c > 0)

1 2 ∂ τ R 2 φg ⊥ + c R 2 R 2 (g ⊥ ) 2 U + 1 4 R 2 U |∇g ⊥ | 2 ≤ R 2 B[φ]g ⊥ + Cf (τ ) 2 h 2 * * + C a 2 R 4 + C ω 2 R 2 . (10.35)
We obtain from Lemma 10.5 and the assumption (10.30) that

R 2 B[φ]g ⊥ ≤ C τ log τ R 2 (g ⊥ ) 2 U dy + C |a(τ )| τ log τ ∇g ⊥ U 1 2 L 2 ≤ C τ log τ R 2 (g ⊥ ) 2 U dy + |a(τ )| 2 R 4 + C R 4 τ 2 (log τ ) 2 ∇g ⊥ U 1 2 2 L 2 . = C ε R 2 R 2 (g ⊥ ) 2 U dy + |a(τ )| 2 R 4 + Cε 2 ∇g ⊥ U 1 2 2 L 2 . (10.36)
Taking ε > 0 small, and combining (10.35) and ( 10.36) we get

∂ τ R 2 φg ⊥ + 1 R 2 R 2 (g ⊥ ) 2 U ≤ Cf (τ ) 2 h 2 * * + Ca 2 R 4 + C ω 2 R 2 .
By Lemma 9.3 we obtain

∂ τ R 2 φg ⊥ + c R 2 R 2 φg ⊥ ≤ Cf (τ ) 2 h 2 * * + C a 2 R 4 + C ω 2 R 2
, for some constant c > 0, which is the desired conclusion.

The next lemma provides a pointwise estimate for g = φ U -(-∆ -1 )φ assuming a certain bound for U 1/2 g L 2 .

Lemma 10.7. Assume ν > 0. Let φ be the solution to (10.10) as in §8. Suppose that τ 1 ≥ τ 0 and

g(τ )U 1 2 L 2 (R 2 ) ≤ K 1 f 1 (τ ), τ ∈ [τ 0 , τ 1 ], (10.37) 
where K 1 ≥ 0 and

f 1 (τ ) = (log τ ) µ τ ν-1 , where µ ∈ R. Then |U (y)g(y, τ )| ≤ C K 1 + h * * R(τ 0 ) + |c 1 | f 1 (τ 0 ) f 1 (τ ) 1 (1 + |y|) 2 , τ ∈ [τ 0 , τ 1 ].
Proof. We define g 0 = U g, and obtain from (10.1) the equation

∂ τ g 0 = U ∂ τ g = ∂ τ φ -U (-∆ -1 )∂ τ φ = ∇ • U ∇ g 0 U -U (-∆) -1 [∇ • (U ∇g)] + h -U (-∆) -1 h + B[g 0 ] + B[U ψ[g 0 ]] -U (-∆) -1 (B[g 0 + U ψ[g 0 ]]), (10.38) 
where we regard ψ[g 0 ] as the operator that maps g 0 to the unique radial solution to

-∆ψ -U ψ = g 0 in R 2 , ψ(ρ, τ ) → 0 as ρ → ∞. (10.39) 
We note that this problem has indeed a solution since R 2 g 0 z 0 dy = 0 by Lemma 9.2, which is unique by imposing ψ(ρ, τ ) → 0 as ρ → ∞ in the radial setting. This solution is given by the variations of parameters formula

ψ(ρ, τ ) = z 0 (ρ) ∞ ρ g 0 (r, τ )z 0 (r)r dr + z0 (ρ) ρ 0 g 0 (r, τ )z 0 (r)r dr,
where z0 is a second linear independent function in the kernel of ∆+U satisfying |z 0 (ρ)| ≤ C(| log ρ|+ 1).

We compute

∇ • (U ∇g) = ∆gU + ∇U • ∇g = ∆(gU ) -∇U • ∇g -g∆U,
and hence

(-∆) -1 [∇ • (U ∇g)] = -gU -(-∆) -1 [∇U • ∇g + g∆U ] = -gU -v where v := (-∆) -1 (∇ • (g 0 ∇Γ 0 )). ( 10.40) 
We write (10.38) as

∂ τ g 0 = ∆g 0 -∇g 0 • ∇Γ 0 + 2U g 0 + B[g 0 ] + h (10.41) where h = U v + B[U ψ[g 0 ]] -U (-∆) -1 (B[g 0 + U ψ[g 0 ]]) + h -U (-∆) -1 h. (10.42) 
Note that since we are working with radial functions, we can integrate (10.40) explicitly and obtain

v(ρ, τ ) = ∞ ρ g 0 (s, τ )Γ 0 (s)ds. ( 10.43) 
We claim that for any y ∈ R 2 :

h L p (B1(y)) ≤ C K 1 + h * * R(τ 0 ) f 1 (τ ) 1 (1 + |y|) 4-4 p , τ ∈ [τ 0 , τ 1 ]. (10.44) 
Indeed, let us start with

∞ 0 |v(ρ)| p U (ρ)ρdρ ≤ ∞ 0 ∞ ρ U (s)g(s) 2 sds p/2 ∞ ρ U (s) Γ 0 (s) 2 s ds p/2 U (ρ)ρdρ ≤ C gU 1 2 p L 2 (R 2 ) , (10.45) 
which follows from (10.43) and Hölder's inequality Let us write ψ = ψ[g 0 ] and ψ = ψ • Π, where Π is the stereographic projection. Writing (10.39) in S 2 and using standard L p theory we find that for any

p > 2 ψ L ∞ (S 2 ) + ∇ S 2 ψ L p (S 2 ) ≤ C gU 1 2 L 2 (R 2 ) , which implies ψ L ∞ (R 2 ) + R 2 |∇ψ| p U 1-p 2 1 p ≤ C gU 1 2 L 2 (R 2 ) . (10.46) 
Let y ∈ R 2 . From (10.37) we see that

g 0 (•, τ ) L 2 (B1(y)) ≤ CK 1 f 1 (τ ) 1 (1 + |y|) 2 , τ ∈ [τ 0 , τ 1 ],
and from (10.37) and (10.45) we have

U v(•, τ ) L p (B1(y)) ≤ CK 1 f 1 (τ ) 1 (1 + |y|) 4-4 p , τ ∈ [τ 0 , τ 1 ]. (10.47) 
Similarly, inequalities (10.46) and (10.37) imply

B[U ψ[g 0 ]] L p (B1(y)) ≤ CK 1 f 1 (τ ) 1 τ log τ 1 (1 + |y|) 4 , τ ∈ [τ 0 , τ 1 ]. (10.48) 
Let's estimate

(-∆) -1 (B[g 0 + U ψ[g 0 ]]) = ζ 1 (τ )(-∆) -1 (y • ∇(g 0 + U ψ[g 0 ])) + ζ 2 (τ )(-∆) -1 (g 0 + U ψ[g 0 ]). Note that ψ = (-∆) -1 φ = (-∆) -1 (g 0 + U ψ). But we can estimate ψ from ψ(ρ) = z 0 (ρ) ∞ ρ 1 z 0 (r) 2 r ∞ r g 0 (s)z 0 (s)sds, ρ > 1.
(10.49) Then (10.37) yields

|ψ(ρ, τ )| ≤ C 1 + ρ gU 1 2 L 2 (R 2 ) ≤ CK 1 f 1 (τ ) 1 1 + ρ , τ ∈ [τ 0 , τ 1 ], (10.50) 
and so

|U (-∆) -1 (g 0 + U ψ[g 0 ])| ≤ CK 1 f 1 (τ ) 1 1 + |y| 5 , τ ∈ [τ 0 , τ 1 ]. (10.51) 
Concerning the term (-∆) -1 (y•∇(g 0 +U ψ)), we notice that if we let w = g 0 +U ψ, then R 2 y•∇w = 0, and

(-∆) -1 (y • ∇w)(ρ) = ∞ ρ rw(r, τ )dr -2ψ(ρ, τ ).
Using (10.37) and (10.50) we get

((-∆) -1 (y • ∇(g 0 + U ψ)))(ρ, τ ) ≤ CK 1 f 1 (τ ) 1 1 + ρ , τ ∈ [τ 0 , τ 1 ].
From this and (10.51) we find that

|U (-∆) -1 (B[g 0 + U ψ[g 0 ]])(y, τ )| ≤ CK 1 f 1 (τ ) 1 τ log τ (1 + |y|) 5 , τ ∈ [τ 0 , τ 1 ].
(10.52)

Finally the estimates From equation (10.41), the estimate (10.44), standard parabolic L p estimates restricted to B 1 (y) × (max(τ -1, τ 0 ), τ ) and embedding into Hölder spaces, we deduce that

h L p (B1(y)) + U (-∆) -1 h L p (B1(y)) ≤ C h * * R(τ 0 ) f 1 (τ ) 1 (1 + |y|)
|g 0 (y, τ )| ≤ C K 1 + h * * R(τ 0 ) + |c 1 | f 1 (τ 0 ) f 1 (τ ) 1 (1 + |y|) 2 , τ ∈ [τ 0 , τ 1 ]. (10.54) 
This is the desired conclusion. We also get from (10.54):

|v(y, τ )| ≤ C K 1 + h * * R(τ 0 ) + |c 1 | f 1 (τ 0 ) f 1 (τ ) 1 (1 + |y|) 2 , τ ∈ [τ 0 , τ 1 ]. (10.55) 
In some of the proofs below the following barrier will be useful. Consider the equation

∂ τ φ = ∆ R 6 φ + h in (τ 0 , ∞) × R 6 φ(τ 0 , •) = 0 (10.56)
where ∆ R 6 is the laplacian in R 6 . Suppose that h has the estimate

|h(y, τ )| ≤ 1 τ γ+1 1 (1 + |y|/ √ τ ) b
for some γ, b ∈ R. If γ < 3 and γ < b 2 then there is a barrier satisfying

C 1 1 τ γ 1 (1 + |y|/ √ τ ) b ≤ φ(y, τ ) ≤ C 2 1 τ γ 1 (1 + |y|/ √ τ ) b .
Indeed, we can consider all functions to be radial and write

ρ = |y|, y ∈ R 6 . Let φ(ρ, τ ) = 1 τ γ g ρ √ τ , ζ = ρ √ τ . (10.57) 
Then

∂ τ φ -∂ ρρ + 5 ρ ∂ ρ φ = - 1 τ γ+1 g (ζ) + 5 ζ g (ζ) + ζ 2 g (ζ) + γg(ζ) . Let g 1 (ζ) = 1 (1+ζ 2 ) b/2 . Since γ < b 2 we have -g 1 (ζ) + 5 ζ g 1 (ζ) + ζ 2 g 1 (ζ) + γg 1 (ζ) ≥ c ζ b , ζ ≥ M,
for some c, M > 0. Let g 0 (ζ) = e -ζ 2 4 be the Gaussian kernel, which satisfies

g 0 (ζ) + 5 ζ g 0 (ζ) + ζ 2 g 0 (ζ) + 3g 0 (ζ) = 0. Let g = C 1 g 0 + g 1 . Since γ < 3, we can find C 1 large so that -g (ζ) + 5 ζ g (ζ) + ζ 2 g (ζ) + γg(ζ) ≥ c 1 + ζ b , ζ > 0.
Then φ defined by (10.57) with g = C 1 g 0 + g 1 is a supersolution to (10.56).

In the next lemma we improve the spatial decay of g = φ U -(-∆ -1 )φ. Lemma 10.8. Assume 1 < ν < 7 4 . Let φ be the solution to (10.10) as in §8. Suppose that τ 1 ≥ τ 0 and

g(τ )U 1 2 L 2 (R 2 ) ≤ K 1 f 1 (τ ), τ ∈ [τ 0 , τ 1 ],
where K 1 ≥ 0 and

f 1 (τ ) = (log τ ) µ τ ν-1 , where µ ∈ R. Then |U (ρ)g(ρ, τ )| ≤ C K 1 + h * * R(τ 0 ) + |c 1 | f 1 (τ 0 ) f 1 (τ ) 1 (1 + ρ) 4 , τ ∈ [τ 0 , τ 1 ].
(10.58)

Proof. We us the same notation as in Lemma 10.7 and consider (10.41) for g 0 = U g with h defined in (10.42). We are going to use barriers to estimate g 0 . We claim that h satisfies

| h(y, τ )| ≤ C K 1 + h * * R(τ 0 ) f 1 (τ ) 1 (1 + |y|) 6 + 1 τ log τ (1 + |y|) 5 , τ ∈ [τ 0 , τ 1 ].
(10.59) Indeed, from (10.54) and ( 10.55) we find that

| -U v + h -U (-∆) -1 h| ≤ C K 1 + h * * R(τ 0 ) f 1 (τ ) 1 (1 + |y|) 6 , τ ∈ [τ 0 , τ 1 ]. (10.60) 
To estimate B[U ψ[g 0 ]] we use (10.50) a similar estimate for ∂ ρ ψ, and the assumptions on ζ 1 , ζ 2 in (10.21), to obtain

|B[U ψ[g 0 ]| ≤ CK 1 f 1 (τ ) 1 τ log τ 1 1 + |y| 5 , τ ∈ [τ 0 , τ 1 ].
This, (10.60) and (10.52) prove (10.59).

To get better spatial decay we construct a barrier and apply the maximum principle to equation (10.41) in (R 2 \ B R0 (0)) × (τ 0 , τ 1 ), where R 0 is a fixed large constant. Several of constants C below depend on R 0 but we will not keep track of the explicit dependence.

The linear operator for g 0 in (10.41), acting on radial functions with ρ = |y|, is given by:

∂ τ g 0 -[∆g 0 -∇g 0 • ∇Γ 0 + B[g 0 ] + 2U g 0 ] = ∂ τ g 0 -∂ ρρ g 0 - 1 ρ ∂ ρ g 0 - 4ρ 1 + ρ 2 ∂ ρ g 0 + O 1 1 + ρ 4 g 0 + O 1 τ log τ g 0 + O 1 τ log τ ρ∂ ρ g 0 .
The main part outside of a ball B R0 (0) with R 0 big is given by ∂ τ -∂ ρρ -5 ρ ∂ ρ . By (10.59) we need to construct ḡ1 such that

∂ τ ḡ1 -[∆ḡ 1 -∇ḡ 1 • ∇Γ 0 + B[ḡ 1 ] + 2U ḡ1 ] ≥ h 1 where h 1 (ρ, τ ) = f 1 (τ ) 1 (1 + ρ) 6 + 1 τ log τ (1 + ρ) 5 .
To construct ḡ1 , let 0 < ϑ < 1, and let g1 (ρ) be radial and solve

-∆ 6 g1 = 1 1 + ρ 6-ϑ in R 6 ,
such that g1 (ρ)(1 + ρ 4-ϑ ) is bounded below and above by positive constants. Let

ḡ1 (ρ, τ ) = f 1 (τ )g 1 (ρ)χ 0 ρ δ √ τ + C 1 f 1 (τ ) τ 2-ϑ/2 (1 + ρ/ √ τ ) 5 + C 2 f 1 (τ ) τ 2-ϑ/2 e -ρ 2 4τ ,
For appropriate δ > 0, C 1 , and C 2 , the function ḡ1 (ρ, τ ) is a supersolution in (R 2 \ B R0 (0)) × (τ 0 , τ 1 ) for the right hand side h 1 . More precisely, writing

M = R 2-ϑ 0 (K 1 + h * * R(τ0) + 1 f1(τ0) |c 1 |), we have (∂ τ -[∆ -∇(•) • ∇Γ 0 + B]) M ḡ1 ≥ | h|, in (R 2 \ B R0 (0)) × (τ 0 , τ 1 ), M ḡ1 ≥ |g 0 |, on ρ = R 0 , τ ∈ (τ 0 , τ 1 ),
because of Lemma 10.7, and

M ḡ1 (τ 0 ) ≥ c 1 U g Z0 , in R 2 ,
where

g Z0 = Z0 U -(-∆) -1 Z0 ,
is the function g associated to Z0 defined in (10.9). We note that |U g Z0 (ρ)| ≤ C 1 1+ρ 4 and is supported on ρ ≤ 2 √ τ 0 . Here we are using that ν < 3 2 + ϑ 2 . Using the maximum principle we get

|g 0 (y, τ )| ≤ C K 1 + h * * R(τ 0 ) + |c 1 | f 1 (τ 0 ) f 1 (τ ) 1 (1 + ρ) 4-ϑ , τ ∈ [τ 0 , τ 1 ].
The constant C here depends on R 0 , but R 0 is fixed and we will not keep track of the dependence of C on R 0 . By (10.43) and ( 10.49) we have

| h(y, τ )| ≤ C K 1 + h * * R(τ 0 ) + |c 1 | f 1 (τ 0 ) f 1 (τ ) 1 (1 + ρ) 6+σ + 1 τ log τ (1 + ρ) 6-ϑ .
We can now repeat the argument with a new barrier. Consider g2 (ρ) the radial solution to

-∆ 6 g2 = 1 1 + ρ 6+σ in R 6 , c 1 1 1 + ρ 4 ≤ g2 (ρ) ≤ c 2 1 1 + ρ 4 , (10.61) 
where

c 1 , c 2 > 0. Let ḡ2 (ρ, τ ) = f 1 (τ )g 2 (ρ)χ 0 ρ δ √ τ + C 1 f 1 (τ ) τ 2 (1 + ρ/ √ τ ) 6-ϑ + C 2 f 1 (τ ) τ 2 e -ρ 2 4τ .
For appropriate constants δ, C 1 , C 2 , and assuming that ν < 2 -ϑ 2 we get a suitable supersolution and we obtain

|g 0 (y, τ )| ≤ C K 1 + h * * R(τ 0 ) + |c 1 | f 1 (τ 0 ) f 1 (τ ) 1 (1 + ρ) 4 .
This proves (10.58).

The restriction on ν were ν < 3 2 + ϑ 2 and ν < 2 -ϑ 2 . Choosing ϑ = 1 4 we find that for ν < 7 4 both barriers work.

The next result is a technical step used in several places. Lemma 10.9. Let φ : R 2 → R be radial such that

R 2 φ = 0 and |φ(y)| ≤ C (1+|y|) 2+σ for some σ > 0. Let g = φ U -(-∆) -1 φ and assume that g L ∞ < ∞. Then |φ(y)| ≤ C g L ∞ (1 + |y|) 4 .
(10.62)

Proof. Let ψ = (-∆) -1 φ. Since ψ satisfies -∆ψ -U ψ = U g in R 2 , ψ(ρ) → 0 as ρ → ∞,
we have necessarily

R 2
U gz 0 dy = 0.

We have the variations of parameters formula

ψ(ρ) = z 0 (ρ) ∞ ρ 1 z 0 (r) 2 r ∞ r U g(s, τ )z 0 (s)s ds dr, ρ > 1.
(10.63) From (10.63) we find

|ψ(ρ, τ )| ≤ C g L ∞ .
This and the formula φ = U g + U ψ gives (10.62).

Next we give a proof of Proof of Lemma 10.1, but first we point some estimates of Z0 defined in (10.9). Using the general decomposition (10.6), we write

Z0 = Z⊥ 0 + ã 2 Z 0 . By (10.7) ã = 1 8π R 2 Γ 0 Z0 = 2 + O( log τ 0 τ 0 ). Hence Z⊥ 0 satisfies Z⊥ 0 (ρ) = Z0 (ρ) - a(τ 0 ) 2 Z 0 (ρ) = (Z 0 (ρ) -m Z0 U (ρ))χ 0 ρ √ τ 0 -1 + O( log τ 0 τ 0 ) Z 0 (ρ) = O log τ 0 τ 0 1 1 + ρ 4 .
(10.64)

Proof of Lemma 10.1. We let R be defined by (10.12). We multiply equation (10.10) by g ⊥ and integrate in R 2 . Using Lemmas 10.6 and 9.3 we get

∂ τ R 2 φg ⊥ + c R 2 R 2 φg ⊥ ≤ Cf (τ ) 2 h 2 * * + Ca 2 R 4 + C R 2 ω(τ ) 2 , (10.65) 
for some c > 0, where

ω(τ ) = R 2 \B R(τ ) g 2 U 1/2 . Let us write ϕ ∞,T2 = ϕ L ∞ (τ0,T2) , and note that a R 2 f 2 ∞,T2 < ∞, ω Rf ∞,T2 < ∞.
The following inequalities are valid for τ 0 < τ < T 2 . From (10.65) we get

∂ τ R 2 φg ⊥ + c R 2 R 2 φg ⊥ ≤ Cf (τ ) 2 h 2 * * + a R 2 f 2 ∞,T2 + ω Rf 2 ∞,T2
. By Gronwall's inequality and Lemma 9.3 we get

R 2 (g ⊥ ) 2 U ≤ Cf (τ ) 2 R(τ ) 2 h 2 * * + a R 2 f 2 ∞,T2 + ω Rf 2 ∞,T2 + c 2 1 D(τ 0 ) 2 (10.66) 
where

D(τ 0 ) = 1 f (τ 0 )R(τ 0 ) log τ 0 τ 0 ,
and we have used (10.64). From (10.66) we find

R 2 g 2 U ≤ Cf (τ ) 2 R(τ ) 4 1 R(τ 0 ) 2 h 2 * * + a R 2 f 2 ∞,T2 + 1 R(τ 0 ) 2 ω Rf 2 ∞,T2 + c 2 1 D(τ 0 ) 2 R(τ 0 ) 2 (10.67)
Using Lemma 10.8 we get

|U g| ≤ Cf (τ )R(τ ) 2 1 R(τ 0 ) h * * + a R 2 f ∞,T2 + 1 R(τ 0 ) ω Rf ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 1 (1 + ρ) 4 , (10.68) 
where we have used that for τ 0 large,

D(τ0) R(τ0) < 1 f (τ0)R(τ0) 2 . We use this to estimate R 2 \B R g 2 U ≤ Cf (τ ) 2 R(τ ) 2 1 R(τ 0 ) h * * + a R 2 f ∞,T2 + 1 R(τ 0 ) ω Rf ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 2 , which implies ω(τ ) R(τ )f (τ ) ≤ C 1 R(τ 0 ) h * * + a R 2 f ∞,T2 + 1 R(τ 0 ) ω Rf ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 . We deduce that ω Rf ∞,T2 ≤ C 1 R(τ 0 ) h * * + a R 2 f ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 .
(10.69)

Combining this inequality with (10.67) we obtain

R 2 g 2 U ≤ Cf (τ ) 2 R(τ ) 4 1 R(τ 0 ) h * * + a R 2 f ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 2 , (10.70) 
and with (10.66) we get

R 2 (g ⊥ ) 2 U ≤ Cf (τ ) 2 R(τ ) 2 h * * + a R 2 f ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 2 .
(10.71)

Going back to (10.68) we find

|U g(ρ, τ )| ≤ Cf (τ )R(τ ) 2 1 R(τ 0 ) h * * + a R 2 f ∞ + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 1 1 + ρ 4 .
(10.72) Using Lemma 10.9 we also obtain

|φ(ρ, τ )| ≤ Cf (τ )R(τ ) 2 1 R(τ 0 ) h * * + a R 2 f ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 1 1 + ρ 4 .
(10.73)

We multiply the equation satisfied by φ (10.10) by |y| 2 χ 0 ( y R ), and integrate on R 2

∂ τ R 2 φ|y| 2 χ 0 y R dy = R 2 (L[φ] + h)|y| 2 χ 0 ( y R )dy + R 2 B[φ]|y| 2 χ 0 ( y R )dy - R (τ ) R R 2 φ|y| 2 ∇χ 0 ( y R ) • y R dy, (10.74) 
where R = dR dτ . Now integrate from τ to T 2 and use the decomposition (10.6). We integrate (10.74) from τ to T 2 , use the decomposition (10.6) and that a(T 2 ) = 0 to get

|a(τ )| log τ ≤ T2 τ R 2 (L[φ(s)] + h)|y| 2 χ 0 ( y R(s) )dyds + T2 τ R 2 B[φ(s)]|y| 2 χ 0 ( y R(s) )dyds + T2 τ R (s) R(s) R 2 φ(s)|y| 2 ∇χ 0 ( y R(s) ) • y R(s) dyds + R 2 φ ⊥ (T 2 )|y| 2 χ 0 y R(T 2 ) dy + R 2 φ ⊥ (τ )|y| 2 χ 0 y R(τ ) dy . (10.75) 
By Lemma 9.4 and (10.71)

B 2R(τ ) |φ(τ ) ⊥ ||y| 2 dy ≤ CR(τ ) R 2 (φ ⊥ (τ )) 2 U -1 1/2 ≤ CR(τ ) R 2 (g ⊥ (τ )) 2 U 1/2 ≤ Cf (τ )R(τ ) 2 h * * + a R 2 f ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 . (10.76) Analogously, R 2 φ ⊥ (T 2 )|y| 2 χ 0 y R(T 2 ) dy ≤ Cf (T 2 )R(T 2 ) 2 h * * + a R 2 f ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 ≤ Cf (τ )R(τ ) 2 h * * + a R 2 f ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 . (10.77) Integrating by parts T2 τ R 2 B[φ(s)]|y| 2 χ 0 ( y R(s) )dyds ≤ C T2 τ 1 s log s R 2 |φ(y, s)||y| 2 χ 0 ( y R(s) )dyds + C T2 τ 1 s log s R 2 |φ(y, s)||y| 2 |∇χ 0 ( y R(s)
)|dyds. (10.78)

Let's estimate, using (10.73)

T2 τ 1 s log s R 2 |φ(y, s)||y| 2 χ 0 ( y R(s) )dyds ≤ C T2 τ 1 s f (s)R(s) 2 ds 1 R(τ 0 ) h * * + a R 2 f ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 ≤ Cf (τ )R(τ ) 2 1 R(τ 0 ) h * * + a R 2 f ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 .
The second term in (10.78) is even smaller, and we deduce that

T2 τ R 2 B[φ(s)]|y| 2 χ 0 ( y R(s) )dyds ≤ Cf (τ )R(τ ) 2 1 R(τ 0 ) h * * + a R 2 f ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 .
(10.79) From ( 10.73) we also get

T2 τ R (s) R(s) R 2 φ(s)|y| 2 ∇χ 0 ( y R(s) ) • y R(s) dyds ≤ C T2 τ R (s) R(s) f (s)R(s) 2 ds 1 R(τ 0 ) h * * + a R 2 f ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 ≤ Cf (τ )R(τ ) 2 1 R(τ 0 ) h * * + a R 2 f ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 .
(10.80)

Next we look at

R 2 L[φ]|y| 2 χ 0 ( y R )dy = -2 R 2 U ∇g • yχ 0 ( y R )dy - 1 R R 2 U |y| 2 ∇g • ∇χ 0 ( y R )dy = 2 R 2 gZ 0 χ 0 ( y R )dy + 4 R R 2 gU y • ∇χ 0 ( y R )dy + 1 R R 2 g|y| 2 ∇U • ∇χ 0 ( y R )dy + 1 R 2 R 2 g|y| 2 U ∆χ 0 ( y R )dy. ( 10.81) 
We have R 2 gZ 0 = 0 by Lemma 9.2 and therefore, using (10.72), we find that

R 2 gZ 0 χ 0 ( y R(τ ) )dy ≤ R 2 \B R(τ ) (0) gZ 0 dy ≤ f (τ ) 1 R(τ 0 ) h * * + a R 2 f ∞ + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 .
The remaining terms in (10.81) are estimated using (10.70) or (10.72) and we get

R 2 L[φ]|y| 2 χ 0 ( y R )dy ≤ Cf (τ ) 1 R(τ 0 ) h * * + a R 2 f ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 . Therefore T2 τ R 2 L[φ(s)]|y| 2 χ 0 ( y R(s) )dyds ≤ Cf (τ )R(τ ) 2 (log τ ) q 1 R(τ 0 ) h * * + a R 2 f ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 .
(10.82)

Finally T2 τ R 2 h|y| 2 χ 0 ( y R(s) )dyds ≤ Cf (τ )R(τ ) 2 (log τ ) q h * * . (10.83) 
From (10.75), (10.76), (10.77), (10.79), (10.80), (10.82), and (10.83) we get

|a(τ )| log τ ≤ Cf (τ )R(τ ) 2 (log τ ) q h * * + a R 2 f ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 .
(10.84)

Assuming τ 0 large, we deduce that a R 2 f ∞,T2 ≤ C (log τ 0 ) 1-q h * * + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 .
(10.85)

Note that a(τ 0 ) and c 1 are related. Indeed, the initial condition is

φ 0 = c 1 Z0 = φ ⊥ 0 + a(τ0) 2 Z 0 with a(τ 0 ) = c 1 8π R 2 Z0 Γ 0 ,
by (10.7). We note that R 2 Z0 Γ 0 = 16π + O( log τ0 τ0 ). So by (10.85)

|c 1 | ≤ C|a(τ 0 )| ≤ C f (τ 0 )R(τ 0 ) 2 (log τ 0 ) 1-q h * * + C 1 (log τ 0 ) 1-q |c 1 |.
For τ 0 large, we deduce that

|c 1 | ≤ C|a(τ 0 )| ≤ C f (τ 0 )R(τ 0 ) 2 (log τ 0 ) 1-q h * * . (10.86) 
This proves (10.17). Replacing this in (10.85) we get

a R 2 f ∞,T2 ≤ C (log τ 0 ) 1-q h * * , (10.87) 
which proves (10.15). Combining (10.69), (10.86) and ( 10.87) we obtain (10.16). Finally, we also obtain from (10.73)

|φ(ρ, τ )| ≤ C f (τ )R(τ ) 2 (log τ 0 ) 1-q 1 1 + ρ 4 h * * .
(10.88)

Proof of Lemma 10.2. The proof is a slight modification of the one of Lemma 10.1. Using the same notation as in that proof, integrating (10.74) from τ to T 2 > τ yields

R 2 φ(T 2 )|y| 2 χ 0 y R(T 2 ) dy - R 2 φ(τ )|y| 2 χ 0 y R(τ ) dy = T2 τ R 2 (L[φ(s)] + h)|y| 2 χ 0 ( y R(s)
)dyds

+ T2 τ R 2 B[φ(s)]|y| 2 χ 0 ( y R )dyds - T2 τ R (s) R(s) R 2 φ(s)|y| 2 ∇χ 0 ( y R(s) ) • y R(s) dyds,
Similarly to (10.84) we obtain

|a(τ )| log τ ≤ Cf (τ )R(τ ) 2 (log τ ) q h * * + a R 2 f ∞,T2 + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 + C|a(T 2 )| log(T 2 ).
(10.89)

The assumption

a f R 2 ∈ L ∞ (τ 0 , ∞) implies that lim τ →∞ a(τ ) log τ = 0.
Letting T 2 → ∞ in (10.89) we obtain

|a(τ )| log τ ≤ Cf (τ )R(τ ) 2 (log τ ) q h * * + a R 2 f L ∞ (τ0,∞) + |c 1 | 1 f (τ 0 )R(τ 0 ) 2 .
Then the same argument as in Lemma 10.1 gives the estimates for a, ω and c 1 .

Proof of Lemma 10.3. Assume to the contrary that there is some T 2 > τ 0 such that a Z (T 2 ) = 0.

Then by Lemma 10.1 a Z (τ ) = 0 for τ ∈ [τ 0 , T 2 ]. But by (10.7)

a(τ 0 ) = 1 8π R 2 Γ 0 Z0 = 2 + O( log τ 0 τ 0 ) = 0,
which is a contradiction.

Proof of Lemma 10.4. We let T n be a sequence such that T n → ∞ as n → ∞. Let φ be the solution to (10.1) with initial condition equal to 0. This solution exists but for the moment we don't have any control of its asymptotic behavior as τ → ∞. Let φ⊥ , ā(τ ) be the decomposition (10.6) of φ. Let Z ⊥ B , a Z (τ ) be the decomposition (10.6) of Z B . Using Lemma 10.3 there is

c n ∈ R such that ā(T n ) + c n a Z (T n ) = 0.
Let us define

φ n = φ + c n Z B ,
and let

φ n = φ ⊥ n + a n 2 Z 0
be the decomposition (10.6) of φ n . Then by Lemma 10.1 we have

|a n (τ )| ≤ C f (τ )R(τ ) 2 (log τ 0 ) 1-q h * * , τ ∈ [τ 0 , T n ] |ω n (τ )| ≤ C f (τ )R(τ ) (log τ 0 ) 1-q h * * , τ ∈ [τ 0 , T n ] |c n | ≤ C f (τ 0 )R(τ 0 ) 2 (log τ 0 ) 1-q h * * .
Moreover, we also have the uniform estimate (10.88).

|φ n (ρ, τ )| ≤ C f (τ )R(τ ) 2 (log τ 0 ) 1-q 1 1 + ρ 4 h * * for τ ∈ [τ 0 , T n ] from
By using standard parabolic estimates, passing to a subsequence we may assume that c n → c 1 and φ n → φ locally uniformly in space-time, and that φ is a solution of (10.10) for some c 1 such that

|c 1 | ≤ C f (τ 0 )R(τ 0 ) 2 (log τ 0 ) 1-q h * * . Moreover φ satisfies |φ(ρ, τ )| ≤ C f (τ )R(τ ) 2 (log τ 0 ) 1-q 1 1 + ρ 4 h * *
and writing the decomposition (10.6) as φ = φ ⊥ + a 2 Z 0 we have

|a(τ )| ≤ C f (τ )R(τ ) 2 (log τ 0 ) 1-q h * * .
We also get

|ω n (τ )| ≤ C f (τ )R(τ ) (log τ 0 ) 1-q h * * ,
where ω is defined in (10.14). The uniqueness of c 1 is a consequence of Lemma 10.2.

Proof of Proposition 10.1. We have already constructed φ and c 1 in Lemma 10.4, we have the uniqueness of φ and the estimates for a and c 1 in Lemma 10.2. We only need to prove the estimate for φ ⊥ stated in (10.11). By the construction of φ in Lemma 10.4 and (10.71), (10.86) and (10.87), we get

R 2 (g ⊥ ) 2 U ≤ Cf (τ ) 2 R(τ ) 2 h 2 * * , τ > τ 0 . (10.90)
We claim that from this inequality we have

U |g ⊥ (y, τ )| ≤ Cf (τ )R(τ ) 1 (1 + |y|) 2 h * * ., τ > τ 0 .
The proof of this estimate is similar to that of (10.58) in Lemma 10.8. Indeed, we define

g ⊥ 0 = U g ⊥
and obtain the equation

∂ τ g ⊥ 0 = ∇ • U ∇ g ⊥ 0 U -U (-∆) -1 ∇ • U ∇ g ⊥ 0 U + h -U (-∆) -1 h + B[g ⊥ 0 ] -U (-∆) -1 B[g ⊥ 0 ] + B[U ψ[g ⊥ 0 ] -U (-∆) -1 B[U ψ[g ⊥ 0 ] + a (τ )U + a 2 B[Z 0 ] - a 2 U (-∆) -1 B[Z 0 ]. (10.91)
Here the notation ψ[g ⊥ 0 ] is the one introduced in the proof of Lemma 10.7 in (10.39). To get an estimate for the solution we need an estimate for a (τ ). Since g ⊥ = g+a and R 2 U g ⊥ = 0 we have

a(τ ) = - 1 8π R 2 U g(τ )dy = - 1 8π R 2 g 0 (τ )dy.
But integrating (10.38) we find

∂ τ R 2 g 0 (τ )dy = - R 2 U (-∆) -1 ∇ • (U ∇ g 0 U ) dy - R 2 U (-∆) -1 hdy - R 2 U (-∆) -1 (B[g 0 + U ψ[g 0 ]])dy,
which gives the expression

a (τ ) = 1 8π R 2 U (-∆) -1 ∇ • (U ∇ g 0 U ) dy + 1 8π R 2 U (-∆) -1 hdy + 1 8π R 2 U (-∆) -1 (B[g 0 + U ψ[g 0 ]])dy.
We claim that

|a (τ )| ≤ Cf (τ )R(τ ) h * * . (10.92) 
Indeed, we have

R 2 U (-∆) -1 ∇ • (U ∇ g 0 U ) dy = R 2 Γ 0 ∇ • (U ∇g ⊥ )dy = - R 2 ∇U • ∇g ⊥ dy = R 2 ∆U g ⊥ .
Then, by (10.90)

R 2 U (-∆) -1 ∇ • (U ∇ g 0 U ) dy ≤ C R 2 (g ⊥ ) 2 U 1/2 ≤ Cf (τ )R(τ ) h * * .
We also have, for the case of the operator (10.2),

R 2 U (-∆) -1 (B[g 0 ]) dy = R 2 Γ 0 B[g 0 ] = ζ(τ ) R 2 Γ 0 ∇ • (yg 0 )dy = -ζ(τ ) R 2 ∇Γ 0 • yU gdy
But by construction and (10.70), (10.86) and (10.87), we get

R 2 g 2 U 1/2 ≤ C (log τ 0 ) 1-q f (τ )R(τ ) 2 h * * .
(10.93) so, using (10.93)

R 2 U (-∆) -1 (B[g 0 ]) dy ≤ C τ log τ R 2 U g 2 1/2 ≤ C τ log τ 1 (log τ 0 ) 1-q f (τ )R(τ ) 2 h * * ≤ Cf (τ ) h * * ≤ Cf (τ )R(τ ) h * * .
The last term is estimated similarly and we get (10.92).

Repeating the argument in of Lemma 10.7 we obtain from (10.90)

|g ⊥ 0 (y, τ )| ≤ Cf (τ )R(τ ) h * * 1 (1 + |y|) 2 .
An argument similar to Lemma 10.9 gives

|φ ⊥ (ρ, τ )| ≤ Cf (τ )R(τ ) 1 (1 + |y|) 2 h * * .
We have an estimate for φ ⊥ stronger than (10.11) under a stricter assumption on ν.

Lemma 10.10. Let us assume that 1 < ν < 3 2 . Under the same assumption of Proposition 10.1 let φ = φ ⊥ + a 2 Z 0 be the solution of (10.10). Then

|φ ⊥ (y, τ )| ≤ CR(τ )f (τ ) h * *    1 (1+|y|) 2 |y| ≤ √ τ τ |y| 4 |y| ≥ √ τ ,
Proof. We write (10.91) as

∂ τ g ⊥ 0 = ∆g ⊥ 0 -∇g ⊥ 0 • ∇Γ 0 + 2U g ⊥ 0 + B[g ⊥ 0 ] + h1 (10.94) where h1 = -U (-∆) -1 (∇ • (g ⊥ 0 ∇Γ 0 )) -U (-∆) -1 B[g ⊥ 0 ] + B[U ψ[g ⊥ 0 ]] -U (-∆) -1 B[U ψ[g ⊥ 0 ]] + a (τ )U + a 2 B[Z 0 ] - a 2 U (-∆) -1 B[Z 0 ] + h -U (-∆) -1 h.
Then, similarly to (10.59), we have

| h1 (y, τ )| ≤ Cf (τ )R(τ ) h * * 1 (1 + |y|) 4 . Let ḡ⊥ (ρ, τ ) = f (τ )R(τ )g 3 (ρ)χ 0 ρ δ √ τ + A 1 f (τ )R(τ ) τ 1 (1 + ρ/ √ τ ) 4 + A 2 f (τ )R(τ ) τ e -ρ 2 4τ
where -∆ 6 g3 = 1 1+ρ 4 with g2 (ρ) → 0 as ρ → ∞. If ν < 3 2 , for appropriate positive constants δ, A 1 , A 2 , and C, the function C h * * ḡ⊥ is supersolution to (10.94) in {(y, τ )|τ > τ 0 , |y| > R 0 }. We deduce that

|g ⊥ 0 (y, τ )| ≤ Cf (τ )R(τ ) h * * min(1, τ |y| 2 ) (1 + |y|) 2 .
An argument similar to Lemma 10.9 gives

|φ ⊥ (ρ, τ )| ≤ Cf (τ )R(τ ) h * * 1 1+|y| 2 |y| ≤ √ τ τ |y| 4 |y| ≥ √ τ .
Proof of Proposition 8.1. By Proposition 10.1 there is c 1 such that the solution φ to (10.10) has the properties stated in Proposition 10.1. We recall that by (10.88) φ satisfies

|φ(ρ, τ )| ≤ C f (τ )R(τ ) 2 (log τ 0 ) 1-q 1 1 + ρ 4 h * * .
(10.95)

We will construct a barrier to estimate φ for |y| ≥ R 0 , where R 0 is a large constant. We consider the equation (10.10) in R 2 \ B R0 (0) written in the form

∂ τ φ = ∆φ -4∇Γ 0 ∇φ + 2U φ + B[φ] + h, (10.96) 
where h = -∇U ∇ψ + h.

Since ψ = (-∆) -1 φ, from (10.95) we get

|∇ψ(ρ, τ )| ≤ C f (τ )R(τ ) 2 (log τ 0 ) 1-q 1 1 + ρ 3 h * * .

This gives

|∇U • ∇ψ| ≤ C f (τ )R(τ ) 2 (log τ 0 ) 1-q 1 1 + ρ 8 h * * .
(10.97) By (10.97) and the definition of the norm h * * ,

| h(y, τ )| ≤ C f (τ )R(τ ) 2 (log τ 0 ) 1-q 1 (1 + ρ) 6+σ min 1, τ /2 ρ h * * ,
where we have used that σ + < 2. Let g2 be defined by (10.61) and let

φ(ρ, τ ) = f (τ )R(τ ) 2 g2 (ρ)χ 0 ρ δ √ τ + A 1 f (τ )R(τ ) 2 τ 2 1 (1 + ρ/ √ τ ) 6+σ+ + A 2 f (τ )R(τ ) 2 τ 2 e -ρ 2 4τ .
Then for suitable positive constants δ, A 1 , A 2 , and C, the function C(log τ 0 ) q-1 h * * φ is a supersolution to (10.96) in {(y, τ )|τ > τ 0 , |y| > R 0 }. For this we need ν < 2. Moreover |φ(ρ, τ )| ≤ C φ(ρ, τ )(log τ 0 ) q-1 h * * at ρ = R 0 by (10.95). By the maximum principle

|φ(y, τ )| ≤ C φ(y, τ )(log τ 0 ) q-1 h * * , |y| > R 0 .
This gives the explicit bound

|φ(ρ, τ )| ≤ C f (τ )R(τ ) 2 (log τ 0 ) 1-q 1 (1 + ρ 4 ) min 1, τ 1/2 ρ 2+σ+ h * *
We include here some results that will be useful later. Let Ẑ0 = L[ Z0 ].

Lemma 10.11. The function Ẑ0 satisfies 4 (10.98)

| Ẑ0 (ρ)| ≤ C 1 τ 0 (1 + ρ)
and is supported on ρ ≤ 2τ 0 .

Proof. Let ψ = (-∆) -1 Z0 and g = Z0 U -ψ. By (10.9) and using that Z 0 = U z 0 , z 0 defined in (9.2),

g = (Z 0 -m Z0 U )χ U -ψ = z 0 χ -m Z0 χ -ψ,
where χ(ρ) = χ 0 ( ρ √ τ0 ). Note that Z0 has mass zero and support in B 2 √ τ0 . It follows that ψ has also support contained in B 2 √ τ0 and then g has support contained in B 2 √ τ0 . Therefore Ẑ0 = L[ Z0 ] = ∇ • (U ∇g) has also support contained in B 2 √ τ0 .

To get an estimate for Ẑ0 let us write

ψ = (-∆) -1 (Z 0 -m Z0 U )χ) = (-∆) -1 Z 0 + ψ 1 ,
where

ψ 1 = (-∆) -1 (Z 0 (χ -1) -m Z0 U χ).
Since ∆z 0 + U z 0 = 0 and lim ρ→∞ z 0 (ρ) = -2 we have (-∆) -1 Z 0 = z 0 + 2. So

ψ = z 0 + 2 + ψ 1 Hence g = z 0 (χ -1) -2 -m Z0 χ -ψ 1 and so Ẑ0 = L[ Z0 ] = ∇ • (U ∇g)
= ∇ • (U (∇z 0 (χ -1) + z 0 ∇χ -m Z0 ∇χ -∇ψ 1 )). (10.99)

Using radial symmetry and m Z0 = O( 1 τ0 ) we get

|∇ψ 1 (ρ)| ≤ C 1 τ 0 (1 + ρ) .
From this and (10.99) we get (10.98).

Consider the initial value problem

∂ τ φ 1 = L[φ 1 ] + B[φ 1 ] in R 2 × (τ 0 , ∞), φ 1 (•, τ 0 ) = Ẑ0 in R 2 .
(10.100) Lemma 10.12. Let 0 < γ < 2. Let 1 < ν 0 < 7 4 f 0 (τ ) = 1 τ ν0 . and let R(τ ) be as in (10.12). Then the solution φ 1 of (10.100) satisfies

|φ 1 (ρ, τ )| ≤ C f 0 (τ )R(τ ) 2 τ 0 f 0 (τ 0 )R(τ 0 ) 2 1 (1 + ρ 4 ) min 1, τ 1/2 ρ 2+γ .
Proof. A suitable modification in the proof of Proposition 10.1 gives the following result. Consider

∂ τ φ = L[φ] + B[φ] in R 2 × (τ 0 , ∞), φ(•, t 0 ) = φ 0 + c 1 Z0 in R 2 , (10.101) 
Then there is C > 0 such that for any τ 0 sufficiently large the following holds. Suppose that φ 0 is a radial function with zero mass in R 2 , supported in B 2 √ τ0 (0), and such that

|φ 0 (ρ)| ≤ M 1 1 + ρ 4 .
Then there exists c 1 such that the solution φ of (10.101) satisfies

|φ(ρ, τ )| ≤ CM f 0 (τ )R(τ ) 2 f 0 (τ 0 )R(τ 0 ) 2 1 (1 + ρ 4 ) min 1, τ 1/2 ρ 2+γ .
Moreover c 1 is a linear function of φ 0 and satisfies

|c 1 | ≤ CM 1 (log τ 0 ) 1-q .
Let us apply this statement to φ 0 = L[ Z0 ], which is radial, with mass zero, support in B 2 √ τ0 (0), and satisfies

|φ 0 (ρ)| ≤ 1 τ 0 1 1 + ρ 4 ,
by Lemma 10.11. Then there exists c 1 such that the solution φ to (10.101) 

with φ 0 = L[ Z0 ] satisfies | φ(ρ, τ )| ≤ C f 0 (τ )R(τ ) 2 τ 0 f 0 (τ 0 )R(τ 0 ) 2 1 (1 + ρ 4 ) min 1, τ 1/2 ρ 2+γ . (10.102) 
We claim that c 1 = 0. To prove this, we multiply (10.101) by |y| 2 and integrate on R 2 × (τ 0 , ∞). Let's work with

B[φ] = ζ(τ )∇ • (yφ).
The case of the operator (10.3) is similar. Then we get This only can happen if c 1 = 0. We deduce that φ 1 defined in (10.100) coincides with φ, and then (10.102) holds for φ 1 .

∂ τ R 2 φ(y, τ )|y| 2 dy = -2ζ(τ )
11. Linear estimate with second moment (radial)

We will prove in this section Proposition 8.2 in the radial case h(ρ, τ ).

Proposition 11.1. Let 0 < σ < 1, > 0 with σ + < 2 and 1 < ν < min(1 + 2 , 3 -σ 2 , 5 4 ). Let 0 < q < 1. Then there is C such that for τ 0 large the following holds. Suppose that h satisfies h ν,m,6+σ, < ∞ and

R 2 h(y, τ )dy = 0, R 2 h(y, τ )|y| 2 dy = 0.
Then the solution φ(y, τ ) of problem (8.9) satisfies

φ ν-1 2 ,m+ q 2 ,4,2+σ+ ≤ C h ν,m,6+σ, .
To describe the idea of the proof more easily let us consider for a moment the equation (8.9) without B:

∂ τ φ = L[φ] + h(y, t) in R 2 × (τ 0 , ∞) φ(•, τ 0 ) = 0 in R 2 , (11.1) 
The idea is to formally apply a suitable left inverse L -1 of L to (11.1) (to be defined later on in Lemma 11.1). If we call Φ = L -1 φ, H = L -1 h, then we would like to solve

∂ τ Φ = L[Φ] + H(y, t) in R 2 × (τ 0 , ∞) Φ(•, τ 0 ) = 0 in R 2 . (11.2) 
In order to get good properties of H, in this step we have already used that h satisfies the second moment condition. At this point we would like to apply Proposition 10.1, which gives a decomposition

Φ = Φ ⊥ + a(τ ) 2 Z 0 .
Note that Φ ⊥ decays in time like 1/τ ν-1/2 and so φ = LΦ also decays in time like 1/τ ν-1/2 , which is better than the estimate provided by Proposition 8.1. It turns out that H decays in space like 1/ρ 4+σ so we can't apply directly Proposition 10.1 to (11.2). What we do is concentrate H by solving first a nicer problem. We write Φ = Φ 1 + Φ 2 where Φ 1 is asked to solve

∂ τ Φ 1 = L 0 [Φ 1 ] + H(y, t) in R 2 × (τ 0 , ∞) Φ 1 (•, τ 0 ) = 0 in R 2 .
where

L 0 [φ] = ∇ • U ∇ φ U = ∆φ -∇φ • ∇Γ 0 + U φ. (11.3) 
Lemma 11.2 below deals with Φ 1 . Then the problem for Φ 2 becomes

∂ τ Φ 2 = L 0 [Φ 2 ] + L[Φ 1 ] -L 0 [Φ 1 ] in R 2 × (τ 0 , ∞) Φ 1 (•, τ 0 ) = 0 in R 2 .
It turns out that the right hand side in this equation has better spatial decay and we can apply Proposition 10.1.

In the next lemmas we give some preliminary results, and the proof of Proposition 11.1 is given at the end of this section.

We define the inverse of L that we use. For h : R 2 → R define h τ,6+σ, as the smallest K such that

|h(y)| ≤ K (1 + |y|) 6+σ 1 |y| ≤ √ τ τ /2 |y| |y| ≥ √ τ .
which depends on τ , treated as parameter here, σ, and ε.

Lemma 11.1. Let σ, > 0. Let h = h(ρ) be radial and satisfy h τ,6+σ, < ∞ and

R 2 hdy = R 2
h|y| 2 dy = 0.

Then there exists H radially symmetric such that L[H] = h in R 2 and satisfies

H τ,4+σ, ≤ C h τ,6+σ, (11.4) 
Moreover, H defines a linear operator of h and satisfies where g = H U -(-∆) -1 H. We choose g as

g(ρ) = - ∞ ρ 1 rU (r) r 0 h(s)sdsdr.

Using that

R 2 h = 0 we check that

|g(ρ)| ≤ C h τ,6+σ, 1 (1+ρ) σ ρ ≤ √ τ τ /2 ρ σ+ ρ ≥ √ τ
Now we solve Liouville's equation

-∆ψ -U ψ = U g in R 2 , ψ(ρ) → 0 as ρ → ∞, Since R 2 h|y| 2 dy = 0 we check that R 2
gZ 0 dy = 0.

Then we can use the variations of parameter formula, and get

|ψ(ρ)| ≤ C h τ,6+σ, 1 (1+ρ) 2+σ ρ ≤ √ τ τ /2 ρ 2+σ+ε ρ ≥ √ τ
Then define H = U (g + ψ), which is the desired solution, and note that it satisfies (11.4). Property (11.5) follows from H = -∆ψ and the decay of ψ.

To take into account the operator B we define

Λ[φ] = y • ∇φ,
and compute Substituting this into (11.10) we obtain (11.11) Combining (11.7), (11.8), (11.9), (11.11) we find that

Λ • L[Φ] -L • Λ[Φ] = ∇ • (ΦU y) -2L[Φ] -∇ • ((y • ∇U + 2U )∇(-∆) -1 Φ). ( 11 
Λ(∇U • ∇Ψ) = ∇(ΛU ) • ∇Ψ + ∇U • ∇[(-∆) -1 (ΛΦ) + 2Ψ] -2∇U • ∇Ψ = ∇(ΛU ) • ∇Ψ + ∇U • ∇[(-∆) -1 (ΛΦ)].
ΛLΦ = LΛΦ -2LΦ + 4U Φ -2∇U • ∇Ψ -∇(ΛΓ 0 ) • ∇Φ -∇(ΛU ) • ∇Ψ + 2Λ(U )Φ. But -2∇U • ∇Ψ -∇(ΛU ) • ∇Ψ = -∇Z 0 • ∇Ψ = -∇ • (Z 0 ∇Ψ) -Z 0 Φ, so that ΛLΦ = LΛΦ -2LΦ + 4U Φ -∇(ΛΓ 0 ) • ∇Φ + 2Λ(U )Φ -∇ • (Z 0 ∇Ψ) -Z 0 Φ. Using that 2Λ(U )Φ -Z 0 Φ = -2U Φ + Λ(U )Φ
we then obtain

ΛLΦ = LΛΦ -2LΦ + 2U Φ -∇(ΛΓ 0 ) • ∇Φ + Λ(U )Φ -∇ • (Z 0 ∇Ψ) Let's consider the terms 2U Φ -∇(ΛΓ 0 ) • ∇Φ + Λ(U )Φ. Noting that ∇(ΛΓ 0 ) = ∇(y • ∇Γ + 2) = ∇z 0 and that Z 0 = 2U + Λ(U ), we can write 2U Φ -∇(ΛΓ 0 ) • ∇Φ + Λ(U )Φ = 2U Φ -∇z 0 • ∇Φ + Λ(U )Φ = Z 0 Φ -∇ • (∇z 0 Φ) + ∆z 0 Φ. But ∆z 0 + Z 0 = 0, so ΛLΦ = LΛΦ -2LΦ -∇ • (∇z 0 Φ) -∇ • (Z 0 ∇Ψ).
We can again write ∇z 0 = ∇(y • ∇Γ 0 ) and using the radial symmetry of the functions Γ 0 , z 0 and the notation ρ = |y|

∇z 0 = y ρ ∂ ρ z 0 = y ρ ∂ ρ (ρ∂ ρ Γ 0 ) = y∆Γ 0 = -yU. Then ΛLΦ = LΛΦ -2LΦ + ∇ • (yU Φ) -∇ • (Z 0 ∇Ψ).
This proves (11.6). Formula (11.6) leads us to consider the following equation for Φ = L -1 [φ]:

∂ τ Φ = L[Φ] + B[Φ] + ζ 1 (τ )A[Φ] + H in R 2 × (τ 0 , ∞) Φ(•, τ 0 ) = 0 (11.12)
where

A[Φ] = L -1 [∇ • (ΦU y) -∇ • (Z 0 ∇(-∆) -1 Φ)],
Z 0 (y) = 2U (y) + y • ∇ y U (y), and B has the same form as B: 

B[Φ] = ζ1 (τ )y • ∇Φ + ζ2 (τ )Φ with ζ1 (τ ), ζ2 (τ ) satisfying | ζi (τ )| ≤ C τ log τ for all τ > τ 0 . ( 11 
∂ τ Φ 1 = L[Φ 1 ] + B[Φ 1 ] + H -H 1 , in R 2 × (τ 0 , ∞) Φ 1 (•, τ 0 ) = 0 in R 2 .
Moreover Φ 1 and H 1 are linear operators of H and satisfy

|Φ 1 (ρ, τ )| ≤ C τ ν (log τ ) m H ν,m,4+σ, 1 (1+ρ) 2+σ ρ ≤ √ τ τ 1+ /2 (1+ρ) 4+σ+ ρ ≥ √ τ . (11.15) |H 1 (ρ, τ )| ≤ C τ ν (log τ ) m H ν,m,4+σ, 1 (1+ρ) 6+σ ρ ≤ √ τ τ /2 (1+ρ) 6+σ+ ρ ≥ √ τ . , (11.16) 
R 2

Φ 1 dy = 0 (11.17 Proof. Write the operator L as

L[φ] = L 0 [φ] -∇ • (U ∇(-∆) -1 φ)
where L 0 is defined in (11.3). Consider the problem

∂ τ Φ 1 = L 0 [Φ 1 ] + B[Φ 1 ] + H, in R 2 × (τ 0 , ∞), Φ 1 (•, τ 0 ) = 0 in R 2 .
The idea is to formally apply L -1 0 to this equation. Similarly to the proof of (11.6) we compute

Λ • L 0 [Φ] -L 0 • Λ[Φ] = ∇ • (ΦU y) -2L 0 [Φ].
This leads us to consider the problem

∂ τ Φ = L 0 [ Φ] + B 1 [ Φ] + H, in R 2 × (τ 0 , ∞), Φ(•, τ 0 ) = 0 in R 2 , (11.19) 
where H is a radial function satisfying

L 0 [ H] = H in R 2 and B 1 [ Φ] = ζ1 (τ )y • ∇ Φ + ζ2 (τ ) Φ with ζ1 (τ ) = ζ1 (τ ) = O 1 τ log τ , ζ2 (τ ) = ζ2 (τ ) -2 ζ1 (τ ) = O 1 τ log τ , (11.20) 
by (11.13).

We claim that there is a choice of H, which defines a linear operator of H, and satisfies

| H| + (1 + ρ)|∇ H| ≤ C 1 τ ν (log τ ) m H ν,m,4+σ, 1 (1+ρ) 2+σ ρ ≤ √ τ τ /2 (1+ρ) 2+σ+ ρ ≥ √ τ . (11.21) 
Indeed, the equation L 0 [ H] = H for radial functions has the form

∂ ρ ρU ∂ ρ H U = ρH.
We select the solution

H(ρ, τ ) = U (ρ) ρ 0 1 rU (r) r 0 H(s, τ )sdsdr.
Using (11.14) we get (11.21).

Instead of (11.19) we consider

∂ τ Φ1 = ∆ R 2 Φ1 -∇Γ 0 • ∇ Φ1 + B 1 [ Φ1 ] + H, in R 2 × (τ 0 , ∞), Φ1 (•, τ 0 ) = 0 in R 2 , (11.22) 
We then have the following estimate for Φ1 :

| Φ1 | ≤ C τ ν (log τ ) m H ν,m,4+σ, 1 (1+ρ) σ ρ ≤ √ τ τ 1+ /2 (1+ρ) 2+σ+ ρ ≥ √ τ . (11.23) 
For the proof of this we construct a barrier. First we find a solution to

∆ R 2 φ 1 -∇Γ 0 • ∇φ 1 + 1 (1 + ρ) 2+σ = 0 in R 2 , φ 1 (ρ) → 0 as ρ → ∞.
The equation may be integrated explicitly, noting that ∆ R 2 φ -∇Γ 0 • ∇φ = φ ρρ + 1 ρ + 4ρ 1 + ρ 2 φ ρ and that the constants are in the kernel of this operator. We then have

φ 1 (ρ) = ∞ ρ 1 r(1 + r 2 ) 2 r 0 1 (1 + s) 2+σ s(1 + s 2 ) 2 dsdr and this implies |φ 1 (ρ)| + (1 + ρ)|φ 1 (ρ)| ≤ C (1 + ρ) σ Let χ(ρ, τ ) = χ 0 ( ρ δ √ τ ),
where χ 0 ∈ C ∞ (R), χ 0 (s) = 1 for s ≤ 1 and χ 0 (s) = 0 for s ≥ 2. Define φ1 =

1 τ ν (log τ ) m φ 1 χ. We have (∂ τ -∆ R 2 + ∇Γ 0 • ∇) φ1 ≥ 1 τ ν (log τ ) m (1 + ρ) 2+σ χ - C 1 τ ν+σ/2+1 (log τ ) m χ {δ √ τ ≤ρ≤2δ √ τ } ,
for some C 1 > 0, δ > 0 (assuming τ 0 large). Now consider

φ 2 (ρ, τ ) = 1 τ ν+σ/2 (log τ ) m 1 (1 + ρ/ √ τ ) 2+σ+ , φ 3 (ρ, τ ) = 1 τ ν+σ/2 (log τ ) m e -ρ 2 4τ .
A computation, using (11.20), shows that φ

= A 1 φ1 + A 2 φ 2 + A 3 φ 3 satisfies (∂ τ -∆ R 2 + ∇Γ 0 • ∇ + B 1 ) φ ≥ c τ ν (log τ ) m 1 (1+ρ) 2+σ ρ ≤ √ τ τ /2 (1+ρ) 2+σ+ ρ ≥ √ τ .
for some c > 0. This step needs ν -1 < 2 and ν + σ 2 < 3. By comparison, we find that Φ1 satisfies (11.23).

The solution Φ1 of (11.22) satisfies

∂ τ Φ1 = L 0 [ Φ1 ] -U Φ1 + B 1 [ Φ1 ] + H
Applying L 0 to this equation we find that

Φ 1 = L 0 [ Φ1 ] satisfies ∂ τ Φ 1 = L[Φ 1 ] + B[Φ 1 ] + H -H 1 with H 1 = -∇ • (U ∇Ψ 1 ) + L 0 [U Φ1 ] + ζ1 ∇ • ( Φ1 U y), Ψ 1 = (-∆) -1 Φ 1 . (11.24) 
Let us verify that Φ 1 and H 1 satisfy the conditions stated in (11.15), (11.16), (11.18). Indeed, from standard parabolic estimates and (11.23) we have

|∇ Φ1 | ≤ C τ ν (log τ ) m H ν,m,4+σ, 1 (1+ρ) 1+σ ρ ≤ √ τ τ 1+ /2 (1+ρ) 3+σ+ ρ ≥ √ τ . (11.25) 
Differentiating in y j , j = 1, 2 the equation (11.22) and using standard parabolic estimates, together with (11.21), (11.25) we obtain

|D 2 Φ1 | ≤ C τ ν (log τ ) m H ν,m,4+σ, 1 (1+ρ) 2+σ ρ ≤ √ τ τ 1+ /2 (1+ρ) 4+σ+ ρ ≥ √ τ . (11.26) 
The definition Φ 1 = L 0 [ Φ1 ] and the estimates (11.23), (11.25), (11.26) give the estimate (11.15). We compute

H 1 = -∇U • ∇Ψ 1 + U Φ 1 + ∇U • ∇ Φ1 + U ∆ Φ1 + ζ1 ∇ • ( Φ1 U y).
Note that R 2 Φ 1 (•, τ ) = 0. So, by a direct radial computation of Ψ 1 = (-∆) -1 Φ 1 and (11.15) we obtain

|∇Ψ 1 (ρ, τ )| ≤ C τ ν (log τ ) m H ν,m,4+σ, 1 (1+ρ) 1+σ ρ ≤ √ τ τ 1+ /2 (1+ρ) 3+σ+ ρ ≥ √ τ .
This estimate and the ones already obtained for Φ1 (11.25), (11.26) and for Φ 1 (11.15) yield

|H 1 (ρ, τ )| ≤ C τ ν (log τ ) m H ν,m,4+σ, 1 (1+ρ) 6+σ ρ ≤ √ τ τ /2 (1+ρ) 6+σ+ ρ ≥ √ τ . ,
which is the desired estimate (11.16).

Finally, the zero mass condition (11.18) follows from the form of H 1 (11.24) and its decay. The mass condition for Φ 1 (11.17) follows from Φ 1 = L 0 [ Φ1 ] and the decay of Φ1 (11.23) and (11.25).

Next we would like to obtain a result similar to Proposition 10.1 for the problem (11.12). In order to simplify this step, we will modify this equation by allowing a parameter in the initial condition. This technical obstruction will be removed in the proof of Proposition 11.1. Thus we consider

∂ τ Φ = L[Φ] + B[Φ] + ζ 1 (τ )A[Φ] + H in R 2 × (τ 0 , ∞) Φ(•, τ 0 ) = c 1 Z0 , (11.27) 
where Z0 is defined in (10.9). The next result allows us to say that if in equation (11.27) the right hand side has fast decay, then we can decompose the solution similarly as in Proposition 10.1. This result is an extension of that proposition to an equation that has the extra operator A in it, which is treated as a perturbation.

Lemma 11.3. Let 0 < σ < 1, > 0, σ + < 2, 1 < ν < min(1 + 2 , 3 -σ 2 , 3 
2 ). Let 0 < q < 1. Then there is C > 0 such that for τ 0 sufficiently large and for H radially symmetric with H ν,m,4+σ, < ∞ and R 2 H(y, τ )dy = 0 for all τ > τ 0 the solution Φ to (11.27) can be decomposed as Φ = Φ 0 + a(τ ) 2 Z 0 with the estimates

|Φ 0 (ρ, τ )| ≤ C H ν,m,4+σ, 1 τ ν-1 2 (log τ ) m+ q 2 min 1 (1 + |y|) 2 , τ |y| 4 |a(τ )| ≤ C H ν,m,4+σ, 1 τ ν-1 (log τ ) m+q .
Moreover Φ 0 and a are linear operators of H.

Proof of Lemma 11.3. We will treat the operator A as a perturbation and therefore consider 

∂ τ Φ = L[Φ] + B[Φ] + H in R 2 × (τ 0 , ∞) Φ(•, τ 0 ) = c 1 Z0 . ( 11 
∂ τ Φ 2 = L[Φ 2 ] + B[Φ 2 ] + H 1 , in R 2 × (τ 0 , ∞), Φ 2 (•, τ 0 ) = c 1 Z0 in R 2 .
(11.29)

We now apply Proposition 10.1 to (11.29). We have that H 1 ν,m,6+σ, < ∞ by (11.16), H 1 is radial and satisfies the zero mass condition (11.18). By Proposition 10.1 and Lemma 10.10 there exists c 1 such that the solution Φ 2 of (11.29) satisfies

Φ 2 (y, τ ) = Φ ⊥ 2 (y, τ ) + a(τ ) 2 Z 0 (y),
with the estimates

|Φ ⊥ 2 (y, τ )| ≤ C H 1 ν,m,6+σ, τ ν-1 2 (log τ ) m+ q 2      1 (1 + |y|) 2 |y| ≤ √ τ τ |y| 4 |y| ≥ √ τ , (11.30) |a(τ )| ≤ C H 1 ν,m,6+σ, τ ν-1 (log τ ) m+q .
(11.31) (We are ignoring the factor 1 (log τ0) 1-q in the estimate of a(τ ).) We also know that c 1 is a linear function of H 1 and satisfies

|c 1 | ≤ C H 1 ν,m,6+σ, τ ν-1 0 (log τ 0 ) m+1 .
Combining (11.15) and (11.30) we conclude that Φ, the solution to (11.28), can be decomposed as

Φ = Φ 0 + a(τ ) 2 Z 0 where Φ 0 (y, τ ) = Φ 1 + Φ ⊥ 2 is radial and satisfies |Φ 0 (y, τ )| ≤ C H ν,m,4+σ, τ ν-1 2 (log τ ) m+ q 2 min 1 (1 + |y|) 2 , τ |y| 4
and a(τ ) satisfies, combining (11.16) and (11.31),

|a(τ )| ≤ C 1 τ ν-1 (log τ ) m+q H ν,m,4+σ, .
We summarize the previous finding as follows. Given H radial satisfying

R 2 H(•, τ ) = 0 for τ > τ 0 and H ν,m,4+σ, < ∞, let us denote T 0 (H) = Φ 0 = Φ 1 + Φ ⊥ 2 and T a (H) = a(τ ) so that the solution Φ of (11.28), is Φ = Φ 0 + a(τ ) 2 Z 0 = T 0 [H] + 1 2 T a [H]Z 0 .
Then T 0 , T a are linear and have the estimates

T 0 [H] 0 ≤ C H ν,m,4+σ, (11.32) 
T

a [H] a ≤ C H ν,m,4+σ, , (11.33) 
where

Φ 0 0 = sup τ >τ0, y∈R 2 τ ν-1 2 (log τ ) m+ q 2 1 min 1 (1+|y|) 2 , τ |y| 4 |Φ 0 (y, τ )| a a = sup τ >τ0 τ ν-1 (log τ ) m+q |a(τ )|.
Moreover c 1 is a linear function of H and satisfies

|c 1 | ≤ C H ν,m,4+σ, τ ν-1 0 (log τ 0 ) m+1 .
We will apply these estimates to treat problem (11.27), which can be written as the fixed point problem

Φ 0 = T 0 [H + ζ 1 A[Φ 0 + aZ 0 ]] a = T a [H + ζ 1 A[Φ 0 + aZ 0 ]]
By (11.32) and (11.33)

T 0 [ζ 1 A[Φ 0 + aZ 0 ]] 0 + T a [ζ 1 A[Φ 0 + aZ 0 ]] a ≤ C ζ 1 A[Φ 0 + aZ 0 ] ν,m,4+σ, .
We claim that

ζ 1 A[Φ 0 ] ν,m,4+σ, ≤ Cτ -ϑ 0 Φ 0 0 , (11.34) 
for some ϑ > 0, where C is independent of τ 0 , and

ζ 1 A[aZ 0 ] ν,m,4+σ, ≤ C (log τ 0 ) 1+q a a . (11.35) 
Assume for the moment that (11.34), (11.35) hold. The we see that

Φ 0 0 + a a ≤ C (log τ 0 ) 1+q ( Φ 0 0 + a a ) + C H ν,m,4+σ, . For τ 0 large this gives Φ 0 0 + a a ≤ C H ν,m,4+σ, ,
which is the desired result.

For the proof of estimates (11.34), (11.35) we will need the following property. If Φ satisfies |Φ(y)| ≤ 1 (1+|y|) 2+κ for some κ > 0 and R 2 Φdy = 0, then

R 2 ∇ • [ΦU y -Z 0 ∇Ψ]|y| 2 dy = 0, Ψ = (-∆) -1 Φ. (11.36) Indeed, R 2 ∇ • (ΦU y)|y| 2 dy = -2 R 2 ΦU |y| 2 dy = 2 R 2 ∆ΨU |y| 2 dy = -2 R 2 ∇Ψ • ∇(U |y| 2 )dy = -2 R 2 ∇Ψ • yZ 0 dy and R 2 ∇ • (Z 0 ∇Ψ)|y| 2 dy = -2 R 2 Z 0 ∇Ψ • ydy.
To prove (11.34), let us write Ψ 0 = (-∆) -1 Φ 0 . Then

A[Φ 0 ] = L -1 [∇ • (Φ 0 U y -Z 0 ∇Ψ 0 )].
Using the definition of L -1 given in Lemma 11.1 we have that

L -1 [∇ • (ΦU y) -∇ • (Z 0 ∇(-∆) -1 Φ)] = U g + U ψ where g(ρ, τ ) = - ∞ ρ Φ 0 (s, τ )s - Z 0 (s) U (s) ∂ ρ Ψ 0 (s, τ ) ds, (11.37) 
and ψ is the decaying solution to the Liouville equation

-∆ψ -U ψ = U g.
From the definition Ψ 0 = (-∆) -1 Φ 0 and using that R 2 Φ 0 dy = 0 we have

∂ ρ Ψ 0 (ρ, τ ) = 1 ρ ∞ ρ Φ 0 (s, τ )sds
which gives the estimate

|∂ ρ Ψ 0 (ρ, τ )| ≤ C Φ 0 0 1 τ ν-1 2 (log τ ) m+ q 2    log( 2 √ τ 1+ρ ) 1+ρ ρ ≤ √ τ , τ ρ 3 ρ ≥ √ τ .
Then formula (11.37) gives

|g(ρ, τ )| ≤ C Φ 0 0 1 τ ν-1 2 (log τ ) m+ q 2 log 2 ( 2 √ τ 1+ρ ) ρ ≤ √ τ , τ ρ 2 ρ ≥ √ τ . ≤ C Φ 0 0 1 τ ν-1 2 (log τ ) m+ q 2 -2 min 1, τ ρ 2 .
We note that by (11.36) we have R 2 U gz 0 dy = 0. Then, ψ has the estimate

|ψ(ρ, τ )| ≤ C Φ 0 0 1 τ ν-1 2 (log τ ) m+ q 2 -2 1 (1 + ρ) 2 min 1, τ ρ 2 . It follows that A[Φ 0 ] = U g + U ψ satisfies |A[Φ 0 ](ρ, τ )| ≤ C Φ 0 0 1 τ ν-1 2 (log τ ) m+ q 2 -2 1 (1 + ρ) 4 min 1, τ ρ 2 .
From this inequality we obtain (11.34).

The proof of (11.35) is similar. This time A[aZ 0 ] = U g 1 + U ψ 1 where

g 1 (ρ, τ ) = -a(τ ) ∞ ρ Z 0 (s)s - Z 0 (s) U (s) z 0 (s) ds,
and ψ 1 is the radial decaying solution to

-∆ψ 1 -U ψ 1 = U g 1 .
We then obtain that

|A[aZ 0 ](ρ, τ )| ≤ C a a 1 τ ν-1 (log τ ) m+q 1 (1 + ρ) 6 .
From this estimate we deduce (11.35).

Before proving Proposition 11.1 as stated, we obtain a version of it for the problem

∂ τ φ = L[φ] + B[φ] + h(y, τ ) in R 2 × (τ 0 , ∞), φ(•, τ 0 ) = c 1 Ẑ0 in R 2 , (11.38) 
where

Ẑ0 = L[ Z0 ]. Lemma 11.4. Let 0 < σ < 1, > 0, σ + < 2 and 1 < ν < min(1+ 2 , 3-σ 2 , 3 
2 ). Let 0 < q < 1. Then there is C such that for τ 0 large the following holds. Suppose that h is radially symmetric, satisfies h ν,m,6+σ, < ∞ and

R 2 h(y, τ )dy = 0, R 2 h(y, τ )|y| 2 dy = 0, τ > τ 0 .
Then there exist c 1 ∈ R and a solution φ(y, τ ) of problem (11.38) that define linear operators of h and satisfy

φ ν-1 2 ,m+ q-1 2 ,4,2+σ+ ≤ C h ν,m,6+σ, . |c 1 | ≤ C 1 τ ν-1 0 (log τ 0 ) m+1 h ν,m,6+σ, .
Proof. Consider equation (11.27), where H is the function constructed in Lemma 11.1. By Lemma 11.3, there is c 1 such that the solution Φ of (11.27) can be decomposed as Φ = Φ 0 + a(τ ) 2 Z 0 , where Φ 0 and a satisfy the estimates stated in that proposition. In combination with (11.4) we find

|Φ 0 (ρ, τ )| ≤ C h ν,m,6+σ, 1 τ ν-1 2 (log τ ) m+ q 2 min 1 (1 + |y|) 2 , τ |y| 4 (11.39) |a(τ )| ≤ C h ν,m,6+σ, 1 τ ν-1 (log τ ) m+q . |c 1 | ≤ C 1 τ ν-1 0 (log τ 0 ) m+1 h ν,m,6+σ, . (11.40) 
Moreover Φ 0 , a, c 1 are linear operators of H. From standard parabolic estimates and (11.39) we obtain

|∇Φ 0 (ρ, τ )| ≤ C h ν,m,6+σ, 1 τ ν-1 2 (log τ ) m+ q 2 min 1 (1 + |y|) 3 , τ |y| 5 .
(11.41)

We consider the equation for Φ 0 = Φ -a(τ ) 2 Z 0 , obtained from (11.27), and differentiate with respect to y j , j = 1, 2. Using standard parabolic estimates, together with (11.39), (11.41), and the bound for a (τ ) in (10.92), we obtain 

|D 2 Φ 0 (ρ, τ )| ≤ C h ν,m,6+σ, 1 τ ν-1 2 (log τ ) m+ q 2 min 1 (1 + |y|) 4 , τ |y| 6 . ( 11 
(ρ, τ )| ≤ C h ν,m,6+σ, 1 τ ν-1 2 (log τ ) m+ q 2 min 1 (1 + |y|) 4 , τ |y| 6 .
(11.43)

In the rest of the proof we show that

|φ(ρ, τ )| ≤ C h ν,m,6+σ, 1 τ ν-1 2 (log τ ) m+ q 2 1 (1 + ρ) 4 1 ρ ≤ √ τ τ 1+σ/2+ /2 ρ 2+σ+ ρ ≥ √ τ .
For this we consider the equation (11.38) written in the form

∂ τ φ = ∆φ -∇Γ 0 ∇φ + 2U φ + B[φ] + h, (11.44) 
where h = -∇U ∇ψ + h.

Using (11.43) and the radial formula for ψ = (-∆) -1 φ, we get

|∇ψ(y, τ )| ≤ C h ν,m,6+σ, 1 τ ν-1 2 (log τ ) m+ q 2 1 (1+ρ) 3 ρ ≤ √ τ τ ρ 5 ρ ≥ √ τ .
This estimate and the definition of the norm h ν,m,6+σ, , give

| h(y, τ )| ≤ C 1 τ ν-1 2 (log τ ) m+ q 2 h ν,m,6+σ,    1 (1+|y|) 6+σ |y| ≤ √ τ 1 τ 3+σ/2 ( |y| √ τ ) 6+σ+ |y| ≥ √ τ .
We now construct a barrier very similar to the proof of Proposition 8.1

φ(ρ, τ ) = A 1 1 τ ν-1 2 (log τ ) m+ q 2 g2 (ρ)χ 0 ρ √ τ + A 2 1 τ ν+ 3 2 (log τ ) m+ q 2 1 (1 + ρ/ √ τ ) 6+σ+ + A 3 1 τ ν+ 3 2 (log τ ) m+ q 2 e -ρ 2 4τ ,
where g2 is the function (10.61). We consider (11.44) 

in { (y, τ ) | τ > τ 0 , |y| > R 0 } where R 0 > 0 is a large constant. For suitable constants A 1 , A 2 , A 3 , C the function C h ν,m,6+σ
, φ is a supersolution. This computation requires ν < 3 2 . Moreover φ(y, τ ) ≤ C h ν,m,6+σ, φ(y, τ ) at |y| = R 0 . The initial conditions also compare well. Indeed, by Lemma 10.11 and (11.40) This finishes the proof.

|φ(ρ, τ 0 )| = c 1 | Ẑ0 (ρ)| ≤ C 1 τ ν-1 0 (log τ 0 ) m+1 h ν,m,6+σ, 1 τ 0 1 1 + ρ 6 ,
Proof of Proposition 11.1. Let φ, c 1 be the solution to (11.38) constructed in Lemma 11.4. Let φ 1 be the solution to (10.100). By Lemma 10.12 φ 1 satisfies

|φ 1 (ρ, τ )| ≤ C τ ν0-1 0 R(τ ) 2 τ ν0 R(τ 0 ) 2 1 (1 + ρ 4 ) min 1, τ 1/2 ρ 2+σ+ , (11.45) 
where 1 < ν 0 < 7 4 . Then the solution φ to (8.9) that we construct is given by φ = φ -c 1 φ 1 .

To get the desired estimate on φ we need to estimate |c 1 φ 1 |. Let f be given by (10.13). By (11.40) and (11.45)

|c 1 φ 1 (ρ, τ )| ≤ C 1 τ ν-1 0 (log τ 0 ) m+1 τ ν0-1 0 R(τ ) 2 τ ν0 R(τ 0 ) 2 1 (1 + ρ 4 ) min 1, τ 1/2 ρ 2+σ+ h ν,m,6+σ, ≤ C 1 log τ 0 R(τ 0 ) f (τ )R(τ ) 1 (1 + ρ 4 ) min 1, τ 1/2 ρ 2+σ+ h ν,m,6+σ, ≤ Cf (τ )R(τ ) 1 (1 + ρ 4 ) min 1, τ 1/2 ρ 2+σ+ h ν,m,6+σ, provided 1 
2 + ν -ν 0 < 0. But ν 0 can be taken close to 7 4 , so we obtain the result by assuming ν < 

∂ τ φ = L[φ] + h, in R 2 × (τ 0 , ∞), φ(•, τ 0 ) = 0 in R 2 , (12.3) 
for functions with no radial mode, as explained at the beginning of Section 11. Later on, we will consider equation (8.3) for functions with no radial mode, where we will treat the operator B[φ] as a perturbation term that can be assimilated to the right hand side.

The main step in the proof is the following estimate, valid when the functions involved have no radial mode. Proposition 12.1. Let 0 < σ < 1, 0 < < 2, 0 < ν < min(1 + 2 , 3 2 -σ 2 ), m ∈ R. Then there is a C > 0 such that for any τ 0 sufficiently large the following holds. Suppose that h(y, τ ) has no radial mode and satisfies h ν,m,5+σ, < ∞, R 2 h(y, τ )y j dy = 0 for all τ > τ 0 , j = 1, 2.

(12.4)

Then the solution φ(y, τ ) of (12. Proof. Since h(y, τ ) has no radial mode, all functions involved in the proof have also this property.

We use the notation from §9.2, particular g = φ U -(-∆) -1 φ, g ⊥ = g -a with a(τ ) ∈ R such that g(y, τ )U dy = 0 because g has no radial mode, so that a(τ ) = 0, g ⊥ = g, φ ⊥ = φ. Then the proof proceeds as the proof of Proposition 10.1 with some simplifications, since there is no need to estimate a. We write (12.3) as

∂ τ φ = ∇ • (U ∇g ⊥ ) + h, in R 2 × (τ 0 , ∞).
We multiply this equation by g and integrate in R 2 . Let R > 0 be a large fixed constant and let (12.7)

f (τ ) = 1 τ ν (log τ ) m .
The proof is presented below. We use this to estimate

ω(τ ) = R 2 \B R g 2 U 1/2 ≤ Cf (τ )R 1-σ h ν,m,5+σ, + ω f R ∞,T2 , which implies ω(τ ) f (τ )R ≤ CR -σ h ν,m,5+σ, + CR -σ ω f R ∞,T2 . 
We deduce that ω f R ∞,T2 ≤ CR -σ h ν,m,5+σ, , by choosing R as a large constant. Now we let T 2 → ∞ and find ω(τ ) ≤ Cf (τ )R h 2 ν,m,5+σ, , τ > τ 0 .

(12.8)

The inequalities that follow hold for τ > τ 0 . Combining (12.8) with (12.6) we obtain (For this we need ν < 1 + 2 , ν + σ 2 < 3 2 .) This proves (12.5).

Proof of (12.7). We define g 0 = U g, which satisfies the equation (12.12) Using (12.11), (12.12) and g 0 = gU we get that

|∇U • ∇g + g∆U | ≤ C RK τ ν (log τ ) m (1 + |y|) 4 .
We observe that for i = 1, 2 But from g = φ U -ψ, ψ = (-∆) -1 φ we have -∆ψ -U ψ = U g = g 0 .

Multiplying this equation by z i = ∇Γ 0 e i defined in (9.2) and integrating we get We now use a barrier as in the proof of Lemma 10.8, in a domain of the form (R 2 \ B R0 ) × (τ 0 , ∞) where R 0 is a large constant. We let g(y) be the radial decaying solution to -∆ 6 g = We assume that ν < 3 2 -σ 2 -ϑ 2 , ν < 1 + 2 , ν + σ 2 < 3 2 , and σ + ϑ < 1. Since ϑ > 0 is arbitrary we only need ν < 3 2 -σ 2 , ν < 1 + 2 and σ < 1. Then, for an appropriate choice of C 1 , C 2 , the function RK ḡ(y, τ ) is a supersolution. By the maximum principle |g 0 (y, τ )| ≤ CRK ḡ(y, τ ). This proves the desired estimate (12.7).

Next we consider equation (8.3), which we recall,

∂ τ φ = L[φ] + B[φ] + h in R 2 × (τ 0 , ∞) φ(•, τ 0 ) = 0 in R 2 .
(12.16)

For φ with no radial mode we can write

B[φ] = (ζ 1 (t)φ + ζ 2 (t)y • ∇φ)χ 0 λy 5 √ t .
Corollary 12.1. Let 0 < σ < 1, 0 < < 2, 1 < ν < min(1 + 2 , 3 2 -σ 2 ), m ∈ R. Then there is a C > 0 such that for any τ 0 sufficiently large the following holds. Suppose that h(y, τ ) has no radial mode and satisfies h ν,m,5+σ, < ∞, R 2 h(y, τ )y j dy = 0 for all τ > τ 0 , j = 1, 2.

(12.17)

Then the solution φ(y, τ ) of (12. Proof. Using Proposition 12.1, there is a linear operator T so that given h with h ν,m,5+σ, < ∞, with no radial mode, and satisfying the condition (12.17) associates the solution φ of (12.3). Then the solution φ of (12.16) can be written as

φ = T [B[φ] + h].
The estimate (12.5) implies φ ν,m,3+σ,2+ ≤ B[φ] + h ν,m,5+σ, .

Using standard parabolic estimates we also get Then for τ 0 large we deduce the estimate (12.18).

We are now in a position to prove Proposition 8.2 in the general case.

Proof of Proposition 8.2. We decompose h = h 0 + h 1 and φ = φ 0 + φ 1 as in (12.1), (12.2). We apply Proposition 11.1 to get φ 0 ν-1 2 ,m+ q 2 ,4,2+σ+ ≤ C h ν,m,6+σ, . To estimate φ 1 we use Corollary 12.1. First we select 0 < ϑ < 1. Then note that h 1 ν,m,6-ϑ,σ+ +ϑ ≤ C h ν,m,6+σ, .

Then by Corollary 12.1 we obtain a solution φ 1 of (12.16) such that φ 1 ν,m,4-ϑ,2+σ+ +ϑ ≤ C h 1 ν,m,6-ϑ,σ+ +ϑ . This implies φ 1 ν-1 2 ,m+ q 2 ,4,2+σ+ ≤ φ 1 ν-ϑ 2 ,m+ q 2 ,4,2+σ+

≤ C h ν,m,6+σ, .

To apply Corollary 12.1 we need 1 < ν < 1 + 2 and ν < 1 + ϑ 2 . Given 1 < ν < min(1 + 2 , 3 -σ 2 , 5 4 ) we can select ϑ ∈ (0, 1 2 ) such that ν < 1 + ϑ 2 and then proceed. This concludes the proof.

The outer problem

We consider the linear outer problem:

∂ t φ o = L o [φ o ] + g(x, t), in R 2 × (t 0 , ∞) φ o (•, t 0 ) = 0, in R 2 . (13.1)
where

L o [ϕ] := ∆ x ϕ -∇ x Γ 0 x -ξ(t) λ(t) • ∇ x ϕ = ∆ x ϕ + 4 (x -ξ) |x -ξ| 2 + λ 2 • ∇ x ϕ.
For g : R 2 × (t 0 , ∞) → R we consider the norm g * * ,o defined as the least K such that for all (x, t) ∈ R 2 × (t 0 , ∞) |g(x, t)| ≤ K 1 (t -t 0 + A) a (log t)

β 1 1 + |ζ| b , ζ = x -ξ(t) √ t -t 0 + A ,
where A > 0 is a constant. We also define the norm φ * ,o as the least K such that

|φ o (x, t)| + (λ + |x -ξ|)|∇ x φ o (x, t)| ≤ K 1 (t -t 0 + A) a-1 (log t) β 1 1 + |ζ| b , ζ = x -ξ √ t -t 0 + A for all (x, t) ∈ R 2 × (t 0 , ∞).
We assume that the parameters a, b satisfy the constraints

1 < a < 4, 2 < b < 6, a < 1 + b 2 . (13.2) 
There is no restriction on β. We recall from (4.1) that we are assuming that where 0 < σ < 1 2 . Proposition 13.1. Assume that a, b satisfy (13.2), A λ(t0) 2 is sufficiently large, and λ, ξ satisfy (13.3), (13.4). Then there is a constant C so that for t 0 sufficiently large and for g * * ,o < ∞ there exists a solution φ o = T o p [g] of (13.1), which defines a linear operator of g and satisfies Proof of Proposition 13.1. To find a pointwise estimate for the solution φ o we construct a barrier.

| λ(t)| ≤ C t(log t) 3/2 , t > t 0 , (13.3 
Using polar coordinates x -ξ(t) = re iθ , L o can be written as:

L o [ϕ] = ∂ rr ϕ + 1 r + 4r λ 2 + r 2 ∂ r ϕ + 1 r 2 ∂ θθ ϕ.
First we construct a function ψ(r, t) such that

∂ t -∂ rr - 1 r + 4r λ 2 + r 2 ∂ r ψ ≥ 1 (t -t 0 + A) a (log t) β 1 (1 + r/ √ t -t 0 + A) b . Let ψ 1 (r, t) = 1 (t -t 0 + A) a-1 (log t) β 1 (1 + r 2 t-t0+A ) b/2 + C 1 e - r 2 
4(t-t 0 +A) .

Choosing a large constant C 1 , ψ 1 satisfies We note that for r ≤ √ t -t 0 + A we have

∂ t ψ 1 -∂ rr ψ 1 - 5 r ∂ r ψ 1 ≥ c 1 (t -t 0 + A) a (log t) β
λ 2 r(r 2 + λ 2 ) |∂ r ψ 1 | ≤ λ 2 r 2 + λ 2 1 (t -t 0 + A) a (log t) β ≤ C λ 2 (r 2 + λ 2 ) 2 1 (t -t 0 + A) a-1 (log t) β , (13.9) 
where we have used that A ≥ λ(t) 2 . Let ψ2 (r; λ) be the bounded solution of (13.10) Let ψ 2 (r, t) = 1 (t -t 0 + A)t a-1 (log t) β ψ2 (r; λ(t)). Then, using (13.10) and (13.3), we get

-∂ rr + 1 r + 4r λ 2 + r 2 ∂ r ψ2 =
∂ t -∂ rr - 1 r + 4r λ 2 + r 2 ∂ r ψ 2 = 1 (t -t 0 + A) a-1 (log t) β λ 2 (r 2 + λ 2 ) 2 1 - a -1 t -t 0 + A + β t log t ψ2 (r) (r 2 + λ 2 ) 2 λ 2 - λ λ ψ 2 r λ r λ (r 2 + λ 2 ) 2 λ 2 ≥ 1 (t -t 0 + A) a-1 (log t) β λ 2 (r 2 + λ 2 ) 2 1 -C r 2 + λ 2 t -t 0 + A .
Therefore there is δ > 0 (fixed independent of t 0 ) such that for all t 0 large, Let χ 0 ∈ C ∞ (R) be such that χ 0 (s) = 1 if s ≤ 1 and χ 0 (s) = 0 if s ≥ 2 and define χ δ (r, t) = χ 0 r δ √ t -t 0 + A .

∂ t -∂ rr - 1 r + 4r λ 2 + r 2 ∂ r ψ 2 ≥ 1 2 1 (t -t 0 + A) a-1 (log t) β
We consider

ψ = ψ 1 + M ψ 2 χ δ ,
where M > 0 is a constant to be fixed later. We compute, using (13.7) where C 2 is independent of M (although it depends on δ), and is supported on δ √ t -t 0 + A ≤ r ≤ 2δ √ t -t 0 + A. We claim that there is M > 0 and c > 0 so that for all t 0 sufficiently large

∂ t -∂ rr - 1 r + 4r λ 2 + r 2 ∂ r ψ ≥ c
∂ t -∂ rr - 1 r + 4r λ 2 + r 2 ∂ r ψ ≥ c 1 t a (log t) β (1 + r/ √ t) b , (13.14) 
for all r > 0, t > t 0 . Indeed, if r ≤ δ √ t -t 0 + A, then from (13.12), (13.7), (13.11) and (13.9) we get 

∂ t -∂ rr - 1 r + 4r λ 2 + r 2 ∂ r ψ ≥ c 1 (t -t 0 + A) a (log t) β (1 + r √ t-t0+A ) b -C λ 2 (r 2 + λ 2 ) 1 (t -t 0 + A) a-
(∂ t -L o )[ψ] ≥ c 2 1 (t -t 0 + A) a (log t) β (1 + r √ t-t0+A ) b .
A direct consequence of the proof of Proposition 13.1 (using the same barriers) is the following, for the initial value problem Proposition 13.2. Assume that a, b satisfy (13.2), A λ(t0) 2 is sufficiently large, and λ, ξ satisfy (13.3), (13.4). Then there is a constant C so that for t 0 sufficiently large and for φ o 0 * ,b < ∞ there exists a solution φ o of (13.18), which defines a linear operator of φ o 0 and satisfies φ o * ,o ≤ CA a-1 (log t 0 ) β φ o 0 * ,b .

∂ t φ o = L o [φ o ], in R 2 × (t 0 , ∞) φ o (•, t 0 ) = φ o 0 , in R 2 .

9 ) and R 2 2 E

 922 xE(ω) dx = 0, R (ω) dx = 0.(2.10)

For a function

  v(ζ) defined for ζ ∈ R 2 consider the operator ∆ 6 v(ζ) = ∆v(ζ) + 4 ζ |ζ| 2 • ∇ ζ v(ζ).

Lemma 4 . 1 .

 41 Let ϕ λ be defined by (3.11)-(3.8) with λ satisfying (4.1).

2 dx 1 4 ζ 2 )

 212 To find the solution φ with suitable decay at infinity we let g(ζ) = g 0 (ζis a second solution of the homogeneous equation, linearly independent of 1 We observe that g(ζ) = O(e -as ζ → +∞, which makes the solution (7.15) the only one with decay faster than O(ζ -4 ) as ζ → +∞. An explicit calculation gives that I = -8, and therefore

9. 1 .

 1 The Liouville equation. Here we consider the linearized Liouville equation∆ψ + U ψ + h = 0 in R 2 .(9.3)The stereographic projection transforms the linearized Liouville equation (9.3) into∆ S 2 ψ + 2 ψ + 2 h = 0 (9.4) in S 2 \ {P }, P = (0, 0, 1), where ψ = ψ • Π, h = (U -1 h) • Π.The functions in (9.2) are transformed through the stereographic projection into constant multiples of the coordinate functions zj

By ( 9 . 10 ) 2 L[φ]|y| 2 dy = 2 R 2 gZLemma 9 . 3 .

 91022293 and (9.11), g(y) = O(|y| 2-σ ), ∇g(y) = O(|y| 1-σ ) as |y| → ∞. Therefore the boundary terms tend to 0 as R → ∞, and we get R There are constants c 1 > 0, c 2 > 0 such that if φ : R 2 → R satisfies |φ(y)| ≤ 1 (1 + |y|) 3+σ , 0 < σ < 1 and (9.11), then

R 2 h 2 φ

 22 (y, τ )dy = 0 for all τ > τ 0 ,(10.4) and the same for the initial condition R 0 dy = 0.(10.5)It follows from the equation (10.1),(10.4), and (10.5) that the solution φ to (10.1) defined in §8 satisfies R 2

. 28 )

 28 Combining (10.25), (10.26), (10.27), (10.28) we obtain(10.24).

R 2 φ 2 φ 2 Z0

 222 (y, τ )|y| 2 dy, because R 2 L[φ]|y| 2 dy = 0, see Remark 9.2. Integrating R 2 φ(y, τ )|y| 2 dy = e (y, τ 0 )|y| 2 dy = c 1 e (y)|y| 2 dy, because R 2 L[ Z0 ]|y| 2 dy = 0. Using the asymptotic expansion of ζ one gets e -2 τ τ 0 ζ → ∞, as τ → ∞. But the bound (10.102) implies that lim τ →∞ R 2 φ(y, τ )|y| 2 dy = 0.

  Write the equation L[H] = h as ∇ • (U ∇g) = h

. 6 )

 6 Indeed, write Ψ = (-∆) -1 Φ. ThenLΦ = ∆Φ -∇Γ 0 • ∇Φ -∇U • ∇Ψ + 2U Φ. 0 • ∇Φ) = ∇(ΛΓ 0 ) • ∇Φ + ∇Γ 0 • ∇(ΛΦ) -2∇Γ 0 • ∇Φ (11.9) Λ(∇U • ∇Ψ) = ∇(ΛU ) • ∇Ψ + ∇U • ∇(ΛΨ) -2∇U • ∇Ψ. (11.10) But -∆Ψ = Φ and therefore -∆(ΛΨ) + 2∆Ψ = ΛΦ.Applying (-∆) -1 gives ΛΨ = (-∆) -1 (ΛΦ) + 2Ψ.

  )

R 2 H 1 (

 21 •, τ ) = 0.(11.18) 

. 42 )

 42 Let us define φ = L[Φ]. Then φ satisfies (11.38) because L[Z 0 ] = 0 and thanks to (11.39), (11.41), (11.42) we find |φ

  and this is supported on ρ ≤ 2 √ τ 0 , so|φ(ρ, τ 0 )| ≤ C h ν,m,6+σ, φ(y, τ ).By the maximum principle|φ(y, τ )| ≤ C φ(y, τ ) h ν,m,6+σ, , |y| > R 0 .

1 (

 1 3) satisfies |φ(y, τ )| ≤ C h ν,m,5+σ, τ ν (log τ ) m

R 2 g

 2 ⊥ (y, τ )U dy = 0. But R 2

Let T 2 2 g 2 UR 2 2 .

 22222 > τ 0 and let ϕ ∞,T2 = sup τ ∈[τ0,T2] |ϕ(τ )|. The following estimates are valid for τ ∈ [τ 0 , T 2 ]. As in the proof of Proposition 10.1 we getR ≤ Cf (τ ) 2 R 2 h 2 ν,m,5+σ, \B R g(τ ) 2 U 1/Similarly as in Lemma 10.8, from (12.6) we get|U g(y, τ )| ≤ Cf (τ )R h ν,m,5+σ, + ω f R ∞,T2 1 (1 + |y|) 3+σ .

R 2 g 2 U 1 ( 1 +

 2211 ≤ Cf (τ ) 2 R 2 h 2 ν,m,5+σ, , τ > τ 0 . and using(12.7) we also get|U g(y, τ )| ≤ Cf (τ )R h ν,m,5+σ, 1 (1 + |y|) 3+σ .Let ψ = (-∆) -1 φ so that φ = U g + U ψ. Using Lemma 9.1 and the previous estimate we obtain|ψ(y, τ )| + (1 + |y|)|∇ψ(y, τ )| ≤ C R τ ν (log τ ) m |y|) 1+σ h ν,m,5+σ, .(12.9)We consider the equation (12.3) in R 2 \ B R (0) written in the form∂ τ φ = ∆φ -∇Γ 0 ∇φ + 2U φ + h, where h = -∇U ∇ψ + h.By (12.9) and the definition of the norm h ν,m,5+σ, ,| h(y, τ )| ≤ C h ν,m,5+σ, 1 τ ν (log τ )Here we are using < 2. Using barriers as in the proof of Lemma 10.8 we get |φ(y, τ )| ≤ C h ν,m,5+σ, 1 τ ν (log τ )

∂ τ g 0

 0 = ∆g 0 -∇g 0 • ∇Γ 0 + 2U g 0 + h (12.10)where h = U v + h -U (-∆) -1 h and v := (-∆) -1 (∇ • (g 0 ∇Γ 0 )).As in the proof of Lemma 10.7 we obtain|g 0 (y, τ )| ≤ C R τ ν (log τ ) m (1 + |y|) 2 K,(12.11)whereK = h ν,m,5+σ, + ω f R ∞,T2.Applying parabolic estimates to (12.10) and a scaling argument we find|∇g 0 (y, τ )| ≤ C RK τ ν (log τ ) m (1 + |y|) 3 .

2 ∇ 2 U

 22 (U ∇g)y i dy = -R ∇ge i = R 2 g∇U e i .

R 2 gU 1 ( 1 +

 211 ∇Γ 0 e i = 0, which is the desired claim(12.13). We note that-∆v = ∇U • ∇g + g∆U = ∇ • (g∇U ) in R 2 . v(y) → 0 as |y| → ∞.Now we can apply Remark 9.1 and deduce that for any ϑ ∈ (0, 1) there is C such that|v(y, τ )| ≤ C RK τ ν (log τ ) m (1 + |y|) 2-ϑ . (12.14)We next estimate h. From Remark 9.1 and the assumptions on h, in particular (12.4), we have|((-∆) -1 h)(y, τ )| ≤ C h τ ν (log τ ) m (1 + |y|) 2-ϑ ,(12.15)for any ϑ ∈ (0, 1). Also from (12.11) we have|U g 0 (y, τ )| ≤ C R τ ν (log τ ) m (1 + |y|) 6 K.Therefore, from (12.15), (12.11), (12.14) we find that for any ϑ > 0 | h(y, τ )| ≤ C RK τ ν (log τ ) m |y|) 5+σ min 1, |y|) 6-ϑ .

1 (√ τ + C 1 1 τ ν+ 3 2 + σ 2 (

 1132 1+|y|) 5+σ and ḡ(y, τ ) = 1 τ ν (log τ ) m g(y)χ 0 y δ log τ ) m 1 (1 + |y|/ √ τ ) µ + C 2 e -|y| 2 4τwhere µ = min(5 + σ + , 6 -ϑ).

1 (

 1 [START_REF] Cortázar | Green's function and infinite-time bubbling in the critical nonlinear heat equation[END_REF] satisfies |φ(y, τ )| ≤ C h ν,m,5+σ, τ ν (log τ ) m

  |y|∇φ ν,m,3+σ,2+ ≤ B[φ] + h ν,m,5+σ, .Next we observe thatB[φ] ν,m,5+σ, ≤ C log τ 0 |φ| + |y||∇φ| ν,m,3+σ,2+ .

Lemma 13 . 1 . 2 .

 1312 φ o * ,o ≤ C g * * ,o . Proposition 6.3 in Section 6 follows from Proposition 13.1 with A = t 0 . Let 2 < β < 6 and h(r) satisfy|h(r)| ≤ λ -2 (r/λ + 1) β = λ β-2 (r + λ) β ,(13.5)where λ > 0. Then there is a unique bounded radial function ϕ(r) satisfyingL o [ϕ] + h = 0 in R Moreover ϕ satisfies |ϕ(r)| + (λ + r)|∂ r ϕ(r)| ≤ C (1 + r/λ) β-2 = C λ β-2 (r + λ) β-2 (13.6)Proof. The equation for ϕ is given by∂ rr ϕ(r) + 1 r + 4r λ 2 + r 2 ∂ r ϕ(r) + h(r) = 0, r > 0.We change variables ρ = r λ and let ϕ(r) = φ( r λ ). Then we need to solve∂ ρρ φ + 1 ρ + 4ρ 1 + ρ 2 ∂ ρ φ + h(ρ) = 0, ρ > 0,where h(ρ) = λ 2 h(λρ). )s(1 + s 2 ) 2 ds dv.By direct computation we get| φ(ρ)| + (1 + ρ)|∂ ρ φ(ρ)| ≤ C (1 + ρ) β-2 ,and this implies(13.6).

+ 4r λ 2 + 5 r ∂ r ψ 1 + 4 λ 2 r(r 2 + λ 2 ) ∂ r ψ 1 ≥ c 1 ( 2 + λ 2 )

 252221122 ) b , for r > 0, t > t 0 , where c > 0. Here we require a < 4 and a < 1 + b 2 , which are part of the conditions (13.2). Then∂ t -∂ rr -1 r r 2 ∂ r ψ 1 = ∂ t -∂ rrt -t 0 + A) a (log t) β 1 (1 + r √ t-t0+A ) b -4 λ 2 r(r 2 + λ 2 ) |∂ r ψ 1 |.(13.7)But∂ r ψ 1 = r (t -t 0 + A) a (log t) β -|∂ r ψ 1 | ≤ C λ 2 r 2 + λ 2 1 (t -t 0 + A) a (log t)

λ 2 (r 2 +

 22 λ 2 ) 2 , r > 0, given by Lemma 13.1. Then ψ2 can be written as ψ2 (r; λ) = ψ2 r λ , for a function ψ2 satisfying| ψ2 (ρ)| + (1 + ρ)| ψ 2 (ρ)| ≤ C 1 + ρ 2 .

λ 2 (r 2 +

 22 λ 2 ) 2 , for r ≤ 2δ √ t. (13.11) 

+ 4r λ 2 +

 2 1 (t -t 0 + A) a (log t) β (1 + r √ t-t0+A ) b -4 λ 2 r(r 2 + λ 2 ) |∂ r ψ 1 | + M χ δ ∂ t -∂ rr -1 r r 2 ∂ r ψ2 + R(r, t),(13.12)whereR = M ψ 2 ∂ t χ δ -2∂ r ψ2 ∂ r χ δ -ψ2 ∂ rr χ δ + 1 r ∂ r χ δ + 4 r r 2 + λ 2 ∂ r χ δ .We have, by(13.10),|R(r, t)| ≤ C 2 M λ 2 1 (t -t 0 + A) a+1 (log t) β ,(13.13)

(13. 18 )

 18 Consider the normφ o 0 * ,b = inf K such that |φ o 0 (x)| ≤ K (1 + |x-ξ(0)| √ t-t0+A ) b where b ∈ (2, 6), A > 0.

  4 , |y| ≤ t log t, which readily gives (4.4).

	Lemma 4.2. Assuming (4.1) we have

  . The idea is to work with a variant of it, which coincides with it for radial functions, but for functions without radial part it is cutoff outside the region |y|

	√ λ . More precisely, we decompose φ in a radial part [φ] rad defined by t
	[φ] rad (ρ, t) =	1 2π	0	2π	φ(ρe iθ , t)dθ	(5.45)

  Let us consider the contribution of the term λ 2 U ϕ * . Thanks to(6.19) 

			log t	,
	by Lemmas 7.1 and 7.4, to get			
	|ψ λ (y, t)| ≤	t	C √ log t	1 1 + |y|

  (log t) 2 ) is uniform in t 0 . With λ * given by (7.7), if λ 1 , λ 2 satisfy

			.11)
	as t → ∞, where O(	t 2	1

  Lemma 11.2. Let σ > 0, > 0 and 1 < ν < min(1 + 2 , 3 -σ 2 ). Let H(y, τ ) be radial in y and satisfy

		.13)
	and ζ 1 satisfies the same restriction, that is, (10.21).	
	The next lemma allows us to reduce to an equation like (11.12) but with a right hand side with
	more spatial decay.	
	H(•, τ ) = 0	(11.14)
	R 2	

and H ν,m,4+σ, < ∞. Then there exists H 1 and Φ 1 such that

  .[START_REF]Singularity patterns in a chemotaxis model[END_REF] Let Φ 1 , H 1 be the functions constructed in Lemma 11.2. Setting Φ = Φ 1 +Φ 2 , (11.28) is equivalent to the following equation for Φ 2

  Linear estimate with second moment (general)A convenient property of problem(8.3) is that it can be split into Fourier modes. If we decompose h(y, τ ) = h 0 (|y|, τ ) + h 1 (y, τ ), h 0 (ρ, τ ) = solves (8.3) if and only if φ i solves (8.3) where h is replaced with h i , for i = 0, 1. If h = h 1 we say that h has no radial mode.For the proof Proposition 8.2 in the general case we will consider in a first step the equation (8.3) but without the operator B, namely,

		1 2π	0	2π	h(ρe iθ , τ )dθ	(12.1)
	φ(y, τ ) = φ 0 (|y|, τ ) + φ 1 (y, τ ), φ 0 (ρ, τ ) =	1 2π	0	2π	φ(ρe iθ , τ )dθ,	(12.2)
	then φ					
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in addition to the other constraints needed in Lemma 11.4, namely 1 < ν < min(1 + 2 , 3 -σ 2 , 3 2 ).

12.

  1 (log t) β + M χ δ ∂ t -∂ rr -1 r + 4r λ 2 + r 2 ∂ r ψ2 ≥ c 1 (t -t 0 + A) a (log t) β (1 + If δ √ t -t 0 + A ≤ r ≤ 2δ √ t -t 0 + A,then by (13.12), (13.7), (13.9) and (13.13) we get∂ t -∂ rr -1 r + 4r λ 2 + r 2 ∂ r ψ ≥ c 1 (t -t 0 + A) a (log t) β (1 + r √ t-t0+A ) b -C 2 M λ 2 1 (t -t 0 + A) a+1 (log t) β = 1 (t -t 0 + A) a (log t) β c 3 b -C 2 M λ 2 t -t 0 + A -t 0 + A) a (log t) β (1 + + r 2 ∂ r ψ 1 ≥ c 1 (t -t 0 + A) a (log t) β (1 + -t 0 + A) a (log t) β (1 + -t 0 + A) a (log t) β (1 + -t 0 + A) a (log t) β (1 + r √ t-t0+A ) b -| ξ| |∂ r ψ|. But |∂ r ψ| ≤ C 1 (t -t 0 + A) a-1/2 (log t) β -t 0 + A) a-1 (log t) β -t 0 + A) a-1/2 (log t) βUsing (13.4) we see that if t 0 is sufficiently large,

	By taking A λ(t0) 2 large, we get
	∂ t -∂ rr -	1 r	+	4r λ 2 + r 2 ∂ r ψ ≥	c 2	1 (t r √ t-t0+A ) b ,	(13.16)
	for δ If r ≥ 2δ √ t -t 0 + A ≤ r ≤ 2δ √ t -t 0 + A, by (13.12) and (13.8) √ t -t 0 + A.
	∂ t -∂ rr -	1 r	+	4r λ 2 r √ t-t0+A ) b
								-C	λ 2 r 2 + λ 2	1 (t -t 0 + A) a (log t) β	1 (1 + r 2 t-t0+A ) b/2+1
								≥	1 (t r √ t-t0+A ) b c -C	λ 2 t -t 0 + A
								≥	c 2	1 (t r √ t-t0+A ) b	(13.17)
	if A λ(t0) 1 r	+	4r λ 2 + r 2 ∂ r ψ -∂ r	ψ (x -ξ) • |x -ξ|	ξ
							≥	c	1 t-t0+A ) b+1 + C (t 1 (1 + r √	1 (t 1 λ	1 (1 + r/λ) 3 χ δ (r, t)
	+ C	1 δ(t 1 (1 + r/λ) 2 χ 0	δ	√	r t -t 0 + A	.
								√	r t-t0+A ) b ,	(13.15)

if M ≥ C. Here we fix M = C. 2 is sufficiently large.

Combining (13.15),

(13.16

) and (13.17) we deduce the estimate

(13.14)

. Let ψ(x, t) = ψ(|x -ξ|, t).

Then by

(13.14

)

(∂ t -L o )[ψ] = ∂ t -∂ rr -
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