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Abstract—Upper tropospheric clouds strongly influence
the energy budget of the Earth, but the structure of
their vertical heating rate profiles is still poorly known.
This is due to the fact that global observations of
these heating rates are sparse. The active lidar and
radar measurements from CALIPSO and CloudSat as
part of the A-Train satellite constellation provide such
heating rate profiles, but only on narrow nadir tracks
separated by about 2500 km between successive orbits.
The Atmospheric Infrared Sounder (AIRS) on the other
hand provides cloud properties with a large instantaneous
horizontal coverage, but not their vertical structure. In
this study, we train deep learning neural networks with
four years of collocated data, including meteorological
reanalyses, to develop optimized non-linear regression
models which predict these heating rates as a function
of the most suitable cloud and atmospheric properties.
These models are then applied to the full statistics of
more than 15 years of AIRS observations in order to
construct complete 3D radiative heating rate fields which
can be related to the different parts of tropical convective
systems for process and climate studies.

I. MOTIVATION

Clouds play an important role in the global climate
system by altering the net surface radiation and in-
fluencing the diabatic heat budget of the atmosphere
through radiative heating/cooling as well as latent heat
release (e.g. [1], [2]). In particular, Upper Tropospheric
(UT) clouds, which are most frequently observed in
the tropics and represent about 40% of the Earth’s
total cloud cover [3], often form as cirrus anvils from
convective outflow, building mesoscale systems. In a
warming climate, tropical convection will intensify,
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Sorbonne Université, Ecole Polytechnique, CNRS, Paris, France.
2COOPETIC.

leading to colder convective systems which may include
a larger fraction of thin cirrus within and around the
anvils. The radiative heating of these thinner cirrus
may be critical to cloud climate feedback. However, the
horizontal and vertical structure of the radiative heating
rates is still poorly known which is partly due to a lack
of observation. This study aims to fill some of these
gaps by constructing complete 3D radiative heating
rate fields obtained from combining several satellite
observations and meteorological reanalyses with deep
learning which is an extremely active research area [4]
with a constantly increasing number of applications in
climate science.

The satellite observations used here originate from
the A-Train constellation [5] composed of several satel-
lites equipped with different instruments in a sun-
synchronous polar orbit with local overpass times
around 1:30 AM and 1:30 PM. We will focus on AIRS
aboard the Aqua satellite as well as the Cloud-Aerosol
Lidar with Orthogonal Polarization (CALIOP) aboard
CALIPSO and the Cloud Profiling Radar (CPR) aboard
CloudSat. The good spectral resolution of AIRS leads
to reliable cloud properties, even for thin cirrus. As
a passive cross-tracking instrument it provides a large
horizontal coverage but does not give information on
the vertical structure of the clouds. The latter can be
obtained from the active CloudSat radar and CALIPSO
lidar measurements which are performed only on a nar-
row nadir path, so the coincidence with the passive mea-
surements is limited to narrow nadir tracks separated by
about 2500 km (see upper panel of Fig. 1 for illustra-
tion). To fill the gaps between the orbits and expand the
vertical information over complete cloudy scenes, we
use supervised deep learning based on artificial neural
networks (ANN) to relate the cloud properties retrieved
from AIRS, together with coincident atmospheric and
surface properties from the meteorological reanalyses
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Fig. 1. Upper panel: emissivity distribution of UT cloud systems
from AIRS, overlaid with the nadir tracks of the CALIPSO li-
dar/CloudSat radar. Lower panel: illustration of the cloud system
approach.

ERA-Interim [6], to the vertical radiative heating rate
profiles obtained from CloudSat/CALIPSO.

II. METHOD

A. Cloud System Concept

As mentioned above, we are particularly interested in
UT clouds which occur most frequently in the tropics.
Thus, we will focus on the tropical latitude band (30 ◦N
to 30 ◦S) in this paper. UT clouds often form as cirrus
anvils from convective outflow and build mesoscale
systems. To study their properties in dependence of the
convective strength, a cloud system concept has been
developed which is based on two independent variables
retrieved from AIRS measurements: emissivity and
height [7]. As a first step, cloud systems are built from
adjacent elements of similar cloud height represented
by a cloud pressure pcloud < 440 hPa. Secondly, the
horizontal emissivity structure allows to distinguish
between convective cores (Cb defined by an emissivity
ε> 0.98), thick cirrus (0.5<ε< 0.98) and thin cirrus
anvil (ε< 0.5). The lower panel of Fig. 1 illustrates such
a cloud system with its three different cloud types where
the convective core only represents a small portion of
the system. The upper panel presents an example of the
horizontal emissivity structure of these cloud systems.

B. Data

The Aqua satellite carrying the AIRS instrument
has been launched in 2003, hence a 15-year time

series of cloud properties is available (2003-2018)[3].
The retrieved cloud properties are cloud emissivity,
pressure, temperature and height, together with their
uncertainties, derived from eight radiances along the
wings of the CO2 absorption band around 15µm. The
retrieval is based on a weighted χ2-method [8]. To
relate adjacent pixels within 2◦ x 2◦ grid boxes, 16
weather states have been determined based on a k-
means method applied to histograms of cloud emis-
sivity and pressure as described by [9]. ERA-Interim
meteorological reanalyses [6] are used to obtain surface
and atmospheric properties, including temperature and
water vapor profiles from which the relative humidity
(RH) for ten atmospheric layers is calculated in a
similar way as in [10]. All variables are summarized
in Table I.

The shortwave (SW) and longwave (LW) radiative
heating rate profiles retrieved from the active instru-
ments originate from the CloudSat 2B-FLXHR-LIDAR
product which is provided by the National Aeronau-
tics and Space Administration (NASA) and has been
described by [11] and [12]. CloudSat and CALIPSO
have been launched in 2006. The collocated AIRS-
CloudSat-CALIPSO-ERA-Interim dataset used in this
study comprises four years of data from 2007 to 2010.

C. Algorithm and Experiments

To extend the vertical heating rate structure through-
out entire cloud systems, we develop optimized non-
linear regression models by using supervised deep
learning. The models are trained and tested along the
nadir tracks of the active instruments using the four
years of collocated AIRS-CloudSat-CALIPSO-ERA-
Interim data. We apply the TensorFlow framework and
the Keras program library for python. Our ANN con-
sists of three fully connected layers with relu activation.
The training data set is randomly separated in three
portions as follows: 80% are used for training, 10% for
validation and 10% for testing, stratified by cloud type
and by a day/night flag. We use the mean absolute error
(MAE) between the prediction and the true value along
the track as loss function. The training is performed by
the Adam optimizer.

Two different kinds of sensitivity studies are con-
ducted. On one hand, the effect of varying input
variables is tested. On the other hand, we investigate
how many models have to be developed to optimally
extend the radiative heating rate profiles. This second
set of sensitivity studies is performed to examine if it
is advantageous to separate the training for land and
ocean as well as for different cloud types, since the
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TABLE I
LIST OF VARIABLES.

Clouds
CIRS-AIRS cloud properties εcloud, pcloud, Tcloud

Cloud retrieval uncertainties dεcloud, dpcloud, dTcloud, χ2
min

Cloud spectral emissivity diff. (εcloud(12µm) - εcloud(9µm))
CIRS weather state at 2◦ x 2◦ WS (1-16), kernel distance
Atmosphere
Brightness temperatures Tb11.85, σ(Tb11.85), Tb7.18

ERA-Interim atmos. properties total precip. water, ptropopause

Atmospheric classification TIGR atmosphere [13]
Relative humidity profile RH profile over 10 layers
Temperature profile T profile over 10 layers
Surface
ERA-Interim surface properties Tsurf, psurf, nb of atm. layers

cloud properties vary strongly between the cloud types
and over land/ocean.

III. RESULTS

To analyse the influence of the different input vari-
ables, ANN models have been developed without cloud
type separation including data of all cloud types over
ocean. Table II presents the MAE of the predicted
cloud LW heating rates, depending on the set of input
parameters. As a first step, the basic cloud properties
(emissivity, spectral emissivity difference, pressure and
temperature, together with their according uncertainties
and the minimum from the χ2-method as quality in-
dex), atmospheric properties (total precipitable water,
tropopause pressure, classification of the atmospheric
profile from TIGR [13] and brightness temperatures at
11.85µm and 7.18µm as well as the brightness temper-
ature variance at 11.85µm over 3 x 3 AIRS footprints)
and surface properties (surface pressure, temperature
and the number of layers of the profile) have been
used. For this basic experiment, a MAE of 0.84 is
obtained. Adding firstly the weather states, secondly
the RH profile and finally the temperature profile, leads
to slight improvements. However, using all available
parameters the maximum improvement is only about
6% compared to the basic experiment.

As a next step, we investigated if the training should
be performed separately over land and ocean and for
different cloud types. Figure 2 shows the predicted
LW heating rate profiles for Cb, cirrus and thin cirrus
over ocean compared to the observations (black line).
The dark blue line represents the prediction from the
model that has been trained with only high clouds
only over ocean, the light blue line represents the
prediction from the model trained with all clouds only
over ocean and the red line represents the prediction

TABLE II
MEAN ABSOLUTE ERROR OF THE DIFFERENT EXPERIMENTS.

Basic + weather states + RH profile + T profile
0.84 0.84 0.80 0.79

from the model trained with all clouds over ocean and
land together. The predicted profiles are very similar
for all cases and agree well with the observations
from CALIPSO-CloudSat. The cloud type Cb may be
represented slightly better when applying the model
developed for only high clouds because the frequency
of Cb is small compared to the other cloud types (only
5% of all clouds). Figure 2 also illustrates the strong
cooling above Cb (200 hPa) and a slight heating of thin
cirrus (100 hPa) in the upper troposphere.

Finally, the models developed for all clouds over
ocean and land together as well as over ocean and land
separately have been applied to one month of data, Jan-
uary 2008, corresponding to a La Niña situation. During
La Niña, the tropical convection is shifted towards the
West Pacific as illustrated by the observed emissivity
structure of the UT cloud systems for this month pre-
sented in Fig. 3. Figure 4 shows the corresponding LW
radiative heating rates at the four pressure levels of 106,
200, 525 and 850 hPa from the predictions with the two
different models compared to the nadir track statistics
from the CALIPSO/CloudSat observations. The hori-
zontal structure of both predictions agrees quite well
with the one from CALIPSO/CloudSat. However, the
structure of the laterally extended fields appears much
clearer. Compared to Fig. 3, the warming in the upper
troposphere (106 hPa) corresponds to thin cirrus while
the cooling at 200 hPa is found above optically thick
cirrus which heat the middle troposphere (525 hPa) at
the same time. In the lowest layer (850 hPa), a cooling
above low clouds and a heating by thick high clouds
can be observed. The LW radiative heating rate fields

Fig. 3. Emissivity structure of UT cloud systems from AIRS for
January 2008 (La Niña).
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Fig. 2. Observed (black line) and predicted (dark blue line: model trained with only high clouds over ocean, light blue line: model trained
with all cloud types over ocean, red line: model trained with all cloud types over ocean and land together) LW radiative heating rate
profiles for Cb, cirrus and thin cirrus (from left to right).

Fig. 4. Tropical map (30 ◦N to 30 ◦S) of the LW radiative heating rates at pressure levels of 106 hPa (first row), 200 hPa (second row),
525 hPa (third row) and 850 hPa (fourth row) for January 2008 (La Niña) at local time 1:30 PM. The first column shows the predictions
of the model trained with all clouds over ocean and land together, the second column the predictions of the models trained with all clouds
over ocean and land separately and the third column the monthly statistics obtained from the observations.

predicted by the two different models are very similar
although slight differences occur, especially concern-
ing the intensity of the heating. These differences are
currently under investigation.

IV. CONCLUSIONS AND PERSPECTIVES

We have shown for the first time that deep learning
permits to relate the appropriate cloud and atmospheric
properties from AIRS and ERA-Interim to the LW
(and SW) radiative heating rate profiles, which are
only given along the CALIPSO/CloudSat narrow nadir

tracks, to laterally extend these heating rates. To im-
prove our ANN models, the most suitable variable
configuration has been investigated by conducting sen-
sitivity studies on the parameters that govern the heating
rates. The complete 3D radiative heating rate fields
obtained for the AIRS 15-year time series together
with the cloud system approach will allow detailed
process and climate feedback studies. It is planned to
use these fields to force a global climate model which
will permit to investigate their influence on global
circulation patterns.
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