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Search for Octupole-Deformed Actinium Isotopes using Resonance Ionization Spectroscopy

In-source resonance ionization spectroscopy of the neutron-rich actinium isotopes 225-229 Ac has been performed at the ISAC facility in TRIUMF, probing a 2 D 3/2 → 4 P • 5/2 atomic transition. New data on the magnetic dipole moments and changes in mean-square charge radii δ r 2 of 226,228,229 Ac have been obtained. The comparison of the measured isotope shifts and magnetic dipole coupling constants a( 4 P • 5/2 ) of 225,227 Ac with a high-resolution data set is used to identify systematic uncertainties on the deduced δ r 2 A,215 and magnetic dipole moment values. The charge radii odd-even staggering is evaluated for the odd-N isotopes, showing that 226 Ac has an inverted odd-even staggering that might be linked with a reflection-asymmetric shape. Comparison of the magnetic dipole moments of 225,227,229 Ac with Nilsson-model estimates supports the assumption of octupole deformation in isotopes 225,227 Ac and its gradual decrease towards isotope 229 Ac. The changes in mean-square charge radii are compared to self-consistent calculations employing multiple modern energy density functionals: SLy5s1, BSk31 and DD-MEB1. For SLy5s1 in particular, self-consistent time-reversal breaking calculations of odd-odd nuclei incorporating finite octupole deformation are reported for the first time. For these calculations, the overall best agreement is obtained when the octupole degree of freedom is taken into account.

I. INTRODUCTION

The low-energy spectroscopy of nuclei unveils a large variety of phenomena. In the collective model, the gross features of many nuclear spectra can be explained by supposing that they are generated by deformed intrinsic states that can take different angular momenta in the laboratory frame. In the majority of cases, nuclear spectra can be understood by supposing that at low excitation energy the intrinsic states are axially and reflection symmetric. In some regions of the nuclear chart more general deformations have to be considered, such as octupole shapes.

Pear-shaped intrinsic configurations of nuclear ground states result from strong correlations between nucleons near the Fermi surface occupying single-particle states of opposite parity differing by three units of orbital and total angular momentum. This condition is fulfilled for proton or neutron numbers Z, N ≈ 34, 56, 88 and 134 [1]. Their reflection asymmetry manifests itself by the coex-istence of levels of both parities in the spectra that are connected by strong dipole transitions. Most cases of indirect experimental indications for reflection-asymmetric intrinsic shapes (such as near-degenerate doublets of levels of the same angular momentum but opposite parity in odd-mass nuclei) have been observed in the actinium region (Z ≈ 88 and N ≈ 134), but some evidence in lighter nuclei exists as well, for example in the barium region [2]. Nuclei with near-degenerate parity doublets offer a laboratory to study physics beyond the standard model that induces true breaking of reflection symmetry in the laboratory frame, thereby leading to a mixing of the states in the doublet [3].

First theoretical investigations of the appearance of octupole deformation were performed with the macroscopic-microscopic model [4][5][6]. This approach had also been used as the starting point to construct particlecore coupling models to describe the low-energy spectroscopic properties of odd and odd-odd octupole deformed nuclei in the actinium region [6][7][8][9][10]. For eveneven nuclei, the importance of octupole deformations in this mass region has been confirmed by Hartree-Fock plus Bardeen-Cooper-Schrieffer model (HF+BCS) and Hartree Fock Bogoliubov (HFB) calculations using different kinds of energy density functionals (EDFs) [11][12][13][14]. Beyond-mean-field calculations using either a collective Hamiltonian based on the self-consistent solutions of constrained EDF calculations [15,16], the symmetryrestored Generator Coordinate Method (GCM) [17] or using an interacting-boson Hamiltonian with parameters determined by mapping the microscopic energy surfaces to the expectation value of the Hamiltonian in the boson condensate [18] are at present only available for even-even nuclei.

In the actinium region, the odd-N neutron-rich radon, francium and radium isotopes exhibit larger charge radii than the average of their even-N neighbours [19-23, and references therein]. This effect is usually referred to as inverted odd-even staggering, as in most other regions of the chart of nuclides isotopes with odd neutron number have a mean-square charge radius that is smaller than the mean of the values of adjacent isotopes with even N [24]. In the actinium region, inverted odd-even staggering occurs exactly in the nuclei for which the presence of octupole deformation was proposed based on their nuclear spectroscopic properties [1,13]. It has been proposed that the underlying mechanism is the same as the one leading to the systematic difference of the splitting of parity doublets when comparing even-even, odd, and odd-odd nuclei. The analysis of such states in a schematic model indicates that the blocking of unpaired nucleons greatly reduces the fluctuations of the octupole moment, such that on the average low-lying states of nuclei with an unpaired neutron possess a larger octupole moment than states in the adjacent isotopes with even neutron number [6,[START_REF] Otten | Treatise on Heavy Ion Science[END_REF]. While the experimental observations are suggestive, the connection between octupole deformation and inverted odd-even staggering is not yet fully understood. For instance, the changes in mean-square charge radii of the neutron-rich francium and radium isotopes are reproduced by the extended Thomas-Fermi+Strutinski-Integral approximation to HF+BCS with a Skyrme interaction without including the octupole degree of freedom [25].

In this article, the results of an in-source laser ionization spectroscopy study of 225-229 Ac [START_REF] Teigelhöfer | Isotope shift and hyperfine structure measurements on silver, actinium and astatine by insource resonant ionization laser spectroscopy[END_REF] performed at TRIUMF are reported and discussed along with the already published isotopes 212-215,225,227 Ac [START_REF] Ferrer | [END_REF][START_REF] Reader | Hyperfine-structure measurements in neutral actinium and the nuclear moments of 225,227 Ac[END_REF][START_REF] Granados | [END_REF][START_REF] Granados | [END_REF]. Laserspectroscopy experiments provide information on the change in mean-square charge radii along an isotopic chain, the nuclear spin and the electromagnetic moments via isotope-shift and hyperfine-structure measurements. The current measurements make it possible to investigate the odd-even staggering behaviour and the trend of the magnetic dipole moments in the neutron-rich actinium isotopes. The evolution of the mean-square charge radii and the magnetic dipole moments in the actinium isotopes, currently representing the heaviest isotopic chain crossing the N = 126 shell closure, is discussed by presenting the TRIUMF data along with the previously measured results, which have not yet been described in former publications. The analysis of the experimental results will be complemented by an analysis of the role FIG. 1. Ionization scheme with vacuum wavelengths for actinium [31,32]. The right-hand side shows the hyperfine splitting for a I = 3/2 nuclear spin (not to scale) together with a corresponding example hyperfine spectrum of 227 Ac. The 2 D 3/2 splitting is unresolved, whereas the splitting of the 4 P • 5/2 can be obtained from the distance between the peaks according to Eq. ( 2).

of octupole deformation for describing the mean-square charge radii within a state-of-the-art nuclear EDF calculation.

The paper is organized in the following way: Sec. II details the experimental technique and set-up; Sec. III A presents a description of the analysis of the hyperfinestructure spectra; Sec. III B and Sec. III C provide a comparison of the experimental results with data on other nuclei in the lead region; Sec. III D details the EDF calculations of the changes in mean-square charge radii Sec III E discusses the magnetic dipole moments; Sec. IV summarizes the actinium laser spectroscopy results.

II. EXPERIMENTAL SET-UP

The actinium measurements were performed at three facilities using different laser resonance ionization spectroscopy methods while probing the same atomic transition.

Firstly, the neutron-deficient isotopes 212-215 Ac were investigated using both on-line in-gascell (i.e. 212-215 Ac) and in-gas-jet (i.e. 214,215 Ac) laser spectroscopy at the LISOL facility in Louvain-la-Neuve, Belgium [START_REF] Ferrer | [END_REF][START_REF] Granados | [END_REF]. Secondly, the neutron-rich isotopes 225,227 Ac were studied using off-line perpendicular highresolution laser spectroscopy at the Johannes Gutenberg University in Mainz, Germany [START_REF] Reader | Hyperfine-structure measurements in neutral actinium and the nuclear moments of 225,227 Ac[END_REF]33]. Finally, the neutron-rich isotopes 225-229 Ac were measured at TRI-UMF in Vancouver, Canada, using an ISAC on-line UC x target after irradiation to perform in-source resonance ionization spectroscopy. The latter experimental set-up will be briefly described in the following. A detailed explanation can be found in Refs. [START_REF] Teigelhöfer | Isotope shift and hyperfine structure measurements on silver, actinium and astatine by insource resonant ionization laser spectroscopy[END_REF]34]. For a description of the other two facilities, the reader is referred to Refs. [START_REF] Ferrer | [END_REF][START_REF] Reader | Hyperfine-structure measurements in neutral actinium and the nuclear moments of 225,227 Ac[END_REF][START_REF] Granados | [END_REF]33].

The isotopes 225-227 Ac and 225,227-229 Ac were measured at the ISAC facility [START_REF] Dilling | ISAC and ARIEL: The TRIUMF Radioactive Beam Facilities and the Scientific Program[END_REF] during two experimental campaigns in the years 2014 and 2016, respectively. The actinium isotopes were produced with a continuous beam of 480 MeV protons with typically 10 µA beam intensity irradiating a thick composite UC x -target [START_REF] Kunz | [END_REF]. Resonance ionization spectroscopy was conducted postirradiation on two targets that had received an integrated proton beam charge of 2515 µAh and 1755 µAh, respectively. In order to reduce isobaric contamination of surface ionized francium and radium isotopes, the measurements were performed directly after target irradiation, i.e. without proton beam on target. The isotopes produced inside the thick target diffused out of the target material and then effused inside the target container to make it into the 3-mm diameter 60-mm long transfer/ionizer tube of the ISAC target/ion-source assembly. The mean time required for the actinium atoms to leave the target material and diffuse into the 3-mm transfer tube was determined to be τ release = 20(6) h at a target container heated up to 2000 • C. Therefore only the long-lived actinium isotopes 225 Ac (T 1/2 = 10 d), 226 Ac (T 1/2 = 29.37 h), 227 Ac (T 1/2 = 21.77 y), 228 Ac (T 1/2 = 6.15 h), and 229 Ac (T 1/2 = 62.7 min) could be extracted from the UC x target with significant yield. Inside the transfer/ionizer tube the atoms interacted with the laser light from the TRIUMF Resonant Ionization Laser Ion Source (TRILIS) and were ionized. The ionization scheme [31,[START_REF] Sonnenschein | Laser developments and high resolution resonance ionization spectroscopy of actinide elements[END_REF] (see Fig. 1) consisted of a 438.58-nm step to excite a 2 D 3/2 → 4 P • 5/2 transition, which was scanned to probe the hyperfine structure (hfs) and isotope shift (IS), and a 424.69-nm step to ionize atoms via an auto-ionizing state. Laser wavelengths were measured with a wavemeter (High Finesse WS-7), which was calibrated monthly against a polarization stabilized He:Ne laser (Melles Griot 05-STP-901) that was in continuous operation. Both the 438.48-nm and 424.69-nm laser beams were produced by intra-cavity frequency doubling of two broadband Ti:Sa lasers with four-plate birefringent filters and 0.5-mm solid etalons for wavelength selection and tuning. The obtained spectral linewidth of both lasers was ∼ 3 GHz. Each Ti:Sa laser was pumped with up to 10 W from a frequency-doubled Nd:YAG laser (LEE LPD 100 MQG) at a repetition rate of 10 kHz. For intra-cavity frequency doubling either s-LBO or BBO crystals were used in angle-tuning configuration. The first-step laser was scanned by tilting a solid intra-cavity etalon with 40% reflectivity. The laser beams were overlapped on the laser table via a polarizing beam-splitter (PBS) cube and transported via dielectric mirrors over a distance of ∼ 20 m into the ISAC target/ion source's ionizer tube. Individual laser beam intensities could be adjusted without beam displacement with a λ/2-waveplate FIG. 2. Exemplary hyperfine spectra for all measured isotopes. The frequency is relative to the obtained center of gravity of 227 Ac (683560 GHz). The fit to the data is represented by the solid lines.

in front of the beam combining PBS. To reduce power broadening, the power of the first-step laser was reduced from the available hundreds of mW of UV light down to 5 -25 µJ/cm 2 . At the same time, the power of the second-step laser was reduced to 125 -375 µJ/cm 2 . Limited laser power fluctuations were present during a typical measuring time. Tests were performed to verify that the laser power didn't drop due to detuning: a scan over the required frequency range was carried out while monitoring constantly the delivered power; no change in power was observed. After resonance ionization, the ions were extracted and accelerated to 20 keV. The extracted ion beam was subsequently separated according to the ion's mass to charge ratio (A/q) by a two-stage magnetic mass-separation system consisting of a preseparator and a high-resolution mass separator. All ions, except for 226 Ac, were detected on a channeltron detector located 5 m downstream of the high-resolution mass separator. While the short-lived francium and radium isobars could be avoided in post-irradiation in-source spectroscopy, at mass A = 226, the long-lived surface-ionized 226 Ra (T 1/2 = 1600 y) remained, and required the use of the ISAC yield station [START_REF] Kunz | [END_REF] to identify the 226 Ac ion signal through β-decay detection on a set of scintillators resulting in a contamination-free measurement, as 226 Ra is a pure α-emitter.

III. RESULTS AND DISCUSSION

A. Fitting procedure Information on the magnetic dipole moment µ and the difference in mean-square charge radius δ r 2 A,A between two isotopes with mass number A and A was obtained from the hyperfine spectra. The position of the hyperfine transitions is determined by [40]:

v F,F = v 0 + ∆v F -∆v F , (1) 
where v 0 denotes the center of gravity of the hyperfine structure (hfs), the prime symbol indicates the upper level and ∆v F represents the frequency shift of the hyperfine component with total angular momentum F with respect to the atomic level without hyperfine splitting and is equal to

∆v F = a K 2 + b 3K(K + 1) -4I(I + 1)J(J + 1) 8(2I -1)(2J -1)IJ , (2) 
where K = F (F + 1) -I(I + 1) -J(J + 1) with I the nuclear spin and J the atomic spin. a and b are the magnetic dipole and electric quadrupole hyperfine coupling constants, respectively. These constants are related to the nuclear magnetic dipole (µ) and spectroscopic quadrupole (Q s ) moments by a = µ I B e (0)/IJ and b = eQ s ∂ 2 V ∂z 2 , where B e (0) and ∂ 2 V ∂z 2 are the magnetic-field and electric-field gradient created by the electron cloud at the center of the nucleus, respectively.

The hyperfine-structure spectra were fit with the open-source python package SATLAS [41] using a χ 2minimization routine. As illustrated in Fig. 1 for 227 Ac, the lower-state splitting of all isotopes was not resolved due to the Doppler-limited resolution of the in-source spectroscopy method. Therefore, in the fitting procedure the ratios a( 4 P • 5/2 )/a( 2 D 3/2 ) and b( 4 P • 5/2 )/b( 2 D 3/2 ) were fixed to the literature values of 227 Ac [START_REF] Ferrer | [END_REF], neglecting the hyperfine anomaly which is expected to be less than 1% [42]. The nuclear spins of 225,227,228 Ac were set equal to the literature assignments based on high-resolution laser-spectroscopy and beta-decay experiments (viz. I = 3/2, I = 3/2 and I = 3, respectively) [START_REF] Reader | Hyperfine-structure measurements in neutral actinium and the nuclear moments of 225,227 Ac[END_REF]39]. The nuclear spins of 226,229 Ac were tentatively deduced from the upper-state splitting, which is resolved in the hyperfine spectra, since the number of hyperfine-structure peaks in our experiment correspond to the number of hyperfine sublevels of this upper state. The latter is equal to 2I + 1 when I < J = 5/2 and equal to 2J + 1 = 6 when I ≥ J = 5/2. Correspondingly, three hyperfine-structure peaks in the 226 Ac spectrum points to the I = 1 assignment whereas four peaks in the 229 Ac spectrum correspond to the I = 3/2 assignment (cf. also the similar shape of the hyperfinestructure spectra for 225,227 Ac with the well established I = 3/2 assignment). These tentative assignments are in agreement with the values suggested by beta-decay experiments and transfer-reaction data [43,44]. The resonance line shapes were fully dominated by a Gaussian profile, originating from the Doppler broadening due to the high temperature of the source (∼ 2000 • C) as well as from the linewidth of the frequency-doubled 438.58-nm Ti:sapphire laser (∼ 3 √ 2 GHz). The experimental data were fit with the same full width at half maximum for all peaks. Within one unresolved multiplet, the intensity ratios were constraint to the theoretical Racah coefficients while the amplitudes of the multiplets were free fitting parameters. This data-analysis approach resulted in the fits displayed in Fig. 2, which presents exemplary hyperfine spectra for all measured isotopes.

The multiple scans of each isotope were fitted separately resulting in values for the center of gravity and magnetic dipole coupling constant a( 4 P • 5/2 ). The fit was not sensitive to a( 2 D 3/2 ), nor to the b( 4 P • 5/2 ) and b( 2 D 3/2 ) coupling constants. This was verified by explicitly changing the a(

4 P • 5/2 )/a( 2 D 3/2 ) and/or b( 4 P • 5/2 )/b( 2 D 3/2
) ratios. This resulted in the same centers of gravity and a( 4 P • 5/2 ) values within uncertainties. As a final value for the center of gravity and magnetic dipole coupling constant a( 4 P • 5/2 ), the weighted mean of the fit results was taken. To this weightedmean value both a statistical and systematic uncertainty was assigned. The statistical uncertainty is either the weighted average error or the weighted standard deviation depending on which value was larger. The systematic error, which includes indeterminacy of wavelength-meter calibration, was deduced by comparing the measured centers of gravity and magnetic dipole coupling constants a( 4 P • 5/2 ) of 225,227 Ac that were measured within the corresponding experimental campaign with a high-resolution data set [START_REF] Reader | Hyperfine-structure measurements in neutral actinium and the nuclear moments of 225,227 Ac[END_REF]. In the case of 228 Ac, with unresolved hyperfine spectra (see Fig. 2), an additional systematic uncertainty was assigned by comparing to the weighted mean values obtained with different fit constraints on the quadrupole coupling constants: quadrupole coupling constants fixed to zero and fixed to twice the literature values of 227 Ac, which takes into account the spin difference between 228 Ac and 227 Ac according to the strong coupling scheme. The systematic uncertainty was set equal to the maximal deviation, including the statistical uncertainties.

B. Changes in mean-square charge radii

The isotope shifts were extracted from the fitted centers of gravity of the hyperfine-structure spectra compared to the reference isotope 227 Ac. For consistency with the previously measured neutron-deficient c Total (statistical and systematic) experimental uncertainties are given in parentheses. The theoretical uncertainties, originating from the field-and mass-shift values [START_REF] Ferrer | [END_REF], are given in square brackets. d Ref. [START_REF] Reader | Hyperfine-structure measurements in neutral actinium and the nuclear moments of 225,227 Ac[END_REF] e Ref. [START_REF] Ferrer | [END_REF] f Ref. [39] actinium isotopes (Ref. [START_REF] Ferrer | [END_REF]), the isotope shifts were converted relative to the same reference isotope, 215 Ac (N = 126), using the literature isotope-shift value δv 227,215 ≡ v 227 -v 215 = -58319(10){133} MHz with the 1σ statistical and systematic uncertainty given in parentheses and curly brackets, respectively [START_REF] Ferrer | [END_REF].

A,215 (GHz) b δ r 2 A,215 (fm 2 ) c δv A,215 (GHz) b δ r 2 A,215 (fm 2 ) c δv A,215 (GHz) b δ r 2 A,
The changes in the nuclear mean-square charge radii δ r 2 A,215 were extracted from the measured isotope shifts δv A,215 via

δ r 2 A,215 = δv A,215 -M (mA-m215) mAm215 F , (3) 
where F is the field-shift and M is the massshift constant, both depending on the atomic transition. The corresponding atomic parameters for the 438.58-nm transition in actinium were calculated in Ref. [START_REF] Ferrer | [END_REF] using the Multi-Configuration Dirac-Hartree-Fock method. The field-shift constant was found to be F 438.58 = -39(2) GHz/fm 2 and the mass-shift constant M 438.58 = 500(180) GHz•amu was obtained. This indicates a very small contribution of the mass shift to the total isotope shift (e.g. the mass shift of 229 Ac with respect to 215 Ac is equal to 142 MHz). The atomic masses m A and m 215 were taken from Ref. [45]. The obtained δ r 2 A,215 values along with their isotope shifts and assumed spins are shown in Table I. The literature values for 225,227 Ac [START_REF] Ferrer | [END_REF][START_REF] Reader | Hyperfine-structure measurements in neutral actinium and the nuclear moments of 225,227 Ac[END_REF] have also been included to provide a complete overview of the neutron-rich actinium region.

The changes in the nuclear mean-square charge radii as a function of neutron number in the lead-actinium region, relative to N = 126, are displayed in Fig. 3. The characteristic increase in the gradient of the δ r 2 N,126 values beyond N = 126, often referred to as a "kink", is assumed to be evident in the actinium isotopes. This shell effect in the mean-square charge radii was found to be a universal feature when crossing a neutron shell-closure [50] and has already been seen in i.a. lead [47], bismuth [48,50], polonium [51][52][53] and francium [57] in the vicinity of N = 126. Understanding the occurrence of this kink in the mean-square charge radii at N = 126 remains a challenge faced by theories of nuclear structure. For an extensive discussion on the different theoretical approaches to this shell effect the reader is referred to Refs. [50,57], and references therein. However, since no isotope shifts are available for the actinium isotopes immediately after the N = 126 shell closure, due to their short life times, a more gradual gradienttransition or a kink at a higher neutron number cannot be excluded. Some theories predict this kind of behaviour (see Sec. III D for more details).

Figure 4 shows the δ r 2 N,126 values for the francium, radium and actinium nuclei. Within the theoretical uncertainties, originating from the F -and M -factor, the isotopic dependencies of the δ r 2 N,126 values are in agreement. The actinium isotopes follow the trend of the neighbouring francium and radium isotopic chains on both the neutron-deficient and neutron-rich sides of the nuclear chart. A small deviation in the general trend of the francium isotopes is observed at N = 140 signifying a change in odd-even staggering behaviour with respect to the actinium and radium isotopic chains (see Fig. 5) [58].

C. Odd-even staggering

A well-known effect in the mean-square charge radii along an isotopic chain is the staggering between radii of odd-N isotopes and their even-N neighbours. This odd-even staggering effect can be quantified for odd-N isotopes by the staggering parameter (γ N ) introduced by Tomlinson and Stroke [59]:

γ N = δ r 2 N -1,N 1 2 δ r 2 N -1,N +1 , (4) 
which does not depend on the electronic factors and their large uncertainties. Most nuclei exhibit normal odd-even staggering, i.e. γ N < 1; the mean-square charge radii of odd-N nuclei is smaller than the average of their even-N neigh-FIG. 3. δ r 2 N,126 values in the lead-actinium region. An arbitrary offset of 0.2 fm 2 between the isotopic chains has been added for clarity. Dashed line: N = 126 shell closure. Dotted line: Spherical droplet-model predictions for the lead isotopes [46]. Hollow symbols: isomeric states. Shaded areas: theoretical uncertainties originating from the calculation of the field-and massshift values. The experimental uncertainties, both statistical and systematic, are smaller than the symbol size. Right-pointing triangles: Pb, the isotope-shift values from Anselment et al . [47] have been re-evaluated using the reported atomic factors to separate the experimental and theoretical uncertainties of the δ r 2 N,126 values. Left-pointing triangles: Bi, the atomic factors reported by Barzakh et al . [48] have been used to deduce the δ r 2 N,126 values from the isotope-shift data measured by Pearson et al . [49]; 211 Bi taken from Ref. [50]. Up-pointing triangles: Po, even isotopes [51]; 217 Po [52], the result for I = 9/2 is presented; 209,211 Po [53], theoretical uncertainties of a magnitude similar to the experimental uncertainties have been considered; 205,207 Po, the isotope-shift values deduced by Kowalewska et al . [54] have been converted to be with respect to 210 Po. The converted isotope-shift values have been re-evaluated using the same approach as described by Cocolios et al . in Ref. [51]. Diamonds: At [55,56], all δ r 2 values were converted to be with respect to 211 At. Down-pointing triangles: Rn [START_REF] Otten | Treatise on Heavy Ion Science[END_REF], only experimental errors are reported. Stars: Fr, the isotope-shift values for 207-213,220-228 Fr [21] and 218m,219,229,231 Fr [22] have been re-evaluated using the quoted atomic factors to separate the experimental and theoretical uncertainties of the δ r 2 N,126 values; 214 Fr taken from Ref. [57]. All δ r 2 values were converted to be with respect to 213 Fr, using the results obtained by Dzuba et al . [21]. Squares: 208-214,220-230,232 Ra [23]; 231,233 Ra [58]. Circles: Ac, the isotope-shift values for 212-215,227 Ac [START_REF] Ferrer | [END_REF] have been re-analysed using the cited F -and M -values to separate the experimental and theoretical uncertainties of the δ r 2 N,126 values; 225 Ac [START_REF] Reader | Hyperfine-structure measurements in neutral actinium and the nuclear moments of 225,227 Ac[END_REF]. Left-filled circles: Ac, this work. The values for the neutron-rich actinium isotopes have been converted to be with respect to 215 Ac using the isotope-shift value δv 227,215 measured by Ferrer et al . [START_REF] Ferrer | [END_REF].

bours. This effect is often attributed to an interplay of quadrupole and pairing correlations. In this scenario, blocking of a neutron in an odd-N isotope reduces the amplitude of quadrupole fluctuations compared to the adjacent even-N isotopes, thereby slightly reducing the nuclear radius [START_REF] Otten | Treatise on Heavy Ion Science[END_REF]60]. Leaving open its microscopic origin, the odd-even staggering of charge radii along isotopic chains of spherical nuclei has been successfully modeled in EDF calculations through an elaborate pairing energy functional with density-dependent and gradient terms proposed by Fayans et al [61][62][63]. However, this type of pairing EDF has not been used to study the oddeven staggering of radii in symmetry-breaking calculations yet. An inversion of this staggering order (γ N > 1), already identified in the astatine [56], radon [START_REF] Otten | Treatise on Heavy Ion Science[END_REF] , fran-cium [22] and radium [58] isotopes around N = 135, has been associated with reflection-asymmetric nuclear shapes [1,60]. Although the nature of this possible connection still remains an open question, a qualitative explanation can be found in terms of a polarization of an quadrupole-octupole deformed core towards a more stable octupole-deformed nucleus by the unpaired neutron [1,22,60]. However, inverted odd-even staggering has also been observed in regions of the nuclear chart which have not been linked to octupole deformation. In the light krypton and strontium region the observation of inverted odd-even staggering has been interpreted as an effect of polarization of the even-even core towards strong quadrupole deformation driven by the unpaired neutron [64]. Whereas the inverted staggering in the FIG. 4.

Comparison of δ r 2 N,126 values for francium (stars [21,22,57]), radium (black squares [23,58]) and actinium ((left-filled) circles [START_REF] Ferrer | [END_REF][START_REF] Reader | Hyperfine-structure measurements in neutral actinium and the nuclear moments of 225,227 Ac[END_REF]). Dashed line: N = 126 shell closure. Dotted line: Spherical droplet-model predictions for the actinium isotopes [46]. Hollow symbols: isomeric states. Shaded areas: theoretical uncertainties originating from the calculation of the field-and mass-shift values. The experimental uncertainties, both statistical and systematic, are smaller than the symbol size. A more detailed description can be found in the caption of Fig. 3.

light mercury region has been explained as a quantum phase transition from a slightly quadrupole-deformed ground state towards a strongly deformed ground-state when changing neutron number [65].

Figure 5 shows γ N as a function of neutron number in the lead-actinium region. Normal odd-even staggering is observed in the N = 121-129 region of the nuclear chart with odd-even staggering parameters consistent for the wide range of proton numbers. The odd-even staggering parameter of 226 Ac is inverted and comparable to the values observed in the neutron-rich radium and radon isotopes. Owing to the large experimental uncertainty, it can only be stated that 228 Ac has a γ N value consistent with zero. Therefore no conclusions can be drawn on the disappearance of the inverted odd-even staggering as observed in francium at N = 139.

D. Comparison to EDF calculations

As mentioned in the introduction, approaches based on the microscopic-macroscopic method provide a rather satisfactory description of spectroscopic properties of even-even, odd and odd-odd nuclei in this region when considering octupole deformation. However, charge radii obtained from such models are rarely discussed in the literature, exceptions being Refs. [66][67][START_REF] Iimura | Proceedings of the Conference on Advances in Radioactive Isotope Science[END_REF]. In that framework, calculating the charge radius from the macroscopic charge distribution entering the model systematically gives different values than calculating it from the single-particle wave functions [START_REF] Iimura | Proceedings of the Conference on Advances in Radioactive Isotope Science[END_REF], which introduces an ambiguity to the comparison with data. Compared to reflection-symmetric calculations, the overall size of the charge radii of radon, francium and radium isotopes is better described when considering octupole deforma-FIG. 5. Comparison of the odd-even staggering parameter γN in the lead-actinium region evaluated from the mean-square charge radii displayed in Fig. 3. Dashed vertical line: N = 126 shell closure. Dashed horizontal line: absence of odd-even staggering, viz. γN = 1. Circles: Ac [START_REF] Ferrer | [END_REF][START_REF] Reader | Hyperfine-structure measurements in neutral actinium and the nuclear moments of 225,227 Ac[END_REF]. Squares: Ra [23,58]. Stars: Fr [21,22,57]. Down-pointing triangles: Rn [START_REF] Otten | Treatise on Heavy Ion Science[END_REF]. Diamonds: At [55,56]; The γN value is shown for both I( 218 At) = 2 and I( 218 At) = 3. Up-pointing triangles: Po [51][52][53][54]. Left-pointing triangles: Bi [48][49][50]. Rightpointing triangles: Pb [47].

tion [67]. These authors point to a discrepancy between the deformations predicted by the model and the values deduced from in-band B(E2) values. However, it has to be noted that their analysis compares values obtained with two different definitions of deformation parameters that are not equivalent [10,[START_REF] Ryssens | [END_REF].

However, systematic reflection-symmetry-breaking calculations of nuclei with EDFs have been mostly limited to even-even nuclei. Refs. [70,71] are notable exceptions that address a few selected odd-mass nuclei. The absence of such studies is related to the complexity, both technical and numerical, of treating blocked quasiparticles in that context. Their full treatment breaks the invariance of the HFB Hamiltonian under time-reversal, which adds additional so-called "time-odd" terms to the EDF and increases the computational cost compared to calculations for even-even nuclei. An additional difficulty relates to selecting the correct quasiparticle configuration: in a self-consistent calculation the mean-fields are different for each, such that in general a full calculation has to be performed for several candidate configurations in order to identify the one giving the lowest energy.

In this section, the results of self-consistent EDF calculations for the entire actinium isotopic chain are presented for the first time and the calculated δ r 2 values are compared to the experimental results. Calculations have been carried out with three different EDFs: the DD-MEB2 [72] parameterization of a relativistic Lagrangian with density-dependent meson couplings, as well as the BSk31 [73] and SLy5s1 [74] parameterizations of the nonrelativistic Skyrme EDF. While SLy5s1 uses the standard form of the Skyrme EDF, BSk31 includes additional density dependences of the gradient terms and corrections for various correlation effects. The DD-MEB2 and BSk31 parameterizations on the one hand and the SLy5s1 parameterization on the other hand result from different readjustment philosophies. DD-MEB2 and BSk31 have both been adjusted as nuclear mass models: their parameters were determined primarily by fitting measured nuclear masses (with an rms deviation of 1.15 and 0.56 MeV, respectively, on all the 2353 measured masses of AME2012 [75]), properties of homogeneous neutron matter, as determined by manybody calculations with realistic two-and three-nucleon forces, as well as the charge-radii data with an rms deviation of 0.029 and 0.027 fm, respectively, on all the 884 measured values [76]. The parameters of SLy5s1 were adjusted on experimental masses and charge radii of only a few doubly-magic nuclei ( 40 Ca, 48 Ca, 56 Ni, 132 Sn and 208 Pb) as well as some infinite nuclear matter properties and an additional constraint on the surface-energy coefficient [74]. It provides a satisfactory description of the deformation properties of very heavy nuclei, including the fission-barrier height of 226 Ra [START_REF] Ryssens | [END_REF].

Aside from considerations about the relevant shape degrees of freedom, this collection of theoretical results allows us to investigate whether there is a systematic difference between the δ r 2 values predicted by relativistic and non-relativistic EDFs in the region. Many relativistic approaches (although not all [77]) reproduce the socalled "kink" in the radii of the lead isotopes rather well, whereas many traditional non-relativistic parametrizations are known to be deficient in this respect. This success of the relativistic approach is often attributed to a specificity of its spin-orbit interaction [78]. Nonrelativistic approaches traditionally use a phenomenological ansatz for the two-body spin-orbit force with a single parameter. In relativistic approaches, a densitydependent spin-orbit field with a different isospin dependence arises as a natural consequence of Lorentz invariance without the need to posit its explicit form. However, in contrast to standard Skyrme or Gogny EDF most relativistic EDFs neglect the exchange terms. Doing the same in a non-relativistic Skyrme EDF adds an isovector degree of freedom that can be exploited to reproduce the kink of charge radii at N = 126 [79,80]. The same generalized spin-orbit interaction is also used in the nonrelativistic Fayans functional that also quite successfully describes the charge radii around N = 126 [61]. The converse is not true: relativistic EDFs with exact exchange can still be adjusted to describe the kink [81]. It was however shown in Ref. [82] that a better description of the kink significantly deteriorates the description of the masses of the lead isotopes. It remains difficult to reproduce both the masses and the δ r 2 values accurately within one framework. It has been argued that the kink observed in the radii results from the (partial) occupation of the neutron 1i 11/2 orbital above N = 126. The position of this orbital is influenced by many aspects of the EDF, and not only by the details of the spin-orbit interaction.

It has to be noted that the parametrizations of the microscopic-macroscopic models for which charge radii have been analysed also do not reproduce the kink at N = 126, as can be deduced from the change in slope of the deviation between theory and experiment as presented in Refs. [66,[START_REF] Iimura | Proceedings of the Conference on Advances in Radioactive Isotope Science[END_REF].

Conditions of the calculations

None of our EDF solvers has the functionalities needed to treat all parametrizations considered here, and among them only one offers the possibility for symmetryunrestricted calculations. As a consequence, the results will be grouped into two sets: one containing DD-MEB2 and BSk31 and the other one containing SLy5s1. Calculations with DD-MEB2 and BSk31 were performed with the harmonic-oscillator-based solver used in Refs. [72,73]. For these two parameterizations, reflection and time-reversal symmetry, as well as axial symmetry, were assumed. The blocked quasiparticles are treated with the equal filling approximation, a numerically efficient approximation that however suppresses part of the polarization effects from the blocked nucleons [83]. The calculations discussed here reflect exactly the conditions during the original readjustments of these parameterizations.

The calculations with SLy5s1 on the other hand were carried out with the MOCCa code, that represents the wavefunctions in 3D coordinate space. The code allows for the simultaneous breaking of reflection and timereversal symmetry, and is equipped with algorithms that enable it to reliably find the one-or two-quasiparticle configuration with the lowest energy [START_REF] Ryssens | Symmetry breaking in nuclear meanfield models[END_REF], and alleviate the numerical burden of symmetry-broken 3D calculations [START_REF] Ryssens | The European Physical[END_REF]. To assess the effect of octupole deformation, results obtained with SLy5s1 from full calculations allowing for reflection-asymmetric shapes and from restricted calculations that impose reflection symmetry are presented. The effects from time-reversal breaking from the blocked nucleons are always taken into account.

An additional difference between both sets of parametrizations is the calculation of charge radii. For DD-MEB2 and BSk31, the finite size of the proton and the intrinsic charge distribution of the neutron are taken into account through folding with suitable Gaussian form factors [86]. For SLy5s1, charge radii are directly calculated from the point proton density as the analytical correction for the finite size of the proton that are applied in the 3D codes [87] cancels out when calculating differences of mean-square radii.

Multipole moments

In order to characterize the shape of the nuclear density, the dimensionless multipole moments β m [87] are used:

β m = 4π 3R A r Ŷ m (θ, φ) , (5) 
where Ŷ m is a spherical harmonic and R = 1.2A 1/3 . These quantities are directly related to electromagnetic transition operators. They have to be distinguished from the deformation parameters β WS, of the expansion of the radius of the nuclear surface as used in microscopicmacroscopic models. Ref. [10] provides the formulas that establish the relation between both types of deformation.

The possible values of the multipole moments are restricted by symmetries of the nuclear density: for reflection-symmetric shapes β m = 0 for odd values of , while for axially symmetric shapes β m = 0 for m = 0.

In the calculations with SLy5s1, non-axial degrees of freedom were explored, but all mean-field minima were found to be axially symmetric. The calculations with DD-MEB2 and BSk31 were restricted to axially-symmetric configurations.

In self-consistent calculations of a nucleus' ground state, all multipole moments not constrained to zero by symmetries automatically take a value that minimizes the energy. In case of the actinium isotopes, β m up to = 10 take values that are significantly different from zero. For the discussion of radii, β 20 and β 30 are the dominant deformation modes and the discussion will be limited to their optimal values.

The role of the deformation of the nuclear density on the δ r 2 values can be easily understood in terms of a liquid-drop model: with increasing quadrupole deformation, the mean-square charge radius increases. When octupole deformation is added while keeping the quadrupole moment constant, the mean-square charge radius increases further. It has been argued in the past (see Section I) that it is the presence of octupole deformation that inverts the odd-even staggering [1,60].

Results and discussion

The calculated β 20 and β 30 values of the actinium isotopes are shown in Fig. 6 for all three EDFs. For the lighter (N < 126) actinium isotopes SLy5s1 and DD-MEB2 yield near-spherical shapes, while BSk31 predicts oblate deformation. As the neutron number increases, a sharp transition to prolate shapes appears at N = 130 for BSk31 and at N = 131 for SLy5s1 and DD-MEB2, which for SLy5s1 also coincides with the onset of octupole deformation. For N = 131, all parametrizations roughly agree on a quadrupole deformation of β 20 0.12, which then increases to about twice this value for N = 144. For SLy5s1 this increase is very gradual, whereas for the two others there is a second jump, at N = 135 for BSk31 and at N = 143 for DD-MEB2. For the heaviest isotopes, the latter then also gives slightly larger values than the other two parameterizations. The β 20 values obtained in symmetry-unrestricted calculations with SLy5s1 of eveneven isotopes of the adjacent thorium chain follow exactly the same trend and agree very well with the intrinsic charge quadrupole moment associated with B(E2) values in their ground-state bands [START_REF] Ryssens | [END_REF].

Figure 7 shows the δ r 2 N,126 values obtained using the different EDFs. All calculations reproduce the isotopic shifts for the light (N ≤ 126) actinium isotopes rather well, but differences arise for the heavier actinium isotopes. For isotopes right above the N = 126 closure, the difference between relativistic and non-relativistic parametrizations is the largest. Like for the lead isotopes, DD-MEB2 predicts a kink at N = 126, whereas BSk31 and SLy5s1 do not. There is a consensus that this kink, like its counterparts at N = 28 in the calcium chain [88,89] and at N = 82 in the tin chain [90], is a phenomenon exhibited by spherical nuclei. Therefore, its correct description is not crucial for the discussion of the well-deformed actinium isotopes addressed here, although it remains an interesting open question how one phenomenon blends into the other. Because of the already enhanced radii of the near-spherical isotopes, the effect of the onset of deformation around N = 131 on the isotopic shifts is much more gradual for DD-MEB2 than for the others. For SLy5s1, there is just one jump to larger values, whereas for BSk31 there are two, in each case for the same nuclei for which also the deformation changes abruptly. The SLy5s1 results, allowing for octupole deformation, agree fairly well with the data, while BSk31 underestimates the experimental data but agrees with the slope of the experimental results. The relativistic DD-MEB2, despite its better description of the radii of the lead isotopes, overestimates the experimental results

To illustrate the effect of octupole deformation on the δ r 2 values, a set of calculations with SLy5s1 in which reflection-symmetry was enforced has also been performed. The δ r 2 N,126 values obtained in this way, as compared to the reflection-asymmetric calculations, are presented in Fig. 8. The trend of quadrupole deformations is very similar in both calculations, and in particular for the isotopes 225-229 Ac the values are quasiidentical in both calculations. The SLy5s1 calculations with reflection symmetry underestimate the experimental trend by about the same amount as BSk31, where reflection symmetry is always enforced.

The individual contributions from quadrupole and oc- tupole deformation to the nuclear charge radius cannot be disentangled without looking also at other observables. In fact, there is no a priori reason that excludes the construction of an EDF that reproduces the δ r 2 values of 225-229 Ac without considering octupole deformation.

The β 20 values predicted by such an EDF would necessarily be larger than those obtained from a reflection symmetric SLy5s1 calculation. Such parameterization however would not be capable of describing other phenomena of nuclei in this region. First, it would overestimate the β 20 as inferred from B(E2) values in the neighbouring even-even thorium isotopes. More importantly, it would be incapable of providing an explanation of the observation of parity-doublet bands in 225 Ac, 227 Ac, and 229 Ac [10,60].

A comparison between the odd-even staggering parameter γ N obtained with SLy5s1 in which reflectionsymmetry was enforced, the reflection-asymmetric SLy5s1 calculations and the experimental values is pre-sented in Fig. 9. The reflection-asymmetric SLy5s1 calculations predict an inverted odd-even staggering in the range of N = 131 -143, coinciding with the region of finite octupole deformation. When restricting the calculations to reflection-symmetric configurations, the inverted staggering disappears for N = 133 and N = 135, but persists for N ≥ 137 albeit in a less pronounced fashion. Isotope 220 Ac (N = 131) exhibits an inverted staggering in both calculations, which is directly related to the onset of deformation. The extreme inverted staggering for 230 Ac (N = 141) in the unrestricted calculation can also be directly linked to the disappearance of octupole deformation for N = 142. These calculations hence suggest that the origin of inverted odd-even staggering in this region can at most be partially attributed to the role of octupole deformation: for several isotopes the inverted staggering persists even in the total absence of octupole deformation. A similar trend has been observed in the even-even radium isotopes in exploratory calculations [91].

E. Magnetic dipole moments

The nuclear magnetic moment µ A of the actinium isotope with mass number A was deduced from the following scaling relation:

µ A = µ 215 I A I 215 a A ( 4 P • 5/2 ) a 215 ( 4 P • 5/2 ) , (6) 
where 215 Ac (with I = 9/2, g = 0.920 (13) and a( 4 P • 5/2 ) = 2377(5){40} MHz [START_REF] Ferrer | [END_REF][START_REF] Granados | [END_REF]) was used as a reference to be consistent with the normalization applied in Ref. [START_REF] Granados | [END_REF] for the neutron-deficient actinium isotopes. In this relation the hyperfine anomaly between 215 Ac and the neutronrich actinium isotopes is neglected. Usually, in this region of the nuclear chart the hyperfine anomaly is less than 1% (see Refs. [42,92] for the anomaly of the adjacent francium and radium isotopes). Correspondingly, an additional 1% systematic uncertainty has been added to the magnetic dipole moments. Magnetic dipole coupling constants a( 4 P • 5/2 ) and magnetic moments calculated using Eq. ( 6) are presented in Tables II and III, respectively. The magnetic dipole moment of a deformed odd-mass nucleus in the strong coupling scheme can be expressed as [93]:

µ odd = g R I+(g K -g R ) K 2 I + 1 (1+δ K,1/2 (2I+1)(-1) I+1/2 b 0 ), (7) 
where g K is the intrinsic g-factor with K the projection of the nuclear spin I along the symmetry axis, b 0 the magnetic decoupling constant only relevant in the case of K = 1/2, g l = g free l (with g lp = 1 and g ln = 0 [START_REF] Neugart | The Euroschool Lectures on Physics with Exotic Beams[END_REF]) and g R the rotational gyromagnetic ratio equal to g R = 0.4 and g R = 0.25 for odd-Z and odd-N nuclei, respectively [95]. Different renormalizations of g s factors have been considered in the actinium region. Ref. [96] uses two options in the neighbouring francium isotopes without a definite conclusion on which g s value has to be used in this region of the nuclear chart, viz. g s = 0.6g free s and g s = 0.8g free s with g free sp = 5.587 and g free sn = -3.826 [START_REF] Neugart | The Euroschool Lectures on Physics with Exotic Beams[END_REF]. Whereas Refs. [6,97] take g s = 0.7g free s . For K = I = 1/2, Eq. ( 7) simplifies to:

g K = g l + 1 K (g s -g l ) s z , (8) 
µ odd = K K + 1 (g R + g K K). (9) 
Isotopes 225,227,229 Ac have nuclear spin I = 3/2. Near the proton Fermi level of actinium, there are two closely lying orbitals with K = 3/2: π(3/2 -[532]) and π(3/2 + [651]). These spin-flipped states will strongly interact and will mix through an octupole field component resulting in a significant hybridization of the magnetic dipole moments.

Nilsson model calculations using a folded Yukawa potential have been performed by Leander and Sheline in Ref. [6] resulting in s z values for the π(3/2 -[532]) and π(3/2 + [651]) orbitals in 225,227,229 Ac. These s z values have been determined at an equilibrium quadrupole deformation of β WS,2 ≈ 0.16 (taken from Table I in Ref. [10]) under the constraint of reflection-symmetry.

Here, β WS,2 is used instead of β 2 in the original work to emphasize the difference with the EDF β 20 values discussed in the previous sections. This β WS,2 value is consistent with the EDF β 20 values from Section III D, since inserting β WS,2 = 0.169, β WS,3 = 0.1 and the β WS,4 , β WS,5 and β WS,6 values as listed in Ref. [10] in Eq. (2.26) herein for 227 Ac, gives β 20 = 0.202. Using Eqs. ( 8) and ( 9), theoretical magnetic moments have been determined for the π(3/2 -[532]) and π(3/2 + [651]) configurations in 225,227,229 Ac with g s ranging from 0.6g free s to 0.8g free s . These theoretical values are displayed in Fig. 10 along with the experimental magnetic dipole moments of 225,227,229 Ac.

The experimental magnetic dipole moments µ exp of 225,227 Ac point towards a mixing between the oppositeparity configurations π(3/2 -[532]) and π(3/2 + [651]) orbitals. In contrast, µ exp ( 229 Ac) agrees fairly well with the magnetic dipole moment of the pure π(3/2 + [651]) state without invoking octupole deformation and the oppositeparity mixing connected with it. This may indicate that 229 Ac lies at the borders of a region of octupole deformation, or at least this observation points to the decrease of β WS,3 when going from 227 Ac to 229 Ac. This trend in octupole deformation is supported by the change in energy-splitting between the parity doublets in these actinium isotopes [START_REF]Nuclear Data Center website[END_REF]. The EDF calculations also predict a decrease in octupole deformation in going from 227 Ac to 229 Ac and almost a disappearance after 230 Ac (See Fig. 6).

The magnetic dipole moments of 225,227,229 Ac have been calculated by Leander and Chen [10] using states of an octupole-deformed Wood-Saxon shell model coupled to a reflection-asymmetric rotor core. The best overall agreement between the theoretical and experimental spectroscopic properties was obtained at β WS,3 = 0.1 and β WS,3 = 0.07 for 225,227 Ac and 229 Ac, respectively. Figure 10 also shows the magnetic dipole moments of 225,227,229 Ac along with a comparison to the theoretical magnetic dipole moments obtained in Ref. [10] assuming g s = 0.6g free s . The overall trend is reproduced. Note that in Ref. [10] 229 Ac is also considered to lie at the limits of the range of validity of the reflection-asymmetric rotor model since in order to match the experimental data Leander and Chen [10] were forced to decrease the β WS,3 value in going from 227 Ac to 229 Ac. This is in accordance with the EDF calculations and the qualitative analysis of the magnetic moment evolution mentioned above as well as with Möller et al. [START_REF] Möller | [END_REF] calculations, who also predicted a noticeable decrease of octupolarity exactly at 229 Ac. However, the theoretical values are systematically shifted towards smaller values. The experimental quadrupole moments of 225,227 Ac (1.55(0.05)[0.09]eb [START_REF] Reader | Hyperfine-structure measurements in neutral actinium and the nuclear moments of 225,227 Ac[END_REF] and 1.74[0.1]eb [START_REF] Ferrer | [END_REF], respectively, with the 6% systematic uncertainty stemming from atomic theory calculation [START_REF] Ferrer | [END_REF]) are larger compared to Leander and Chen's values (1.21 eb and 1.44 eb, respectively). However, the increasing trend of the quadrupole moments in going from 225 Ac to 227 Ac is experimentally confirmed. 

228 Ac

The magnetic dipole moment of odd-odd nuclei can be calculated by the following relation [96]:

µ odd-odd = K K + 1 (±g Kp K p ± g Kn K n + g R ) (10) 
with

K = |K p ± K n | (11) 
where K i is the projection of the angular momentum on the symmetry axis of the proton (i = p) and neutron (i = n) states, g K is the intrinsic g-factor and g R is the rotational gyromagnetic ratio (g R = Z/A ≈ 0.4 is usually adopted for odd-odd nuclei in this region of the nuclear chart [10]). The signs in Eq. ( 10) are in accordance with the signs in Eq. ( 11). The intrinsic gfactors g Ki can be calculated by Eq. ( 8). Alternatively, when K = 1/2, one can deduce empirical intrinsic gfactors g Ki,emp from the measured magnetic dipole moments µ odd,exp (see Eq. ( 9)):

g K,emp • K i = K i + 1 K i µ odd,exp -g R . ( 12 
)
228 Ac has Z = 89, N = 139 and I = (3). For Z = 89 and β WS,3 = 0, the proton orbitals closest to the Fermi level are π(3/2 With g K,emp from adjacent odd-A nuclei, calculated by Eq. ( 12) with the experimental magnetic dipole moments µ( 227 Ac) [START_REF] Reader | Hyperfine-structure measurements in neutral actinium and the nuclear moments of 225,227 Ac[END_REF], µ( 229 Ac) (present work) and µ( 227 Ra) [60], one can determine µ emp for 228 Ac via Eq. ( 10): µ emp ( 228 Ac; " 227 Ac + 227 Ra") = 0.83(0.02){0.04}µ N and µ emp ( 228 Ac; " 229 Ac+ 227 Ra") = 1.58(0.04){0.09}µ N . Evidently, only with µ emp assuming the same proton and neutron states in 228 Ac as in 227 Ac and 227 Ra, one can match µ exp ( 228 Ac) = 1.1(0.09){0.3}µ N . (Note that Möller et al. [START_REF] Möller | [END_REF] predicted very close quadrupole and octupole deformation parameters for 227 Ac and 227 Ra.) The experimental magnetic moment of 227 Ac (see paragraph III E 1) and 227 Ra [6,10] are explained in the framework of a single-particle approach with non-zero octupole deformation and, when used for the additivityrule, explain µ exp ( 228 Ac) hinting to the presence of octupole deformation.

226 Ac

The spin of 226 Ac (Z = 89 and N = 137) has tentatively been assigned as I = (1) (see Section III A). Assuming that the odd proton in 226 Ac remains in the same K = 3/2 orbital as in the adjacent isotopes 225,227 Ac, the neutron state has to be chosen with either K = 5/2 or K = 1/2 to match this spin assignment.

The ground states in Spin I = 1 can also be obtained by coupling the K = 3/2 proton states of 225,227 Ac with the K = 1/2 neutron state of isotonic 225 Ra (I = 1/2), which stems from the v(1/2 + [631]) Nilsson orbital with an admixture of the opposite-parity states v(1/2 -[770]) and v(1/2 -[761]) due to octupolarity [101]. From Eq. ( 7) it follows that:

g K K = K + 1 K(1 -2b 0 ) µ + K - K + 1 1 -2b 0 g R (13) 
when K = I = 1/2. Therefore, to extract g Kn,emp • K n values from the measured µ exp ( 225 Ra) = -0.7338 (15)µ N [60], the magnetic decoupling factor b 0 of this ground-state configuration has to be known. The magnetic decoupling factor b 0 can be deduced from the experimentally determined rotational decoupling factor a via the relation:

(g K -g R )b 0 = -(g l -g R )a - 1 2 (-1) l (g s + g K -2g l ) (14)
By solving the set of Eqs. ( 13) and ( 14) with a( 225 Ra) = 1.4 [101], µ exp ( 225 Ra) = -0.7338 (15)µ N and g s = {0.6, 0.8}g s,free , one obtains b 0 = {-1.64, -2.64} and g Kn,emp [START_REF] Möller | [END_REF]101]. Similar as the case of 228 Ac, the magnetic moment of 226 Ac corresponds to empirical values deduced using the additivity rule and the experimental magnetic moment of 227 Ac and 225 Ra. The latter are explained in the framework of a single-particle approach with a non-zero octupole deformation (see para-graph III E 1 and Refs. [10,101]) and thus hint to the presence of octupole deformation in 226 Ac. 

IV. CONCLUSIONS AND OUTLOOK

The hyperfine spectra of isotopes 225-229 Ac have been measured using in-source resonance ionization laser spectroscopy at the ISAC facility in TRIUMF, probing a 2 D 3/2 → 4 P • 5/2 atomic transition. From the measured hyperfine spectra, data on the changes in the nuclear meansquare charge radii and the magnetic dipole moments of isotopes 226,228,229 Ac have been extracted. Comparison with the high-resolution data set [START_REF] Reader | Hyperfine-structure measurements in neutral actinium and the nuclear moments of 225,227 Ac[END_REF] for isotopes 225,227 Ac allowed for systematic-uncertainty assignments on the deduced δ r 2 A,215 and magnetic dipole moment values of the newly investigated isotopes.

Two conclusions could be drawn about the meansquare charge radii of the actinium isotopes. Firstly, the charge radii follow the same trend as previously observed in the neighbouring radium and francium isotopes on both the neutron-rich and neutron-deficient edges of the nuclear chart. Secondly, the charge radii display an inverted odd-even staggering for 226 Ac, while the relative odd-even staggering parameter for 228 Ac is within the large experimental uncertainties consistent with zero.

Calculations with three different nuclear EDFs have been performed differing in their form, fit strategy and capacity to describe charge radii around 208 Pb: SLy5s1, BSk31 and DD-MEB1. For SLy5s1 in particular, fully-fledged self-consistent blocked HFB calculations of odd-odd nuclei simultaneously considering reflection and time-reversal symmetry breaking are reported for the first time. The explanation of the spectroscopic features of 225-229 Ac implies a large static intrinsic octupole deformation of these nuclei. Our calculations find octupole-deformed ground states for actinium isotopes with 130 < N < 142. It is shown that the description of the experimental δ r 2 values of the actinium isotopes with N > 136 is markedly better when the octupole de-gree of freedom is taken into account.

The magnetic dipole moments of the odd-mass actinium isotopes are compared with results from an octupole-deformed Wood-Saxon shell-model rotor-plusparticle approach [10] as well as with values obtained in the framework of the reflection-symmetrical Nilsson model [6]. These comparisons indicate a noticeable octupole deformation in 225,227 Ac with decreasing importance in 229 Ac. These conclusions are further supported by comparing the magnetic dipole moments of 226,228 Ac with predictions using the additivity rule.

It will be instructive to extend as well as to repeat the actinium laser spectroscopy measurements using highresolution methods such as the in-gas-jet technique previously applied for the neutron-deficient actinium isotopes [START_REF] Ferrer | [END_REF]. This would not only allow for reducing the uncertainties on the mean-square charge radii and magnetic dipole moments of the isotopes 226,228,229 Ac and determining their quadrupole moments, but also for extending the investigated neutron-rich actinium region towards 222-234 Ac, where octupole deformation is expected to disappear (see Fig. 4 in Ref [START_REF] Ferrer | [END_REF]).
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 1 The parameterizations: DD-MEB2, BSk31 and SLy5s1
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 6 FIG. 6. Comparison of the β20 and β30 values for the SLy5s1, BSk31 and DD-MEB2 interactions. In the calculations with BSk31 and DD-MEB2 β30 is restricted to 0 by the imposed reflection symmetry. Triangles: Non-relativistic EDF values. Squares: Relativistic EDF values. Dashed line: N = 126 shell closure.
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 7 FIG. 7.Comparison of the δ r 2 N,126 values for the SLy5s1, BSk31 and DD-MEB2 interactions. Triangles: Nonrelativistic EDF values. Squares: Relativistic EDF values. Dashed line: N = 126 shell closure.
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 89 FIG. 8. Comparison of the experimental δ r 2 N,126 values with calculations using the SLy5s1 interaction. Filled symboles (Octupole): Allowing for reflection-asymmetric shapes. Hollow symbols (Symmetric): Constrained to reflectionsymmetric shapes. Dashed line: N = 126 shell closure.
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 10 FIG. 10. Circles: Magnetic dipole moments for isotopes 225,227 Ac [28]. Left-filled circles: Magnetic dipole moment of isotope 229 Ac measured in this work. Error bars: statistical and systematic uncertainties, including an 1% error due to the hyperfine-anomaly uncertainty. Down-pointing triangles: Theoretical calculations of the magnetic dipole moments of isotopes 225,227,229 Ac performed by Leander and Chen in Ref. [10]. The theoretical magnetic dipole moments of the pure π(3/2 -[532]) and π(3/2 + [651]) configurations using gs = 0.8g free s and gs = 0.6g free s are shown in squares and stars, respectively. The shaded areas indicate the change of the theoretical magnetic moments with gs ranging from 0.6g free s to 0.8g free s .

  Ac obtained by coupling the proton states of 225,227 Ac (I = 3/2) with the neutron state of 225 Ra (I = 1/2). Compare with the experimental value µexp( 226 Ac) = 1.06(0.04){0.03}µN . Proton state Neutron state µemp(µN ) gs = 0.6g free s gs = 0.8g free s 227 Ac 225 Ra 1.255(0.015){0.025} 1.159(0.015){0.025} 225 Ac 225 Ra 1.347(0.016){0.033} 1.251(0.016){0.033}

Table I .

 I Nuclear spins I, measured isotope shifts δv A,215 and deduced mean-square charge radii δ r 2 A,215 .

	Mass	Nuclear	This work ('14)	This work ('16)	Previous work
	number	spin I a	δv		

  215 (fm 2 ) c 225 3/2 d -50.3(0.06){0.2} 1.29(0.007)[0.07] -49.9(0.1){0.3} 1.28(0.01)[0.07] -50.2(0.02){0.1} d 1.29(0.003)[0.07] d

	226	(1)	-54.7(0.1){0.2} 1.41(0.008)[0.07]	...	...	...	...
	227	3/2 e	...	...	...	...	-58.3(0.01){0.1} e 1.50(0.004)[0.08]
	228	3 f	...	...	-62(0.2){1}	1.59(0.03)[0.08]	...	...
	229	(3/2)	...	...	-64.9(0.1){0.3} 1.67(0.01)[0.09]	...	...

a Tentative spin assignments are depicted in parentheses. b Statistical and systematic uncertainties are given in parentheses and curly brackets, respectively.

Table II .

 II Extracted hyperfine parameters a( 4 P • 5/2 ). Statistical and systematic uncertainties are given in parentheses and curly brackets, respectively. b Ref.[START_REF] Reader | Hyperfine-structure measurements in neutral actinium and the nuclear moments of 225,227 Ac[END_REF].

	Mass	This work ('14) This work ('16) Previous work
	number		a( 4 P • 5/2 )(MHz) a	
	225	2269(6){21}	2243(9){47}	2290(4){6} b
	226	2749(100){21}	...	...
	227	2084(31){21}	2176(27){71}	2105(3){5} b
	228	...	926(74){208}	...
	229	...	3142(37){71}	...

a

Table III .

 III Deduced magnetic dipole moments µ(µN ). Statistical and systematic uncertainties, including an 1% error due to the hyperfine-anomaly uncertainty, are given in parentheses and curly brackets, respectively.

	Mass number	µ(µN ) a
	225	1.33(0.019){0.04}
	226	1.06(0.04){0.03}
	227	1.22(0.018){0.03}
	228	1.1(0.09){0.3}
	229	1.82(0.03){0.07}

a

Table IV .

 IV Theoretical magnetic dipole moments of the pure π(3/2 -[532])⊗v(3/2 + [631]) and π(3/2 + [651])⊗v(3/2 + [631]) configurations at zero octupole deformation using gs = 0.8g free , the theoretical magnetic dipole moments µ odd-odd,theo of the π(3/2 -[532])⊗v(3/2 + [631]) and π(3/2 + [651])⊗v(3/2 + [631]) configurations at zero octupole deformation could be obtained (see Table IV). In this theoretical framework, µ exp ( 228 Ac) = 1.1(0.09){0.3}µ N can be explained by a mixing between the spin-flipped π(3/2 -[532]) and π(3/2 + [651]) orbitals and therefore by including octupole deformation.

	s value µexp( 228 Ac) = 1.1(0.09){0.3}µN . and gs = 0.6g free . Compare with the experimental s
	Configuration	µ odd-odd,theo (µN ) gs = 0.6g free s gs = 0.8g free s
	π(3/2 -[532]) ⊗ v(3/2 + [631])	0.76	0.48
	π(3/2 + [651]) ⊗ v(3/2 + [631])	1.70	1.85
	Eq. (8) with theoretical s z values from Ref. [6] results in
	theoretical g K values of the π(3/2 -[532]), π(3/2 + [631])
	and v(3/2 + [631]) orbitals at zero octupole deformation
	with g s ranging from 0.6g free s	to 0.8g free s . By apply-
	ing Eqs. (10) and (11)		

-[532]

) and π(3/2 + [651]) (See discussion in Sec. III E 1). For N = 139, the corresponding neutron orbital is v(3/2 + [631]), which is the ground state of isotonic 227 Ra (I = 3/2)

[6]

. Using

Table V .

 V 221,229 Ra have spin I = 5/2 with the leading Nilsson configurations being v(5/2 + [633]) and v(5/2 + [622]), respectively[100]. Both Nilsson states are relatively close to the neutron Fermi level of 226 Ac and have to be considered as possible neutron states in 226 Ac. Applying Eq. (12) with the experimental magnetic dipole moments of isotopes225,227 Ac and221,229 Ra[60], results in empirical g K,emp factors which can be inserted in Eq. (10) to obtain empirical magnetic dipole moments of226 Ac. These values are summarized in TableV. Neither of these combinations can reproduce the sign of µ exp ( 226 Ac) = 1.06(0.04){0.03}µ N . Empirical magnetic dipole moments for 226 Ac obtained by coupling the proton states of225,227 Ac (I = 3/2) with the neutron states of221,229 Ra (I = 5/2). Compare with the experimental value µexp( 226 Ac) = 1.06(0.04){0.03}µN .

	proton state	neutron state	µemp(µN )
	227 Ac	221 Ra	-0.868(0.015){0.025}
	225 Ac	221 Ra	-0.959(0.016){0.033}
	227 Ac	229 Ra	-0.390(0.015){0.025}
	225 Ac	229 Ra	-0.482(0.016){0.033}

  • K n = {-0.2855, -0.4768}, respectively. The µ emp values obtained by coupling the proton states of225,227 Ac with the neutron state of225 Ra are presented in TableVI. µ emp (" 227 Ac + 225 Ra") = 1.159(0.015){0.025}µ N (taking g s = 0.8g s,free ) agrees fairly well with the experimental result µ exp ( 226 Ac) = 1.06(0.04){0.03}µ N . It should be noted that the magnetic moments of 227 Ac and 225 Ra can currently only be explained with the assumption of non-zero octupole deformation[10,101] and that Möller et al. predicts comparable quadrupole and octupole deformation parameters for both isotopes

Table VI .

 VI Empirical magnetic dipole moments for226 
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