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Abstract
To date, the stoichiometry concept has been poorly used to explore C, N, and P cycles in agroecosystems. As agriculture is now
under pressure to reduce the use of synthetic inputs, ecological processes and alternative agricultural practices will become the
main regulators of the relationships between C, N, and P and thereby of nutrient availability and C storage in soils. In this paper,
we review the ecological theories underpinning the concepts of homeostasis and stoichiometric flexibility, their application to
agroecosystems, and how stoichiometry could constraint agroecological practices related to nutrient availability and soil C
storage. Our main findings are (1) optimal C:N:P ratios exist at the species level, reflecting a range of ecological strategies
and representing a keystone constraint for the coupling of C, N, and P cycles, resulting in canonical ratios at the community level.
Stoichiometric flexibility nevertheless exists from the organism level—autotrophs having higher flexibility than heterotrophs—
to the community level, depending on assembly rules. (2) Agroecosystems are stoichiometrically constrained especially in the
soil compartment, due to the low stoichiometric flexibility of microorganisms at the community level. (3) Agricultural practices
such as fertilization decrease N:P ratios in soil surface when total P is considered, while C:N ratios remained constant. (4)
Stoichiometry homeostasis constraints for soil C storage require the availability of N and P. They can be supported by agroeco-
logical practices that promote nutrient recycling (organic fertilization, permanent soil cover, N fixation). The 45-Tg N and 4.8-Tg
P needed to increase the C stock of cropped soils by “4 per mille per year” can be also provided by suppressing nutrient losses.We
conclude that two soil compartments should be more investigated to evaluate their potential to bypass stoichiometric constraints
and foster C storage while reducing chemical inputs: deep soil horizons and particulate organic matter fraction.
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1 Introduction

Elemental stoichiometry provides a powerful framework
for understanding the complex relationships between eco-
system functioning and biogeochemical cycles (Manzoni
et al. 2010; Sardans et al. 2012; Sterner and Elser 2002).
Although this concept was developed and has been widely
used in marine and freshwater ecosystems since 1958 with
the well-known Redfield ratio (Redfield 1958), it was on-
ly recently applied to terrestrial ecosystems (Cleveland
and Liptzin 2007; McGroddy et al. 2004; Reich and
Oleksyn 2004; Xu et al. 2013). Ecological stoichiometry
is thus a relatively new branch of terrestrial ecology and
provides a relevant conceptual framework to predict the
effects of global change on ecosystems at several embed-
ded scales (Zechmeister-Boltenstern et al. 2015). Until
now, this concept was mainly applied to natural or semi-
natural terrestrial ecosystems.

Although C:N:P ratios are often measured in key
compartments of agroecosystems, the overarching con-
cept of stoichiometry is far less frequently used by
agronomists. One likely reason is that inputs of fertil-
izers have to some extent reduced interactions among
nutrients by altering their potential limiting effects on
biological processes. For example, there is very little
evidence to support P limitation of processes of C and
N transformations in soils since agricultural soils in de-
veloped countries have been enriched by P fertilization
for decades (Ringeval et al. 2014). A “decoupling” of N
and P cycles was thus repor ted for fer t i l ized
agroecosystems (Yuan and Chen 2015). The decoupling
is characterized by a decrease in biological interactions
and may consequently increase N and/or P losses to the
environment (air, soil, water, etc.) and negatively influ-
ence the ecosystems services associated with agricultural
land.

The urgent need for more sustainable farming systems
requires overall a drastic reduction in nutrient losses,
meaning an increase efficiency of nutrient recycling, or
reduction in the use of synthetic fertilizers, while at the
same time additional ecosystem services are expected
from farming systems (Fig. 1) (Duru et al. 2015). The
overuse of N fertilizers reduces the potability of drinking
water and facilitates the eutrophication of aquatic ecosys-
tems because of nitrate leaching. It also alters air quality
through the volatilization of ammonia and contributes to
climatic change through emissions of nitrous oxide. P
losses from agricultural soils contribute to marine and
freshwater eutrophication, and there is increasing concern
about the depletion of phosphate reserves at the world
level (Cordell and Neset 2014). Incentives for less inten-
sive farming systems are expected to promote the re-
duced use of mineral fertilizers in the near future, while

enabling interactions among nutrients that are crucial to
agroecosystem functioning.

Here we address the question of the relevance of ap-
plying stoichiometry concepts to agricultural land, partic-
ularly to anticipate the future effects of the agroecological
transition on soil ecosystem services. A related question is
to what extent the C:N:P ratio in agricultural soils could
be altered by agricultural management practices. To ad-
dress these questions, we first present a synthesis of the
theories underpinning the concepts of homeostasis and
flexibility in stoichiometry. Based on these theories, we
argue that the potential flexibility of C:N:P ratios has im-
portant consequences for agroecosystem functioning.
Second, we present a literature review focused on C:N:P
relationships in agroecosystems. Finally, we discuss the
possibility that fostering ratio flexibility in crop fields,
both in plants and in soil communities, could be important
to insure optimal production and ecosystem services, such
as C storage.

Fig. 1 Intercropping and agroforestry as examples of agroecological
cropping systems aiming at increasing crop diversity, reducing N
fertilization and providing several ecosystem services
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2 Stoichiometry theory: importance
of homeostasis and flexibility
from individuals to ecosystems

Organisms require specific ratios of C, N, and P to survive
and function optimally. Sterner and Elser (2002) proposed
the concept of stoichiometric homeostasis, i.e., the degree
to which an organism or a community maintains its ele-
mental ratios when the elemental ratios of its resource vary
(Fig. 2). The homeostasis of ratios at species and commu-
nity scales has important consequences for ecosystem
functioning, from food web dynamics (Andersen 1997;
Gusewell and Gessner 2009; Manzoni et al. 2010) to glob-
al limitation of primary and secondary production
(Andersen 1997; Penuelas et al. 2013; Tyrrell 1999). It is
thus a keystone constraint for the coupling of biogeochem-
ical cycles. Stoichiometric flexibility is the extent to which
elemental ratios can switch from strict homeostasis to
nonhomeostasis behavior (Fig. 2). It is regulated by the
intensity and nature of the perturbation and exists across
scales (Sistla and Schimel 2012).

2.1 Optimal elemental ratios: from species
to communities to ecosystems

Species have evolved different strategies to maintain their
metabolism and optimize their fitness. These strategies
require different biological structures and hence different
optimal ratios of chemical elements (Reiners 1986;
Sterner and Elser 2002). As a consequence, the stoichio-
metric diversity (i.e., the diversity of ratios observed) in
nature reflects the diversity of ecological strategies.

Addressing the causes underlying this diversity requires
case by case analysis. Yet, some general trends have cap-
tured the attention of ecologists. Perhaps the most famous
example is the growth rate hypothesis sensu Elser et al.
(1996). In short, species that allocate more matter to bio-
logical structures that guarantee a high growth rate
(biosynthesis) have higher P requirements because these
biosynthesis structures (in particular, ribosomes) are rich
in P. Although we did not find any evidence in the liter-
ature, we can muse that plant species that have been do-
mesticated for agriculture may have lower optimal N:P
ratios than their wild ancestor, since they have been se-
lected for higher growth rate.

At higher levels of organization, e.g., at the scale of
communities (primary producers, for instance), the diver-
sity of species ratios is spread around an average that
seems to be canonical in the ocean, Redfield’s ratio ex-
tended to microelements (Quigg et al. 2003). In terrestrial
biomes, the study by McGroddy et al. (2004) on forest
ecosystems suggests that, despite significant differences
between biomes, elemental ratios in tree leaves tend to
be constrained within a biome, as observed in the ocean.
Similarly, C, N, and P concentrations of soil microbial
biomass in nonagricultural soils vary over several orders
of magnitude at the global scale, while C:N:P ratios are
constrained (C:N average = 8.6 ± 0.3 and N:P average =
6.9 ± 0.4 determined on 132 and 150 samples, respective-
ly) (Cleveland and Liptzin 2007). Modeling has been used
to better understand the determinism of these diagnostic
ratios in communities. The current paradigm is that these
ratios result from some general rules regarding the opti-
mization of competitive ability (Klausmeier et al. 2004) or
growth rate (Loladze and Elser 2011). The underlying
hypothesis is that species with better competitive ability
dominate the community and thus leave their imprint on
the average community ratio. However, for the soil and its
different components (soil microbial biomass, fauna, soil
organic matter, etc.), the meaning and mostly the charac-
teristics of “better competitive species” remain to be
determined.

At the scale of ecosystems, to our knowledge, no available
dataset or paradigm addresses the existence and the causes of
potential canonical ratios. Ecosystem biomass is the sum of
community biomasses with different elemental ratios. At this
point in our knowledge, we can only reflect on how elemental
ratios in ecosystems depend on the biomass ratios of commu-
nities. For instance, communities of primary producers have
higher C:N, C:P, and N:P ratios than communities of hetero-
trophs (Elser et al. 2000). Thus, elemental ratios in the bio-
mass at ecosystem scale could reflect the biomass ratio of
primary producers over heterotrophs. According to the eco-
system development theory (Loreau 1998), competition with-
in and betweenmaterial cycles during ecosystem development

Consumer stoichiometry 
(C:N; C:P; N:P)

Resource stoichiometry (C:N; C:P; N:P) 

1:1

Species A

Flexibility

Non homeostatsis
« I am what I eat »

Primary Producers

Consumers

Species B Strict homeostasis

Fig. 2 Relationships between consumer and resource stoichiometry.
Horizontal and vertical axes are stoichiometric measure such as C:N,
N:P, or C:P ratios. The dashed line (1:1 line) represents identical
stoichiometry for consumer and resource, i.e., a nonhomeostasis
behavior. The solid lines represent two types of consumers (species A
and B) with strict homeostasis behavior meaning that consumers do not
adapt their own stoichiometry to that of their environments. Between the
dashed and solid lines, the domain of flexibility represents consumers that
perform constant differential nutrient retention. Adapted from Sterner and
Elser (2002)
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may lead to higher productivity and better retention of limiting
nutrients. Thus, observed elemental ratios in mature ecosys-
tems may reflect the biomass ratio of primary producer over
heterotrophs that guarantees high productivity and nutrient
retention.

2.2 Ratio homeostasis and flexibility: from individuals
to communities to ecosystems

Heterotrophs generally show stricter ratio homeostasis than
autotrophs, although in bacteria, strict homeostasis has been
questioned. For instance, Makino et al. (2003) showed that
elemental ratios in Escherichia coli cells could vary by two-
folds. The lack of homeostasis in autotrophs is mainly caused
by the storage capacity of the autotrophic cell and was origi-
nally introduced in growth models by Droop (1974). Some
authors even used deviations from optimal ratios in autotrophs
as a proxy for nutrient limitation. For instance, a N:P ratio
higher than 16 in plant leaves is considered by some authors
to be evidence for P limitation (Gusewell 2004; Vitousek et al.
2010).

At higher levels of organization, homeostasis depends
to some extent on homeostasis at organismal level, but also
on community assembly rules. According to some authors,
homeostasis at the organismal level does not guarantee
homeostasis at the community level. Indeed, modeling ap-
proaches based on the classic competition theory suggest
that species sorting may prevent homeostasis, and that in-
stead, elemental ratios in the biomass at community scale
may adjust on the ratios available in the food (Schade et al.
2005; Danger et al. 2008). Yet, such a flexible, “bottom-
up” stoichiometry is bounded by the most extreme strate-
gies of the species with regard to elemental ratios. For
instance, Danger et al. (2008) argue that a bacterial com-
munity feeding on a gradient of C:P ratios may adjust to
the elemental ratio of the food. This adjustment may oper-
ate through species sorting until a threshold C:P ratio is
reached beyond which a “boundary species”, the one with
the most extreme elemental ratio, dominates the communi-
ty. Once this state is reached, homeostasis processes at
organismal level dominate and the community becomes
more homeostatic (Danger et al. 2008). A particular case
arises if some species have access to sources of nutrients
that are not accessible to other species. For instance, N
fixers in a community of primary producers have the ca-
pacity to fix N from the atmosphere and to inject it into the
ecosystem in the form of organic N and partly transfer it to
non-fixing primary producers. In such a case, modeling
shows that species sorting leads to the dominance of fixers
when the ecosystem is limited by inorganic N. By fixing
inorganic N, fixers maintain homeostasis of C:N and N:P
ratios at ecosystem level (Tyrrell 1999; Schade et al. 2005).

2.3 Consequences of homeostasis or flexibility
for ecosystem functioning

The consequences of ratio homeostasis across functional
groups have been widely addressed by ecologists, in both
theoretical and experimental studies. Most results suggest that
food web dynamics are highly dependent on the homeostasis
of these ratios, and on the ratio mismatches between trophic
levels. In particular mismatches between primary producers
and herbivores, and between primary producers and decom-
posers (Sterner 1990; Andersen 1997; Daufresne and Loreau
2001; Cherif and Loreau 2013; Manzoni et al. 2010;
Mooshammer et al. 2014; Spohn 2015) challenge the transfer
of energy and matter through trophic levels, and affect the
recycling of elements, a key process that guarantees primary
production in the long term. Generally, these mismatches ap-
pear to be deleterious to productivity and stability. They may
generate instability, leading to oscillatory dynamics (Andersen
1997), chaos (Andersen 1997), or even ecosystem crash
(Daufresne and Loreau 2001). In short, homeostasis at com-
munity level constrains ecosystem functioning and reduces
ecosystem resilience. On the other hand, ratio flexibility
tends to ease these constraints. For instance, Danger et al.
(2008) showed that a community of bacteria had much higher
resilience in terms of total biomass than a single species when
facing changes in the C:P ratio of their food, due to ratio
flexibility. This argument can be rephrased in terms of the
insurance hypothesis (Yachi and Loreau 1999) for ratio diver-
sity, more specifically the width of the range of ratios in a
community insures ratio flexibility and hence ecosystem resil-
ience to changes in nutrient inputs.

3 The case of agroecosystems

As mentioned earlier, ecological stoichiometry approaches
have rarely been applied to agroecosystems up to now. The
question is whether the above mentioned ecological theories
are relevant in agroecosystems and what are the implications
for an agroecosystem facing changes in agricultural manage-
ment. Hereafter, we discuss this question in the light of our
current knowledge of the biogeochemistry of C, N, and P in
agricultural soils. Based on a request using ISI Web of knowl-
edge from 1975 to present, over 10699 articles addressing soil
biogeochemistry of C, N or P, we found 6374 papers focusing
onC andN only, 4137 focusing onN and P, 994 focusing onC
and P, and only 418 focusing on C, N and P. These numbers
highlight the relative rarity of studies addressing more than
two chemical elements in a study site. As pointed out in for-
mer studies, this rarity is not to be specific to agricultural soils.
For instance, most studies of forest ecosystems focus on the
cycles of C and N, and ignore the cycle of P (Bol et al. 2016).
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3.1 Agroecosystems characteristics: from intensive
to agroecological transition

An agroecosystem is an area of agricultural production under-
stood as an ecosystem. Even if some authors question the
relevance of the ecosystem concept for cultivated areas
(Tassin 2012), simplified structures and characteristics of nat-
ural ecosystems can be observed in agroecosystems
(Gliessman 2006): an individual plant (organism level),
single-species plant cover (population), mixed-species crops
or ensemble of crops at the farm level (community), a farm in
its biophysical context (ecosystem). Therefore, the ecosystem
concept may provide a framework to analyze the complexity
of energy flows among the components of agricultural sys-
tems and the cycling of nutrients.

However, the anthropization of ecosystems for the purpose
of establishing agricultural production makes agroecosystems
very specific in some key respects (Altieri et al. 1983; Odum
1969):

-The prime aim of agriculture is to manage those processes
and resources to export biomass from the system and to max-
imize yields, minimize year-to-year instability in production,
and prevent the long-term degradation of the productive ca-
pacity of the agricultural system, particularly soils. In
agroecosystems in which natural communities have been re-
placed by single plant species in pluri-annual rotation, species,
genetic diversity and hence the diversity of stoichiometric
ratios are expected to be lower than in natural ecosystems
(Fig. 3). Biodiversity loss has been extended by the intensifi-
cation of agriculture and population regulating mechanisms
altered with simplified trophic structure and reduced interac-
tions (Gliessman 2006).

-Agroecosystems are also highly dynamic. The temporal
changes and vegetation succession they undergo are mainly
driven by human decisions and do not result from self-
organization of the system. For instance, annual crop rotations
induce high variability over time at the field scale, and the
agroecosystem undergoes regular and frequent changes in
the form of soil tillage, planting, and harvest. The question
arises if these agricultural practices modify the stoichiometric
ratios of soil heterotrophic communities, for instance, and if
these ratios are more prone to rapid change or are rather
constrained.

-Nutrient cycling is greatly altered by human interference
in agroecosystems. Agroecosystems are open systems (Fig.
4). Nutrients are directed out of the system at the time of
harvest rather than stored in the biomass, which prevents their
accumulation within the system (Loucks 1977). External nu-
trient inputs are added to the system in the form of inorganic or
organic fertilizers. Because of the frequent lack of efficient
synchronization between plant requirement and nutrients re-
leased by the soil, large quantities are lost from the system
during the growing cycle and after harvest, as the result of

increased erosion, leaching, gas emissions (Dinnes et al.
2002). This is favored by the reduction in permanent plant
biomass held within the system, as the result of soil tillage,
and by overall loss of plant and soil diversity. The effect of
permanent plant cover on soil stoichiometry was more inves-
tigated in grassland (Vertes et al. 2019; Poeplau et al. 2018)
and demonstrates the relationships between fertilization strat-
egies and C storage in soils while it was less studied in arable
lands. Agriculture is now under pressure to design sustainable
agroecological systems, i.e., to achieve natural ecosystem-like
characteristics while maintaining qualitative and quantitative
harvest outputs. The farming practices expected to develop in

Plant stoichiometry
Plant species boundary

Soil microorganisms stoichiometry

Range of ra�os C:N; C:P; N:P

Bi
o-

di
ve

rs
ity Community boundary

Organism boundary

Soil organic ma�er stoichiometry
(total CNP) 

Fig. 3 Schematic representation of the impact of “bottom-up” plant
stoichiometry on soil microorganisms and soil organic matter
stoichiometry. Autotroph represented by plants exhibited a larger range
of stoichiometric ratios (i.e., C:N; C:P; N:P) than heterotrophs such as soil
microorganism. Stoichiometry is bounded by the most extreme strategies
of the species present with regard to the elemental ratio. After passing
through the prism of microorganisms, the ratios are highly constrained
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this context include mixed cropping, greater introduction of
N-fixing crops in rotations, fewer inputs of synthetic fertil-
izers, and the selection and use of crop varieties that are
adapted to such conditions (Duru et al. 2015). Considering
the processes that underpin the coupling of biogeochemical
cycles, and the resistance of ecosystems to the changes
discussed above, the question arises as to the capacity of the
promoted agroecological practices to direct currently "open"
cultivated systems towards more “closed” agroecosystems.
Answering this question is difficult and beyond the objective
of this paper, but we propose that the framework of stoichi-
ometry flexibility could help agronomists better understand
the boundaries of agroecosystems, and to apply this frame-
work in particular to the objective of increasing the storage
of organic C in soils. Under these specific conditions, we
define the domain of stoichiometric flexibility of
agroecosystems as the possible change in stoichiometric ratios
before an economically unacceptable decrease in crop produc-
tion has occurred.

3.2 Ratio homeostasis and flexibility
in agroecosystems

3.2.1 Plant stoichiometry in agroecosystems

As discussed in the theory section, the difference in ratios
between plant species within a community defines the extent
to which the community is likely to be flexible. As autotrophs
are more flexible due to their storage capacity, stoichiometry in
an ecosystem may be imposed by primary producers i.e. plant
stoichiometry at the top of the trophic food web (Fig. 3). Plants
respond to environmental and anthropic changes by several

metabolic and physiological shifts that alter their capacity to
take up and reallocate nutrients and consequently their elemen-
tal composition and stoichiometry, which, in turn, affects the C
cycle (Peng et al. 2017). Plants are thus the main actors under-
lying the links between environmental conditions (in the
broadest sense) and the status of N and P, in (agro) ecosystems.

The single or few species present in a field and facing a
change in nutrient availability, can only modify their own
growth by either higher/lower uptake of nutrients or by a
change in their nutrient use efficiency and through phenomena
such as complementarity, facilitation and competition that occur
through the diversification of farming systems by increasing the
number of cultivated species and introducing more legumes
(Bedoussac et al. 2015; Malezieux et al. 2009). Despite a rather
constant C fraction of plant dry matter (40-50%), the shoot C:N
ratio is highly variable both within and between crop species:
Soussana and Lemaire (2014) estimate that C:N ratio of leaf dry
matter varies between 17 and 37 in temperate grasslands; Justes
et al. (2009) measured C:N ratios ranging from 10.9 to 31.6 in
25 catch crop residues of white mustard, radish, and Italian
ryegrass collected from fields with different sowing dates, N
fertilization and irrigation rates.Within a species, this variability
can be ascribed to a decrease in the critical shoot N concentra-
tion with increasing aboveground biomass, and, at a given
shoot biomass, to the effects of N deficiency or saturation
(Justes et al. 2009; Lemaire et al. 2008). Changes in the
root:shoot ratio also strongly affect the stoichiometry of the
whole plant, as roots and rhizomes have, on average, a higher
C:N ratio than shoots (Amougou et al. 2011).

Crop species therefore have an optimal level of N and P
supply for growth and plant function, but also notable pheno-
typic plasticity for adapting to changes in nutrient supply. For

Biodiversity

Inputs
Decoupled CNP  

cycles
Coupled CNP cycles

Losses of 
nutrients

Greenhouse gas

Open 
ecosystems

Closed
ecosystemsBio�c regula�on by soil

organisms

Intensive Agro-ecosystems
High perturba�on

Biodiversity based Agro-ecosystems
Low perturba�on

Fig. 4 Illustration of intensive versus biodiversity-based agroecosystems
and their impact on nutrient cycles. Intensive agroecosystems (such as
monocropping) are highly disturbed and lead to open agroecosystems
with higher nutrient losses than in less disturbed biodiversity-based

agroecosystems (such as intercropping, agroforestry). In the latter, biotic
regulations play a greater role in maximizing nutrient recycling, thereby
leading to more closed ecosystems
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instance, when the availability of N becomes limiting, high-
affinity nitrate and ammonium transport systems are up-
regulated and lateral root growth is stimulated (Sardans and
Penuelas 2012). N deficiency reduces foliar area and chloro-
phyll content, which negatively affects photosynthetic capacity
and growth. An increase in the concentration of N in the plant
increases plant activity and uptake of other nutrients, such as P,
which may become progressively limiting, leading to increas-
ing N:P ratio of living biomass and non-living OM compart-
ments (Sardans and Penuelas 2012; Penuelas et al. 2013).

Plant storage capacity is also used to determine the critical
P or N curves for cereals based on Liebig’s law of the mini-
mum (Gusewell 2004). Across a large range of ecosystems
plants with high growth rates typically have higher leaf N
and P concentrations and lower C:N, C:P and N:P ratios than
slow growing species, which supports the growth rate hypoth-
esis (Elser et al. 2000; Yu et al. 2011). Changes in N:P ratios
reported in various vegetation types across the world vary
from 11.9 for forbs to 17.8 for Graminoids (Gusewell 2004).
However, the question arises if this hypothesis applied for all
species encountered in agroecosystems. For instance, legumes
have high N and P contents while slower growth rates relative
to annual grass and C4 species have high growth rates with
lower leaf N content than C3 species. Critical P curves are rare
and depend on the site due to the strong affinity between P and
soil mineral phases. Some authors have determined critical P
concentrations in the shoot from N concentrations assuming
constant N:P ratios (Ziadi et al. 2007). However, these ratios
are prone to change due to the storage capacity of plants and to
the different levels of N and P availability in soils. When N
and P are limiting, plants can reduce their growth, their bio-
mass and their grain production thus going beyond the bound-
aries of the flexibility domain. However, plants are more flex-
ible in their elemental composition than their consumers.
Their varying capacity of resorption of nutrients from senes-
cent leaves is an important pathway that explains the alteration
in the C:N:P ratio of plant debris (McGroddy et al. 2004).

3.2.2 The stoichiometry of soil total C, N and P pools

Impacts on soil stoichiometry have been reported following
shifts from natural ecosystems (i.e., forests, savannah) to
agroecosystems (grasslands, croplands) or from cropland to
forest (Zhao et al. 2015). These land use changes modify the
amount and nature of the organic inputs to the soil, the level of
nutrient availability, particularly with N and P mineral fertili-
zation, and soil management through tillage. These changes
affect the C, N and P stocks in the soil, and inmost cases, result
in a marked decrease in these stocks, but the total elemental
ratios in soils appear to be rather constrained, at least at the
biome level (Cleveland and Liptzin 2007; Xu et al. 2013;
Khan et al. 2016). In their meta-analysis, Cleveland and
Liptzin (2007) quoted a C:N:P stoichiometry of 72:6:1 for

topsoils. Xu et al. (2013) found on average for cropland and
pastures a C:N:P stoichiometry of 38:5:1 and 32:5:1, respec-
tively. Comparing a broader range of soils, including arable
soils, peatlands and shrubs, Tipping et al. (2016) show that
C:N and C:P ratios decrease with increasing C content in
SOM (soil organic matter) but for nutrient rich SOM, the av-
erage stoichiometry they found (67:7:1) is quite similar to that
proposed by the previous authors. Following their study SOM
can be divided into two subgroups: nutrient poor SOM and
nutrient rich SOM.Nutrient rich SOM selects compoundswith
strong adsorption to the mineral phase which is particularly the
case for P. The resulting change in N:C and P:C ratios ranged
between of 0.039 and 0.0011 for nutrient poor SOM to 0.12
and 0.016 for nutrient rich SOM, mainly being related to P.

C:N ratios have also been shown to be unresponsive to
several land use changes (Zinn et al. 2018). Soils with the
same geochemical background but under different land uses,
have construed stoichiometry. Most published studies report a
decrease in the soil C:N ratio a long time after land conversion
from forests or pastures to cropped soils (Murty et al. 2002; Li
et al. 2016). The total P concentration in the soil increases and
therefore the C:P and N:P ratios decrease due to the accumu-
lation of inorganic P linked to higher P retention by the soil
compared to N (Tiessen and Stewart 1983; Tiessen et al. 1982;
Jiao et al. 2013; Schrumpf et al. 2014; Tischer et al. 2014).
When analyzing the response of soil stoichiometry to changes
in land use, the length of time since land conversion must be
taken into consideration. When considering the transitory
phase i.e., 5 to 10 years after forest conversion to cropped
land, Murty et al. (2002) observed a decrease in C and N
stocks of about 24% and 15% respectively, leading to a de-
crease in the soil C:N ratio after the shift from the native
system to agriculture, but, in the longer term (more than 10
years), the C:N ratio stabilized. Frossard et al. (2016) conclud-
ed that to capture the effect of land use changes, soil stoichi-
ometry needed to be coupled with balance (input-output) ap-
proaches and soil texture and structure indicators. These two
studies stressed the relative importance of the time to equilib-
rium in soil stoichiometry and question whether total soil nu-
trients, commonly used in stoichiometry approaches in natural
environments (Cleveland and Liptzin 2007), are relevant in-
dicators of ratio flexibility in frequently disturbed soils, such
as cropped land. Furthermore, the form of soil P considered
impact the stoichiometric ratios. Kirkby et al. (2011) measured
a stronger relationship between C and organic P than between
C and total P although P always exhibited a weaker relation-
ship with C than N and S. When considering total N, organic
N could be overestimated because some N exists under inor-
ganic forms (nitrate and ammonium mainly). However, this
fraction is smaller for N than for P, which explains why P leads
to the main variation in C:N:P ratios (Tipping et al. 2016).
Because in agricultural soils, P is mainly added with mineral
fertilization, the fraction of mineral P compared to organic P is
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higher than in natural ecosystems and could lead to more
variable C:P ratios.

Organic and synthetic fertilizers have a strong effect on
nutrient availability in agroecosystems and may influence
soil stoichiometric ratios. Few studies have investigated the
effects of the form or rate of fertilization on soil stoichiometry
andmost of those that have, focused either on C and N, or on P
dynamics. Kirkby et al. (2016) analyzed changes after five
years in the C:N, C:P and N:P ratios of the fine fraction of
SOM in cropped soils supplemented or not with nutrients at a
rate based on the fine fraction of SOM stoichiometry and as a
function of soil depth (from the surface to a depth of 1.6 m).
Calculated using the Kirkby et al.’s data, we show that no
change occurred in the C:N ratios, while C:P and N:P ratios
decreased only in the soil surface layers ( 0-10 and 10 to 20 cm
layers) (Fig. 5). The crop yields measured in the same plots
did not significantly differ between fertilized and non-
fertilized treatments, suggesting that the changes in soil N:P
ratios are likely to be part of stoichiometry flexibility. In this
work, total P was considered and it accumulated more rapidly
than N or C (decreased in N:P ratios between 2006 and 2012)
in the surface layers, which could be due tomore P retained on
minerals than N. The N:P ratios decreased from 2.89 to 2.06 at
0-10 cm depth and from 2.72 to 1.77 at 10 to 20 cm depth.

This pattern is in agreement with the results obtained by Li
et al. (2013) in a paddy soil ecosystem following different P
applications. Therefore, agricultural practices such as P fertil-
ization may modify SOM stoichiometry and the observed
changes in ratios suggest some flexibility. However, the im-
pact of the forms of P (organic versus mineral) used in the
ratios would deserve more investigations as most of this flex-
ibility accounts for change in P, whereas C and N are con-
straints at least in the surface soil.

3.2.3 Trophic interactions and the soil microbial biomass
stoichiometry

Trophic interactions are important to understand the role of
soil biota during the decomposition process. However, the
impact of these interactions on litter or soil stoichiometry
was rarely reported. Top down regulation of microbial decom-
poser by the soil fauna regulates C and nutrients availability
(Hedlund and Öhrn 2000; Sauvadet et al. 2016). Carrillo et al.
(2016) model the effect of different litter stoichiometry on the
contribution of different functional groups to C and N miner-
alization. They conclude that litter type does not affect the
litter and soil communities in the same manner, and thus the
effect of populations and their trophic interactions on
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mineralization are not correlated. Furthermore, change in litter
stoichiometry traits impacted N cycling. Litter with interme-
diate N content or mixture of litters promote food webs able to
cope with change in substrate stoichiometry.

Studies focusing on soil microorganisms are more abun-
dant than those related to soil biota. Despite variation of the
elemental ratios of soil microorganisms has been observed in
studies considering a wide range of habitats (Manzoni et al.
2010), they are on average less variable than plants and are
considered as stoichiometrically homeostatic (Cleveland and
Liptzin 2007; Xu et al. 2013; Khan et al. 2016). However,
published C:N:P ratios of microbial biomass should be taken
with caution, as almost all data are derived frommethods (e.g.
fumigation-extraction) that select for a limited group of mi-
crobial biomarkers such as cytoplasmic soluble components,
whose stoichiometric composition may be more stable than
that of other components (e.g. cell wall components, extracel-
lular polysaccharides) and used constant coefficients for C and
N (Kallenbach et al. 2016). In cropped land, because soil
nutrient contents are high compared to C contents (C:N and
C:P ratios of 12.5 and 63.9 respectively in cropland soils com-
pared to 18.9 and 253.8 inmixed forest soils as reported byXu
et al. 2013), the growth of microorganisms is considered more
limited by C than by nutrients (Allison et al. 2010).
Kallenbach and Grandy (2011) conducted a meta-analysis
comparing microbial biomass data in which systems with or-
ganic wastes (various animal manures, crop residues) were
compared to the same system with inorganic fertilizer in a
wide range of agroecosystems, soil types and climates (a total
of 297 comparisons). On average, microbial C (Cmic) in-
creased by +36% and microbial N (Nmic) by +27% compared
to systems without organic amendment, and the Cmic:Nmic
ratio was 8.58 ± 0.26 showing a relative increase of about 30%
(with 70% of the observed microbial C:N between 6 and 11),
with no significant correlation with the C:N ratio of manure
and plant amendments (whose C:N varied between 10 and
29). The mean microbial C:N ratio at 8.58 agreed well with
the value of 8.6 ± 3 reported by Cleveland and Liptzin (2007)
in grasslands and forests, and all these authors assumed a
strong homeostatic relationship between Cmic and Nmic,
which persisted even with the intensive addition of resources
and irrespective of the elemental stoichiometry of those re-
sources (Cleveland and Liptzin 2007; Mooshammer et al.
2014). Fertilization could thus have an impact on the size of
the soil microbial biomass through higher plant biomass pro-
duction and degradation, but seem to not change much its
average stoichiometry in the long term, although data are still
scarce to definitively confirm this hypothesis. However, the
variation observed (e.g. from 3 to 21 in the Kallenbach and
Grandy meta-analysis) was attributed to change in microbial
community composition according to nutrient availability, and
not to stoichiometry flexibility of a given community. Fanin
et al. (2016a, 2016b) previously demonstrated under different

land uses that enzymatic stoichiometry during litter decompo-
sition was driven by C needs rather than by N or P needs.
However, fertilization could influence the stoichiometry of
available nutrients in soils (mineral N, Olsen P etc.) and future
research needs to focus on the stoichiometry of such dynamic
pools.

3.2.4 The vertical stratification of soil stoichiometry

The references cited above, which mainly focus on the top soil
horizons, show that C:N:P ratios of bulk soils and microbial
biomass are quite constrained in agroecosystems, and that
fertilization practices do not appear to be a major lever of
stoichiometric flexibility. In China, Tian et al. (2010), demon-
strated that the C:N, C:P and N:P ratios of an organic-rich
horizon (0-10 cm depth) were constrained, arguing in favor
of a soil Redfield-like ratio. However, in underlying soil
layers, which have a lower content in organic matter, the
C:N:P ratios were less constrained, likely because of less bi-
otic regulation and more control through edaphic conditions
(geochemical background, weathering etc.) compared to the
surface layer. Soil vertical stratification may therefore be im-
portant. For example, when investigating the effect of land-
use changes (natural forest, pastures of different ages, second-
ary succession) in tropical conditions, Tischer et al. (2014)
reported significant differences in soil C:N:P stoichiometry
between soil layers at different depths. Particularly the “organ-
ic” layers that are often present in natural systems (forest,
savannah) with residue mulches, had higher C:N and C:P
ratios than the underlaying “mineral” soil layers. This results
from the higher accumulation of partially-degraded plant de-
bris, whose elemental composition is closer to plant tissues
than to soil stabilized organic matter. In their study, these
authors did not observe any changes in the C:N ratio between
0 and 20 cm, indicating a tight coupling of C and N during
microbial transformations, while soil C:P and N:P ratios de-
creased with soil depth, and there was no longer relationships
between total P and soil organic carbon. Tischer et al. (2014)
concluded that a considerable change in stoichiometry and
molecular structure of resources evolves in the soil profile,
and the distribution in the soil may vary strongly depending
on the land use. In agroecosystems, the major impacts of re-
duction or suppression of tillage practices on the stratification
of SOM and nutrients in the soils profile have been broadly
reviewed (Luo et al. 2010). Few papers report measurements
of both C, N, and P contents in soils under no-till versus full-
inversion tillage, and of the resulting C:N and C:P ratios. In
most cases, reduced-tillage had no significant effect on soil
C:N ratio (Wander and Bidart 2000; Jacobs et al. 2009;
Gregorich et al. 2009; Jagadamma and Lal 2010; Spargo
et al. 2011; Dimassi et al. 2014) nor C:P (N:P) ratios of total
SOM (Tracy et al. 1990; Kingery et al. 1996; Lilienfein and
Wilcke 2003; Gonzalez-Chavez et al. 2010; Wyngaard et al.
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2013) neither in the soil layer previously tilled (in most cases
the first top 15 to 20 cm) nor in the first top 5 cm. In some
studies, conversion to no-tillage resulted in a slight but never-
theless statistically significant increase in the C:N ratio of total
SOM in the first 5 to 7 cm of soil (Hussain et al. 1999; Fabrizzi
et al. 2003), emphasizing the importance of the stratification
of the freshly added and “native” SOM, and their chemical
differences in no-till systems.

3.2.5 The stoichiometry of particulate organic matter

In addition to considering the stoichiometry of bulk soil and
soil microorganisms, considering that of particulate organic
matter (POM) may be relevant. POM is indeed a physical
fraction (53-2,000 μm size) of non-living SOM, not closely
associated with soil minerals, and dominated by relatively
fresh, undecomposed plant residues with a recognizable cel-
lular structure. POM may also include fungal hyphae, seeds,
spores and fauna skeleton (Baldock and Skjemstad 1999).
This macro-organic matter decomposes faster than total
SOM, meaning that POM composition changes over time
with more advanced microbial alteration. POM is recognized
to be a sensitive indicator of changes in SOM brought about
by changes in soil management (Franzluebbers and
Stuedemann 2008). Considering the plant origin of POM, as
the C:N:P stoichiometry of the “bulk” soil does not resemble
that of plant litter (Finn et al. 2016). POM can be found at
different degrees of alteration and transformation of plant
structural material, by soil decomposers having different ac-
tivities at different soil depths and consequently has different
stoichiometric ratios depending on the microbial processing
which interacts with depth and with the time since the change
in practices occurred. For example, in a comparison of decom-
position in soils amended with flowering and mature pea res-
idues varying in their initial C:N and C:P contents, and the
same soil but not amended with pea residues, Ha et al. (2008)
showed that the C:N and C:P ratios of the POM in the mature
pea treatment decreased during decomposition, towards the
values of the flowering-pea and control POM, indicating the
narrowing of the stoichiometry ratio with increasing microbial
alteration. POM composition may also be affected by tillage
practices. Some studies that provided C and N measurements
in POM reported similar C:N (Wander and Bidart 2000;
Sequeira et al. 2011; Dimassi et al. 2014) and C:P ratios
(Wyngaard et al. 2013) for POMunder no-till and convention-
al tillage, whether in the very soil surface (2.5 to 5 cm) or in
the tilled soil layer (15 to 20 cm). Other authors reported a
decrease in the C:N ratio of the POM under no-till compared
to tilled plots, either in the very soil surface (Spargo et al.
2011) or in the tilled layer (Hussain et al. 1999). Conversely,
Fabrizzi et al. (2003) found an increase in the C:N ratio of
POM under no-tillage in the first 7.5 cm. Differences in POM
C:N:P ratios according to tillage management could arise from

different proportions of POM in different stages of decompo-
sition present in the soil, the extreme situation being an “or-
ganic” layer of litter particles on top of the bulk soil, whose
composition is quite close to that of the original plant litter
(Tischer et al. 2014). Because, crop residues have contrasted
stoichiometry with C:N ratios ranging from 10 to more than
150 (Trinsoutrot et al. 2000) according to species, maturity
and plant parts, the C:N:P ratios of POM varied, and under
no tillage, increased the soil C:N:P vertical stratification.

4 Stoichiometric constraints
on agroecological practices

The theoretical basis of stoichiometry in agroecosystems and
the results discussed above concerning the relationships be-
tween agricultural practices and stoichiometry flexibility raise
the question of to what extent stoichiometric constraints may
weigh on the implementation of some agroecological prac-
tices. Based on our literature survey, we show that crops have
a greater potential for stoichiometric flexibility at the organis-
mal level, as they can adapt to temporary shortage or imbal-
ance of nutrients by modifying different physiological pro-
cesses, finally modifying crop production and the quality of
the biomass produced if the shortage persists. Their ability to
modify re-sorption from senescent parts to grains and fruits is
also a key property, as it directly influences the C:N:P stoichi-
ometry of plant debris, source of fresh organic matter in soils.
Conversely, the relative lack of stoichiometric flexibility of the
soil microbial communities at the individual level and to a
lesser extent at the soil community level, was evidenced both
in natural and agricultural contexts. Between the two, SOM
taken as a whole, is both a resource for heterotrophic micro-
organisms and a sink for microbial products. The limited stoi-
chiometric flexibility of the stabilized organic matter, particu-
larly for C and N, reflects the microbial physiology and the
contribution of microbial biomass and microbial residues to
total SOM. In situations in which the C:N ratio of the organic
matter was observed to increase in comparison with other
management (e.g., in no-till situations with vertical stratifica-
tion of organic matter compare with tillage situations), our
hypothesis is that the SOM included an increasing proportion
of partially decomposed plant debris (particulate organic mat-
ter), which reflects the elemental composition of plant litter
more than that of microbial products (Khan et al. 2016). These
conclusions are important for implementing agroecological
practices aiming to mitigate the greenhouse effect, by playing
on its function as a sink for atmospheric C. This is the whole
debate about the international “4 per mille” initiative (Lal
2016; Chabbi et al. 2017; Poulton et al. 2018).

Concerning the first objective, i.e., reducing the use of syn-
thetic fertilizers and reducing nutrients losses and their impact
on environment, the options proposed aim to maintain the
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elemental ratio of crops and crop products by introducing
(again) N by symbiotic fixation in rotations, increasing N
and P recycling through organic wastes and animal manure
as substitutes to synthetic fertilizers, improving synchronisms
between soil supplies and crop requirements (notably through
permanent soil cover by plants), and by diversifying crops
both in space and time to combine their different abilities to
capture resources and to produce different “after-life” plant
debris (shoots and roots) (Bedoussac et al. 2015; Duru et al.
2015). All these practices are options that promote the cou-
pling of C and nutrient cycles on the one hand through the
presence of vegetation and on the other hand through the
constant solicitation of the heterotrophic microbial communi-
ty that ensures mineralization-immobilization turnover during
the degradation of above-ground and below-ground litters,
rhizodeposits and organic wastes (Hufnagl-Eichiner et al.
2011) Therefore C management combined with stoichiometry
homeostasis constraints of microbial communities and SOM
can be viewed as opportunity to move from open and leaky
farming systems to “closed” systems with reduced losses
(Recous et al. 2019).

Concerning the second objective, it is clear that the low
stoichiometric flexibility of the decomposers and of the
SOM calls into question the possibility of increasing C
storage in soils without simultaneously storing additional
amounts of N and P, as pointed out by Richardson et al.
(2014) and Van Groenigen et al. (2017). A rough calculation
shows that increasing the C stock of agricultural soils by “4
per mille per year” (i.e. 0.527 Pg C/y considering a current
stock of 132 Pg C in the top 0.3 m of cropland soils, Zomer
et al. 2016) assumes the additional annual storage of 0.045+/-
0.003 Pg N (=45+/-3 Tg N) and 0.0048+/-0.0014 Pg P (=4.8+/
-1.4 Tg P) (considering a C:N and C:P ratio of 11.74+/-0.75
and 110.5+/-30.5 for SOM; adapted from Kirkby et al. 2011).
If this additional amount of N and P were supplied by synthet-
ic chemical fertilizers, it would represent 46% and 24% of the
current amount of mineral N and P, respectively, which are
spread on cropland soils every year (97 Tg N yr-1 and 20 Tg P
yr-1; Lassaletta et al. 2016; Chen and Graedel 2016). This
would be in complete disagreement with the above-
mentioned target of developing agroecological systems that
are less dependent on chemical fertilizers. Moreover, the
greenhouse gas emissions that occur during the industrial syn-
thesis, transport and application of N mineral fertilizers on the
fields, would seriously reduce the expected benefit of addi-
tional C storage in soils for climate change mitigation.
However, comparing the additional amount of nutrients re-
quired to store the amount of carbon targeted by the 4/1000
initiative (45+/-3 Tg N and 4.8+/-1.4 Tg P) to the N and P
surpluses calculated for croplands (i.e. between +85 and + 88
Tg N yr-1 in 2009 according to Bouwman et al. 2017 and
Lassaletta et al. 2016, respectively; and between +9 and +
14 Tg P yr-1 according to Bouwman et al. 2017 and Chen

and Graedel 2016, respectively) strongly suggests that this
additional N and P required to store additional C can be pro-
vided under current fertilization rates by reducing nutrient
losses thanks to improved management practices like cover
crops, fertilizer incorporation, etc.

This emphasizes the need for an integrated agroecological
approach, not only focused on C, in which the incompressible
need for additional N and P associatedwith C storage is fulfilled
by reducing nutrient losses either directly through improved
fertilization practices or by modifying cropping systems, and
by other sources such as N fixation by legumes and recycling of
organic resources. This review suggests that two soil compart-
ments, which have a higher flexibility, should be specifically
targeted for C storage: deep soil horizons and the POM fraction.

In addition to the longer turnover time reported for deep
soil C (Balesdent et al. 2017, 2018), the C:N:P ratio in deep
soil layers is less constrained, likely because of reduced biotic
regulation, so that additional C storage could be achieved with
lower N and P inputs. Indeed, the drivers of soil C dynamic
changes from the surface to the depth with a gradient of biotic
to abiotic control. At depth, less C inputs to prime microbial
activity slow down the litter (mainly roots) decomposition
(Gill and Burke 2002; Pries et al. 2018) thus increasing C
residence time. Microbial biomass C decreased at depth and
this decrease is stronger than for total organic C (Fang and
Moncrieff 2005) while bioturbation does not occur, thus in-
creasing the abiotic control of C stabilization. The less abun-
dant biota and its adaptation lead to an increasing influence of
abiotic regulations at depth, such as a larger proportion of
SOM is associated to minerals (Angst et al. 2016; Rumpel
and Kogel-Knabner 2011; Shahzad et al. 2018). Although
physical disconnection and protection could partly be allevi-
ated by the diffusion of root exudates which lead to loss of C
through priming effect, recent studies report either no quanti-
tative differences in priming effect between the surface and
deep (80 cm depth) soil layers (Shahzad et al. 2018) or a
strong decrease (72%) in deep soil layer (40-60 cm) compare
to surface soil layer (0-20 cm) for 35 soils across the world
(Perveen et al. 2019). Because priming effect has commonly a
lower quantitative effect than litter quality on Cmineralization
(Fanin et al. 2016a, 2016b), the addition of root litter in deep
soil layers could favor nutrient release and C storage although
more C balance data including deep soil layer are needed. We
argued that increasing soil C at depth without increasing nu-
trient could be possible to some extent because: 1) the com-
position and activity of soil microorganisms differed from the
soil surface 2) the higher spatial heterogeneity lead to a phys-
ical disconnection between microbial activity and root litter
(the main hot spots of C) 3) the biophysical environment at
depth favor C protection within aggregates (Salome et al.
2010). The contribution of leaf and root litter to dissolved
organic C and nutrient leaching could also foster C storage
in deep soil layers (Uselman et al. 2007, 2012).
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The ability of deep rooting plants to address this issue with
the co-benefit of improving water and N uptake which are
primary limitation to production in most agroecosystems fac-
ing climate change should be further investigated (Lynch and
Wojciechowski 2015). Reviews by Kell (2011, 2012) stressed
the importance of the genetic control of plant root depths and
architecture and its interaction with the environment. Because
root architecture between plant types or between cultivars or
mutant strains varied, Kell (2012) encourages the develop-
ment of breeding programs for plants with deeper rooting.
However, subsoil exploration by roots must not lead to subsoil
over-exploitation, such a paradigm needs to be considered
before recommending practices.

Beyond the plant genetic, deep rooting is limited by soil
physical properties such as compaction, low P availability,
decrease in temperature, increase in acidity, low level of oxy-
gen etc. Bypassing these physico-chemical constraints implies
to adapt agronomic practices to facilitate deep rooting. For
instance, pioneer species could be used to penetrate
compacted subsoils such as dicots as alfalfa or lupin. Alfafa
(Medicago sativa L.) exhibited the deepest rooting profile
amongst 11 temperate crops reaching a depth of 177 cm
(Fan et al. 2016). Deep-ripping during the growing period
and any root traits reducing the respiratory requirements (cor-
tical cell number and size) or slowing down desiccation (de-
layed xylem maturation or suberization) would favor deep
rooting (Lynch and Wojciechowski 2015). In complement of
deep rooted perennial crops (e.g. alfalfa), trees (e.g. in agro-
forestry systems; De Stefano and Jacobson 2017) and hedges
can act as C transporters towards deep soil layers in addition to
providing co-benefits like N fixation, C storage in biomass,
providing habitats for biodiversity, and erosion control.

Similarly, the C:N:P ratio of particulate organic matter
(POM) is less constrained, because it is less a reflection of
the C:N:P ratio of the soil microbial biomass than that of
SOM resulting from the complete microbial alteration of or-
ganic inputs. Although the residence time of C included in
POM is shorter than that of stabilized C associated with min-
eral particles, the amount of C in coarse-sized particulate or-
ganic matter nevertheless represents a significant proportion
(>20%) of total soil C (Balesdent et al. 1998; Besnard et al.
2001). Agricultural practices that would enhance C storage in
the POM fraction include the practices leading to the accumu-
lation of less degraded plant residues, e.g. by increasing the
amount and frequency of plant litters returned to soils (Autret
et al. 2016) and by reducing or suppressing tillage. Reduce-
tillage promotes the non-incorporation of crop residues which
decomposition might be slowed down depending on the mi-
croclimate conditions (Coppens et al. 2007), such as in con-
servation agriculture (Chenu et al. 2019). This requires how-
ever a subtle management, and additional research is needed
into balancing the stocks and flows of organic matter and thus
organic C storage and nutrient and energy release for

agricultural production (Lehmann and Kleber 2015). Indeed,
these practices favor the ‘microbial C pump’ whose contribu-
tion to soil C storage may have been underestimated
(Lehmann and Kleber 2015; Khan et al. 2016; Liang et al.
2017). This means that agricultural management practices that
are likely to increase and sustain this POM C stock, should be
considered in a “4 per mille” perspective.

5 Conclusion

This synthesis has shown that the principles developed in
ecology concerning the concept of stoichiometry, its flexibil-
ity or its stability against varied resources, i.e., homeostasis,
and applied at different scales (organism, population, commu-
nity, ecosystem) can be transposed to cultivated agrosystems.
In these agroecosystems, stoichiometric homeostasis is dom-
inant and imposes relatively constant ratios between C, N and
P concentrations, especially for soil microorganisms and or-
ganic matter that are mainly derived from the microbial trans-
formation of plant litters. Intensified agroecosystems have
been able to partially overcome these constraints thanks to
the use of inputs in the form of mainly mineral fertilizers.
But agroecological practices based on the reduction of mineral
inputs, and promoting soil C storage to mitigate greenhouse
gas emissions, must necessarily take into account these stoi-
chiometric constraints in order to be viable. This objective can
be achieved by reducing the high nutrient losses usually ob-
served in conventional agrosystems, by mobilizing other nu-
trient inputs such as symbiotic fixation and recycling routes,
and by considering soil management options that allow C
stabilization in soils without proportional stabilization of N
and P.
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