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In this paper we consider several algorithms for image inpainting based on the hypoelliptic diffusion naturally associated with a mathematical model of the primary visual cortex. In particular, we present one algorithm that does not exploit the information of where the image is corrupted, and others that do it. While the first algorithm is able to reconstruct only images that our visual system is still capable of recognize, we show that those of the second type completely transcend such limitation providing reconstructions at the state-of-the-art in image inpainting. This can be interpreted as a validation of the fact that our visual cortex actually encodes the first type of algorithm.

I. INTRODUCTION

Since the founding works of Petitot, Citti and Sarti [START_REF] Petitot | Vers une neurogéométrie. fibrations corticales, structures de contact et contours subjectifs modaux[END_REF], [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF], where the foundations of the mathematical model (known as Citti-Petitot-Sarti model, CPS model in short) of the human primary visual cortex V1 have been posed, many authors worked on develop and apply these ideas to image processing and computer vision [START_REF] Duits | Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores Part I: linear left-invariant diffusion equations on SE(2)[END_REF], [START_REF] Bredies | Convex Relaxation of a Class of Vertex Penalizing Functionals[END_REF], [START_REF] Hladky | Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model[END_REF]. Indeed, the main concept at the basis of the CPS model, i.e., that images in our brains are processed via a redundant representation taking into account local features as local orientation, presents a somewhat new framework in which many tasks can be strongly simplified.

In view of the many well-studied examples of contour completion operated by the human brain, one of the main problems that was attacked from this point of view has been that of image reconstruction, also known as image inpainting [START_REF] Bertalmio | Image inpainting[END_REF], [START_REF] Masnou | Disocclusion: a variational approach using level lines[END_REF], [START_REF] Chan | Euler's elastica and curvature-based inpainting[END_REF], [START_REF] Criminisi | Region filling and object removal by exemplar-based image inpainting[END_REF].

In this paper, we present and extend on the results we obtained in a series of works [START_REF] Boscain | Anthropomorphic image reconstruction via hypoelliptic diffusion[END_REF], [START_REF] Boscain | Hypoelliptic diffusion and human vision: a semidiscrete new twist[END_REF], [START_REF] Boscain | Curve cuspless reconstruction via sub-Riemannian geometry[END_REF], [START_REF] Boscain | Highly corrupted image inpainting through hypoelliptic diffusion[END_REF], [START_REF] Prandi | A semidiscrete version of the Petitot model as a plausible model for anthropomorphic image reconstruction and pattern recognition[END_REF] in this context. The paper is divided in three parts, corresponding to different methods and purposes of image reconstruction.

In the first part, Section II, we introduce the geometry of the problem by describing the Citti-Petitot-Sarti model for reconstruction of curves, with some new ingredients introduced in [START_REF] Boscain | Anthropomorphic image reconstruction via hypoelliptic diffusion[END_REF]. Although this simplified model is not very effective to reconstruct images partially corrupted (reconstructing an image level curve by level curve is a hopeless problem), it permits to understand easily the sub-Riemannian structure of V1, which will allow to introduce the hypoelliptic diffusion.

Indeed, in Section III, we present an image inpainting algorithm obtained by building on the curve reconstruction methods of the first part. In particular, we show that, via stochastic considerations, the latter can be extended to image reconstruction by considering the hypoelliptic diffusion associated with the a sub-Riemannian structure of V1. Although not very efficient, this method allows to reconstruct images with small corruptions. The main interest of this technique is to simulate the reconstruction of images by the visual cortex and, as we will show in the next section, to produce very effective image inpainting algorithms when coupled dario.prandi@l2s.centralesupelec.fr with other techniques. Moreover, thanks to the exploitation of noncommutative harmonic analysis techniques, the final algorithm that we present has the twofold advantage of, on one side, being very fast and easy to parallelize, and on the other, of not needing nor exploiting any information on the location and shape of the corruption.

Finally, in the third and last part, Section IV, we collect some results detailing how to ameliorate the above hypoelliptic diffusion method by taking into account the location of the corruption. In particular, we show how these methods allow to obtain image reconstructions of highly corrupted images (e.g. with up to 97% of pixel missing), placing themselves at the same level as state-ofthe-art inpainting methods.

We conclude this brief introduction by observing that, experimentally, the threshold of the maximal amount of corruption that the pure hypoelliptic diffusion method can manage looks very close to the threshold of corruption above which our brain can recognize the underlying image. This fact could be seen as a validation of the CPS model with pure hypoelliptic diffusion. On the other hand, the methods presented in the last part completely transcend such problem, thus suggesting that, although based on neurophysiological ideas, they do not reflect any real mechanism of V1.

II. THE SUB-RIEMANNIAN MODEL FOR CURVE

RECONSTRUCTIONS

In this section, we recall a model describing how the human visual cortex V1 reconstructs curves which are partially hidden or corrupted. The model we present here was initially due to Petitot [START_REF] Petitot | Vers une neurogéométrie. fibrations corticales, structures de contact et contours subjectifs modaux[END_REF], [START_REF] Petitot | Neurogéométrie de la vision: modeles mathematiques et physiques des architectures fonctionnelles[END_REF]. It is based on previous work by Hubel-Wiesel [START_REF] Hubel | Receptive fields, binocular interaction and functional architecture in the cat's visual cortex[END_REF] and Hoffman [START_REF] Hoffman | The visual cortex is a contact bundle[END_REF], then it was refined by Citti et al. [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF], [START_REF] Citti | Subriemannian mean curvature flow for image processing[END_REF], Duits et al. [START_REF] Duits | Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores Part I: linear left-invariant diffusion equations on SE(2)[END_REF], [START_REF] Duits | Association fields via cuspless sub-Riemannian geodesics in SE(2)[END_REF]. and by the authors of the present paper in [START_REF] Boscain | Hypoelliptic diffusion and human vision: a semidiscrete new twist[END_REF], [START_REF] Boscain | Anthropomorphic image reconstruction via hypoelliptic diffusion[END_REF], [START_REF] Boscain | Curve cuspless reconstruction via sub-Riemannian geometry[END_REF], [START_REF] Boscain | Highly corrupted image inpainting through hypoelliptic diffusion[END_REF]. It was also studied by Hladky and Pauls in [START_REF] Hladky | Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model[END_REF].

In a simplified model1 (see [24, p. 79]), neurons of V1 are grouped into orientation columns, each of them being sensitive to visual stimuli at a given point of the retina and for a given direction2 on it. The retina is modeled by the real plane, i.e. each point is represented by (x, y) ∈ R 2 , while the directions at a given point are modeled by the projective line, i.e. θ ∈ P 1 . Hence, the primary visual cortex V1 is modeled by the so called projective tangent bundle P T R 2 := R 2 × P 1 . From a neurological point of view, orientation columns are in turn grouped into hypercolumns, each of them being sensitive to stimuli at a given point (x, y) with any direction. In the same hypercolumn, relative to a point (x, y) of the plane, we also find neurons that are sensitive to other stimuli properties, like colors, displacement directions, etc... In this paper, we focus only on directions and therefore each hypercolumn is represented by a fiber P 1 of the bundle P T R 2 .

Orientation columns are connected between them in two different ways. The first kind of connections are the vertical (inhibitory) ones, which connect orientation columns belonging to the same hypercolumn and sensible to similar directions. The second kind of Fig. 1: A scheme of the primary visual cortex V1.

connections are the horizontal (excitatory) connections, which connect neurons belonging to different (but not too far) hypercolumns and sensible to the same directions. (See Figure 1.) These two types of connections are represented by the following vector fields on P T R 2 :

X(x, y, θ) =   cos θ sin θ 0   and Θ(x, y, θ) =   0 0 β   .
The parameter β > 0 is introduced here to fix the relative weight of the horizontal and vertical connections, which have different physical dimensions.

In other words, when V1 detects a (regular enough) planar curve γ : [0, T ] → R 2 , γ(t) = (x(t), y(t)), it computes a "lifted curve" Γ : [0, T ] → P T R 2 , Γ(t) = (x(t), y(t), θ(t)), by including a new variable θ(•) : [0, T ] → P 1 which satisfies:

d dt Γ = uX(Γ) + vΘ(Γ), for some u, v : [0, T ] → R (1)
The new variable θ(.) plays the role of the direction in P 1 of the tangent vector to the curve. Here it is natural to require that

u, v ∈ L 1 ([0, T ]), i.e., that Γ ∈ W 1,1 ([0, T ]). Definition 1: A liftable curve is a planar curve γ : [0, T ] → R 2 such that γ ∈ W 1,1 ([0, T ], R 2 ) and there exists a unique θ(•) ∈ W 1,1 ([0, T ], P 1 ) such that (1) holds for some u, v ∈ L 1 ([0, T ]).
In particular, for liftable curves

γ(•) = (x(•), y(•)) it holds θ(t) = arctan ẏ(t) ẋ(t) , for a.e. t ∈ [0, T ]. (2) 

A. The curve reconstruction problem

Consider an "interrupted" liftable curve, that is, assume that . Notice that, according to (2) the limits θin := lim τ ↑a θ(τ ) and θfin := lim τ ↓b θ(τ ) are well defined. In the following, we describe a method to reconstruct the missing part, based on the model presented above. That is, we are looking for a curve γ : [a, b] → R 2 whose support is a "reasonable" completion of the support of γ.

γ : [0, a] ∪ [b, T ] → R 2 where 0 < a < b < T . Let us call γin = γ(
It has been proposed by Petitot [24] that the visual cortex reconstructs the curve by minimizing the energy necessary to activate orientation columns which are not activated by the curve itself. This is modeled by the minimization of the following cost functional, (4) Here θ(•) is the lift associated with γ(•) via [START_REF] Bertalmio | Image inpainting[END_REF]. Observe that in the cost (3), u(τ ) 2 (resp. v(τ ) 2 ) represents the (infinitesimal) energy necessary to activate horizontal (resp. vertical) connections. As pointed out in [START_REF] Boscain | Anthropomorphic image reconstruction via hypoelliptic diffusion[END_REF], a solution to the problem (1), ( 3), (4) always exists.

J = b a u(τ ) 2 + v(τ ) 2 dτ → min . (3) 
Remark 2: Minimizers of the cost (3) are minimizers of the reparametrization-invariant cost

L = b a u(τ ) 2 + v(τ ) 2 dτ = b a γ(τ ) 1 + κ(τ ) 2 β 2 dτ,
where κ(•) is the curvature of the planar curve γ and β is the dimensional parameter appearing in the vector field Θ. Remark 3: Observe that here θ ∈ P 1 , i.e., angles are considered modulo π. Notice that the vector field X is not continuous on P T R 2 . Indeed, a correct definition of problem ( 1), ( 3), ( 4) needs two charts, as explained in detail in [START_REF] Boscain | Anthropomorphic image reconstruction via hypoelliptic diffusion[END_REF]Remark 12]. In this paper, the use of two charts is implicit, since it plays no crucial role.

The minimization problem (1), ( 3), ( 4) is a particular case of a minimization problem called a sub-Riemannian problem. For more details on this interpretation see the original papers [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF], [START_REF] Petitot | Vers une neurogéométrie. fibrations corticales, structures de contact et contours subjectifs modaux[END_REF], the book [START_REF] Petitot | Neurogéométrie de la vision: modeles mathematiques et physiques des architectures fonctionnelles[END_REF], or [START_REF] Boscain | Anthropomorphic image reconstruction via hypoelliptic diffusion[END_REF], [START_REF] Boscain | Curve cuspless reconstruction via sub-Riemannian geometry[END_REF], [START_REF] Agrachev | Introduction to Riemannian and sub-Riemannian geometry[END_REF] for a language more consistent with the one of this paper.

One the main interests of the sub-Riemannian problem (1), ( 3), ( 4) is the possibility of associating to it a hypoelliptic diffusion equation which can be used to reconstruct images (and not just curves), and for contour enhancement. This point of view was developed in [START_REF] Boscain | Anthropomorphic image reconstruction via hypoelliptic diffusion[END_REF], [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF], [START_REF] Duits | Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores Part II: nonlinear left-invariant diffusions on invertible orientation scores[END_REF], and is the subject of the next section.

III. PURE HYPOELLIPTIC DIFFUSION FOR IMAGE

INPAINTING

The sub-Riemannian problem (1), (3), (4) described above was used to reconstruct images whose level sets are smooth curves in [START_REF] Mashtakov | Parallel algorithm and software for image inpainting via sub-riemannian minimizers on the group of rototranslations[END_REF]. The technique they developed consists of reconstructing as the missing parts of the level sets of the image by applying the above curve-reconstruction algorithm. Obviously, beside the fact that level sets in general need not be smooth nor curves, when applying this method to reconstruct images with large corrupted parts, one is faced with the problem of how to put in correspondence the noncorrupted parts of the same level set.

To avoid this problem, it is natural to model the cortical activation induced by an image f : R 2 → [0, 1] as a function Lf : P T R 2 → R, where Lf (x, y, θ) represents the strength of activation of the neuron (x, y, θ) ∈ P T R 2 . It is also known that this cortical activation will evolve with time, due to the presence of the horizontal and vertical cortical connections already introduced in Section II. Then, a natural way to model this evolution is to assume that the activation of a single neuron propagates as a stochastic process Zt on P T R 2 , which solves the stochastic differential equation associated with system (1). That is, letting ut and vt be two one-dimensional independent Wiener processes, we have dZt = utX(Zt) + vtΘ(Zt).

Under this assumption, the evolution of a cortical activation Lf is obtained via the diffusion naturally associated with [START_REF] Boscain | Anthropomorphic image reconstruction via hypoelliptic diffusion[END_REF], that is,

   ∂ψ ∂t = 1 2 ∆ψ, ψ|t=0 = Lf,
where,

∆ = X 2 + Θ 2 = cos(θ) ∂ ∂x + sin(θ) ∂ ∂y 2 + β 2 ∂ 2 ∂θ 2 . (7)
Observe that the above diffusion is highly anisotropic, since the operator ∆ only takes into account two of the three possible directions in P T R 2 . Indeed, ∆ is not elliptic. However, due to the fact that the family of vector fields {X, Θ} satisfy Hörmander condition, the operator ∆ is hypoelliptic. The use of equation [START_REF] Boscain | Image reconstruction via non-isotropic diffusion in Dubins/Reed-Shepp-like control systems[END_REF] to model the spontaneous evolution of cortical activations was first proposed by Citti and Sarti in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] (although they posed the problem in SE(2), a double covering of P T R 2 ). Remark 4: The solution of ( 7) is strictly related to the solution of the minimization problem (1), ( 3), [START_REF] Boscain | Hypoelliptic diffusion and human vision: a semidiscrete new twist[END_REF]. Indeed, a result by Léandre [START_REF] Léandre | Majoration en temps petit de la densité d'une diffusion dégénérée[END_REF] shows that, letting pt be the kernel of ( 7) and E(•, •) be the value function of problem ( 1), (4) with cost ( 5), for all q, p ∈ P T R 2 it holds -4t log(pt(q, p)) -→ E(q, p) 2 as t → 0.

To be be able to use equation [START_REF] Boscain | Image reconstruction via non-isotropic diffusion in Dubins/Reed-Shepp-like control systems[END_REF] to reconstruct a corrupted image, one has to specify two things: i) the lift operator L, which maps images on R 2 to cortical activations on P T R 2 ii) how to project the result of the diffusion on R 2 to get the reconstructed image. We remark that in this pipeline we do not exploit any knowledge on the location and/or shape of the corruption.

In the remainder of this section, we will discuss these two points and present an idea of the efficient numerical scheme we exploit to solve [START_REF] Boscain | Image reconstruction via non-isotropic diffusion in Dubins/Reed-Shepp-like control systems[END_REF].

A. Lifting procedure

Concerning how the visual cortex lifts an image to P T R 2 , it seems likely that this is done through multiple convolutions with orientation sensitive filters (like Gabor filters), see e.g. [START_REF] Daugman | Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters[END_REF]. (See also [START_REF] Prandi | A semidiscrete version of the Petitot model as a plausible model for anthropomorphic image reconstruction and pattern recognition[END_REF].) The main mathematical advantage of this kind of lifts is that, for any (x, y) ∈ R 2 , the vertical components Lf (x, y, •) are essentially 1D gaussians centered around the orientation θ(x, y) of the gradient ∇f (x, y).

In this paper, we will consider only a primitive version of this lift. Indeed, we will consider the lift Lf : P T R 2 → R of a function f : R 2 → R to be the distribution Lf = f δ Sf , where δ Sf is the Dirac delta measure concentrated on the surface

Sf = (x, y, θ) | (x, y) ∈ R 2 , θ = θ(x, y) ⊂ P T R 2 , θ(x, y) = arctan ∂y f (x,y) ∂xf (x,y) , if ∇f (x, y) = 0, P 1
otherwise. .

In order to insure that Sf be a well-defined hypersurface of P T R 2 , we actually compute it on a smoothed version of f , see [START_REF] Boscain | Anthropomorphic image reconstruction via hypoelliptic diffusion[END_REF]. This is in accordance with neurophysiological observations that the retina itself operates a Gaussian smoothing. It is interesting to notice that this smoothing renders Sf particularly regular. More precisely, in [START_REF] Boscain | Anthropomorphic image reconstruction via hypoelliptic diffusion[END_REF] it has been shown that the convolution of an L 2 (R 2 ) function with a Gaussian is generically a Morse function and that the following holds.

Proposition 5 ([6]):

If f : R 2 → R is a Morse function, then Sf is an embedded 2D submanifold of P T R 2 .
We remark that this distributional version of the lift can be interpreted as a limit of the wavelet transform lifts, where the variance of the gaussians obtained by the latter for Lf (x, y, •) goes to zero.

B. Projection

For our choice of lift, as well as for most of the wavelet transform lifts, solutions to the evolution equation [START_REF] Boscain | Image reconstruction via non-isotropic diffusion in Dubins/Reed-Shepp-like control systems[END_REF] for any time t > 0 do not belong to the range of L. Thus, it is not possible to exploit the fact that the lifting procedure is injective in order to define a projection. The most natural way to project functions ψ : P T R 2 → R 2 to πψ : R 2 → R is then to simply choose πψ(x, y) = P 1 ψ(x, y, θ) dθ.

C. Numerical integration

Observe that, since the double covering of P T R 2 is the group of roto-translations SE(2) = R 2 S 1 , and ( 7) is covariant w.r.t. the canonical projection SE(2) → P T R 2 , it is more practical to solve (7) on the latter. Indeed, this allows to exploit the group structure of SE(2). As already remarked, the numerical integration of ( 7) is subtle, since multiscale sub-Riemannian effects are hidden insideand has been approached in different way. For example, in [START_REF] Citti | A cortical based model of perceptual completion in the roto-translation space[END_REF] the authors use a finite difference discretisation of all derivatives while in [START_REF] Duits | Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores Part I: linear left-invariant diffusion equations on SE(2)[END_REF] an almost explicit expression for the heat kernel is exploited.

In [START_REF] Boscain | Anthropomorphic image reconstruction via hypoelliptic diffusion[END_REF], [START_REF] Boscain | Hypoelliptic diffusion and human vision: a semidiscrete new twist[END_REF], [START_REF] Boscain | Highly corrupted image inpainting through hypoelliptic diffusion[END_REF] we presented a sophisticated and highly parallelizable numerical scheme, based on the non-commutative Fourier transform on a suitable semidiscretization of the group SE(2), i.e., the semidiscrete group of roto-translations SE(2, N ) for N ∈ N. This is the semi-direct product SE(2, N ) = R 2 ZN , where ZN is the cyclic group of order N and the action of n ∈ ZN on R 2 is given by the rotation Rn of angle 2πn/N . As pointed out in [START_REF] Boscain | Hypoelliptic diffusion and human vision: a semidiscrete new twist[END_REF], considering a discrete number of orientations seems to be in accordance with experimental evidence. Although still an open problem, this is probably connected with topological restrictions given by the the fact that neurons in V1 encode a 3D space while V1 itself, physically, is essentially 2D.

A way of interpreting the algorithm presented in [START_REF] Boscain | Hypoelliptic diffusion and human vision: a semidiscrete new twist[END_REF], see also [START_REF] Boscain | Image reconstruction via non-isotropic diffusion in Dubins/Reed-Shepp-like control systems[END_REF], [START_REF] Prandi | A semidiscrete version of the Petitot model as a plausible model for anthropomorphic image reconstruction and pattern recognition[END_REF], is the following: For a given finite subset

K of R 2 , let SE(2, N, K) be the set of C N -valued trigonometric polynomials Q on SE(2, N ) that read Q = (Q n ) n∈Z N , where, Q n (x, y) = (λ k ,µ l )∈K c n k,l e i(λ k x+µ l y) , r = 0, . . . , N -1. (8) 
Here, c r k,l ∈ C. Then, if we assume that (standard) Fourier transforms of images are compactly supported on K, their lifts will belong to SE(2, N, K). Equation ( 7) can be naturally (semi)discretized on SE(2, N ), essentially replacing the operator Θ 2 in ∆ with its discretized version ΛN ∈ R N × R N , and then restricted to SE(2, N, K). This yields the completely uncoupled systems of linear ordinary differential equations

dc k,l dt = -2π 2 diag (λ k cos θr + µ l sin θr) 2 c k,l + ΛN c k,l . (9) 
Here, c k,l (t) = (c 0 k,l (t), . . . , c N -1 k,l (t)) T ∈ C N . These systems are equipped with initial conditions c k,l (0) = c k,l , where the latter are the coefficients in (8) corresponding to Lf .

These discretized equations can then be solved through any numerical scheme. We chose the Crank-Nicolson method, for its good convergence and stability properties. Let us remark that the operators appearing on the r.h.s. of ( 9) are periodic tridiagonal matrices, i.e. tridiagonal matrices with non-zero (1, N ) and (N, 1) elements. Thus, the linear system appearing at each step of the Crank-Nicolson method can be solved through the Thomas algorithm for periodic tridiagonal matrices, of computational cost O(N ).

D. Numerical experiments

When implementing the pure hypoelliptic diffusion, there are essentially 3 parameters to be tuned: the number of angles N for the semi-discretization of the equation on SE(2, N ), the weight parameter β appearing in the operator ∆, and the total time of diffusion T . Clearly, for performance reasons, one would like to have N as small as possible. Indeed, numerical experiments suggests that it suffices to choose N = 30, as increasing N beyond this threshold does not affect the resulting image in any visible way. On the other hand, the parameters β and T have to be tuned by hand and the optimal choice seems to be deeply sensitive to the image to be treated (and of course to the desired result). In Figure 2, we present a sequence of images showing the effect of the pure hypoelliptic diffusion at different times. 

IV. HEURISTIC COMPLEMENTS: EXPLOITING INFORMATION ON THE LOCATION OF THE CORRUPTION

The method explained in the previous section does not use any information of where the image is corrupted. In this section we show how the suitable use of this information permits to obtain better reconstructions. In particular we will present two extensions to the previous algorithm, the Dynamic Restoration (DR) procedure [START_REF] Boscain | Hypoelliptic diffusion and human vision: a semidiscrete new twist[END_REF] and the varying coefficients hypoelliptic diffusion, and briefly introduce a sort of synthesis of the two, the Averaging and Hypoelliptic Evolution (AHE) algorithm [START_REF] Boscain | Highly corrupted image inpainting through hypoelliptic diffusion[END_REF]. The results obtained by these methods are comparable with the current state-of-the-art for PDE based image inpainting algorithms, see, e.g, [START_REF] Cao | Geometrically guided exemplar-based inpainting[END_REF]. Actually, in our opinion, in order to go beyond this state-of-the-art it is necessary to introduce additional external information on the corrupted part as it is done, for instance, in exemplar-based methods [START_REF] Cao | Geometrically guided exemplar-based inpainting[END_REF].

A. Dynamic Restoration

In this section we present a technique to exploit the information on the location of the corruption in the inpainting algorithm. Assume that a partition of the set of pixels of the image is given I = G∪B , where points in G are "good", i.e., non-corrupted, while those in B are "bad", i.e., corrupted. The idea is now to periodically "mix" the solution ψt of the diffusion on SE(2, N ) with the initial function Lf on G, while keeping tabs on the "evolution" of the set of good points.

Namely, fix n ∈ N and split the segment [0, T ] into n intervals tr = rτ , r = 0, . . . , n, τ = T /n. Let G(0) = G, B(0) = B and iteratively solve the hypoelliptic diffusion equation on each [tr, tr+1] with initial condition

ψt r (k, x, y) = ψ - tr (k, x, y) if (x, y) ∈ B(r) σ(x, y, t k )ψ - tr (k, x, y) if (x, y) ∈ G(r).
Here, the function ψ -is the solution of the diffusion on the previous interval (or the starting lifted function if r = 0), and the coefficient σ is given by σ(x, y, tr) = 1 2 h(x, y, 0) + h(x, y, tr) h(x, y, tr) , h(x, y, t) = max k ψt(k, x, y).

Moreover, after each step, G(r + 1) and B(r + 1) are obtained from G(r) and B(r) as follows:

1. Project the solution ψt r+1 to the image fr+1.

2. Define avg fr+1(x, y) as the average of fr+1 on the 9-pixels neighborhood of (x, y). 3. Define the set W = {(x, y) ∈ ∂B(r) | fr+1(x, y) ≥ avg fr+1(x, y)}. 4. Let G(r + 1) = B(r) ∪ W , B(r + 1) = B(r) \ W . Some reconstruction results via the Dynamic Restoration procedure are presented in 3. Notice that restorations obtained via this method are much better than those obtained via pure hypoelliptic Fig. 3: Two inpainting via the DR method of images missing, respectively, 30% and 80% of pixels. For both images we chose T = 1 and n = 60 steps. Notice how in the second image, the big corruption makes it difficult to correctly compute the gradient. diffusion. In particular, the DR procedure gives reasonable results even on highly corrupted images, as shown in Figure 3.

B. Varying coefficients hypoelliptic diffusion

A different approach w.r.t. the Dynamic Restoration procedure is to directly modify the evolution equation [START_REF] Boscain | Image reconstruction via non-isotropic diffusion in Dubins/Reed-Shepp-like control systems[END_REF], in order to enforce a stronger diffusion on the parts of the image that are known to be corrupted. Namely, we can replace the operator ∆ in [START_REF] Boscain | Image reconstruction via non-isotropic diffusion in Dubins/Reed-Shepp-like control systems[END_REF] by

∆H := bX 2 + a β 2 Θ 2 for some non-negative continuous coefficients a, b : R 2 → R, i.e., ∆H = b(x, y) cos(θ) ∂ ∂x + sin(θ) ∂ ∂y
Fig. 4: Three reconstructions via the the varying coefficients restoration procedure: with small diagonal corruptions, and with 30% and 80% of pixels randomly removed.

coefficient b, which has the most influence to the velocity of the diffusion). Thus, they will be chosen to be a smooth approximation of the indicator function of the the set B of bad (corrupted) points and c0, c1 are positive constants. In particular, our choice is:

a(x, y) = a0 + a1 (x, y) if a 0 +a 1 (x,y) a 0 +a 1 > * , 0 otherwise, b(x, y) = b0 + b1 (x, y) if b 0 +b 1 (x,y) b 0 +b 1 > * , 0 otherwise,
where (x, y) = exp(-f 2 (x, y)/σ). Here, a0, b0 ∈ R, a1, b1, σ > 0, and * ∈ (0, 1) are constant parameters chosen experimentally. Some numerical experiments are presented in Figure 4. We observe that for low levels of corruption, reconstruction of images with this method yields results which are comparable to, if not better than, the ones obtained through the DR procedure. However, when the corrupted part becomes larger this method fails. This suggests that, in order to obtain a good inpainting algorithm for highly corrupted images, one has still to use the DR procedure, combining it with the varying coefficients. This is an essential component of the algorithm presented in the next section.

C. AHE algorithm

In order to improve on the results for high corruption rates, in [START_REF] Boscain | Highly corrupted image inpainting through hypoelliptic diffusion[END_REF] we proposed the Averaging and Hypoelliptic Evolution algorithm. The main idea behind the AHE algorithm is to try to provide the anisotropic diffusion with better initial conditions. More precisely, it is divided in the following 4 steps (see Figure 5):

1) Preprocessing phase (Simple averaging). We apply a simple iterative procedure that fills in the corrupted area by assigning to each corrupted pixel the average value of the non-corrupted neighboring pixels. 2) Main diffusion (Strong smoothing). By using the result of the previous procedure as an input, we apply the varying coefficients hypoelliptic diffusion discussed in Section IV-B. 3) Advanced averaging. In order to remove the blur introduced by the hypoelliptic diffusion of the previous step, we mix the results of step 1 and step 2. 4) Weak smoothing. We perform a last hypoelliptic evolution, in order to smooth some of the edges we obtained in step 3. In Figure 6 we present the results obtained via the AHE algorithm on highly corrupted images. In particular, a comparison with Figure 3 shows that the synthesis between the DR procedure and the varying coefficients, coupled with the averaging steps, yields much better results w.r.t. the simple application of the DR procedure.

V. CONCLUSIONS

In this paper we presented several image inpainting algorithms based on hypoelliptic diffusion. Although pure hypoelliptic diffusion allows to obtain reasonable inpaints of images with small corrupted regions, we showed that coupling such diffusion with heuristic methods exploiting the full knowledge of the location of the corruption allows to obtain very efficient reconstructions. It is interesting to notice that when the image is so corrupted that our visual system is not able to recognize it, as it happens, for instance, for the corrupted image presented in Figure 7, the use of pure hypoelliptic diffusion does not help it. This fact can be interpreted as a validation of the CPS model with pure hypoelliptic diffusion. On the contrary, as already pointed out, both the DR procedure and the AHE algorithm produce reconstructions that go beyond the capabilities of our visual system. 

  a), (xin, yin) := (x(a), y(a)), γfin = γ(b), and (xfin, yfin) := (x(b), y(b))

  Here, a, b are fixed, and the minimum is taken on the set of liftable curves γ : [a, b] → R 2 which are solution of (1) for some u, v ∈ L 1 ([a, b]) and satisfying boundary conditions γ(a) = γin, γ(b) = γfin, θ(a) = θin, θ(b) = θfin.

Fig. 2 :

 2 Fig. 2: Hypoelliptic diffusion for increasing times ( 1 8 , 1 4 , 1 2 , 1), from left to right, and β 2 = 1 4 .

Fig. 5 :

 5 Fig. 5: A depiction of the different steps of the AHE procedure. Observe the sharpening from step 2 to step 4.

Fig. 6 :

 6 Fig.6: Image inpainting via the AHE algorithm of highly corrupted images with, respectively, 80% and 90% of pixels missing.

Fig. 7 :

 7 Fig. 7: A comparison of the different algorithms presented in this paper. From left to right: the original image, the corrupted image used as input, the reconstructions obtained via pure hypoelliptic diffusion (β 2 = 1 4 , T = 1), the DR procedure (n = 120), and the AHE algorithm.

For example, in this model we do not take into account the fact that the continuous space of stimuli is implemented via a discrete set of neurons.

Geometers call "directions" (angles modulo π) what neurophysiologists call "orientations".

+ a(x, y) ∂ 2 ∂θ 2 . (10)The above equation with varying coefficients a, b tries to implement the natural idea of reducing the effect of diffusion at non-corrupted points. Indeed, when using[START_REF] Boscain | Image reconstruction via non-isotropic diffusion in Dubins/Reed-Shepp-like control systems[END_REF], this can be done only by decreasing of the total time of diffusion T , but this acts in an homogeneous way on all points, including the corrupted ones. On the other hand, when using equation[START_REF] Chan | Euler's elastica and curvature-based inpainting[END_REF] one can tune the coefficients a, b depending on the point (x, y), and consequently, weaken the diffusion effect only where it is necessary. When choosing the varying coefficients a and b, the idea is to make them larger at bad points and their neighbors (especially the
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