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Abstract
Given a trained neural network, we aim at understanding how similar it considers
any two samples. For this, we express a proper definition of similarity from the
neural network perspective (i.e. we quantify how undissociable two inputs A and
B are), by taking a machine learning viewpoint: how much a parameter variation
designed to change the output for A would impact the output for B as well?
We study the mathematical properties of this similarity measure, and show how to
estimate sample density with it, in low complexity, enabling new types of statistical
analysis for neural networks. We also propose to use it during training, to enforce
that examples known to be similar should also be seen as similar by the network.
We then study the self-denoising phenomenon encountered in regression tasks when
training neural networks on datasets with noisy labels. We exhibit a multimodal
image registration task where almost perfect accuracy is reached, far beyond label
noise variance. Such an impressive self-denoising phenomenon can be explained
as a noise averaging effect over the labels of similar examples. We analyze data by
retrieving samples perceived as similar by the network, and are able to quantify the
denoising effect without requiring true labels.

1 Introduction
The notion of similarity between data points is an important topic in the machine learning literature,
obviously in domains such as image retrieval, where images similar to a query have to be found;
but not only. For instance when training auto-encoders, the quality of the reconstruction is usually
quantified as the L2 norm between the input and output images. Such a similarity measure is however
questionable, as color comparison, performed pixel per pixel, is a poor estimate of human perception:
the L2 norm can vary a lot with transformations barely noticeable to the human eye such as small
translations or rotations (for instance on textures), and does not carry semantic information, i.e.
whether the same kind of objects are present in the image. Therefore, so-called perceptual losses [6]
were introduced to quantify image similarity: each image is fed to a standard pre-trained network
such as VGG, and the activations in a particular intermediate layer are used as descriptors of the
image [2, 3]. The distance between two images is then set as the L2 norm between these activations.
Such a distance carries implicitly semantic information, as the VGG network was trained for image
classification. However, the choice of the layer to consider is arbitrary. In the ideal case, one would
wish to combine information from all layers, as some are more abstract and some more detail-specific.
Then, how to choose the weights to combine the different layers? Would it be possible to build a
canonical similarity measure, well posed theoretically?

More importantly, the previous literature does not consider the notion of input similarity from the
point of view of the neural network that is being used, but from the point of view of another one
(typically, VGG) which aims at imitating human perception. Yet, neural networks are black boxes
difficult to interpret, and showing which samples a network considers as similar would help to explain
its decisions. Also, the number of such similar examples would be a key element for confidence
estimation at test time. Moreover, to explain the self-denoising phenomenon, i.e. why predictions can
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be far more accurate than the label noise magnitude in the training set, thanks to a noise averaging
effect over similar examples [7], one needs to quantify similarity according to the network.

The purpose of this article is to express the notion of similarity from the network’s point of view.
We first define it, and study it mathematically, in Section 2, in the one-dimensional output case for
the sake of simplicity. Higher-dimensional outputs are dealt with in Section 3. We then compute,
in Section 4, the number of neighbors (i.e., of similar samples), and propose for this a very fast
estimator. This brings new tools to analyze already-trained networks. As they are differentiable and
fast to compute, they can be used during training as well, e.g., to enforce that given examples should
be perceived as similar by the network (c.f . supp. mat.). Finally, in Section 5, we apply the proposed
tools to analyze a network trained with noisy labels for a remote sensing image alignment task, and
formalize the self-denoising phenomenon, quantifying its effect, extending [7] to real datasets.

2 Similarity
In this section we define a proper, intrinsic notion of similarity as seen by the network, relying on
how easily it can distinguish different inputs.

2.1 Similarity from the point of view of the parameterized family of functions

Let fθ be a parameterized function, typically a neural network already trained for some task, and x,x′

possible inputs, for instance from the training or test set. For the sake of simplicity, let us suppose in
a first step that fθ is real valued. To express the similarity between x and x′, as seen by the network,
one could compare the output values fθ(x) and fθ(x′). This is however not very informative, and a
same output might be obtained for different reasons.

Instead, we define similarity as the influence of x over x′, by quantifying how much an additional
training step for x would change the output for x′ as well. If x and x′ are very different from the
point of view of the neural network, changing fθ(x) will have little consequence on fθ(x′). Vice
versa, if they are very similar, changing fθ(x) will greatly affect fθ(x′) as well.

θ

f (x’)
θ

v

v’
f (x)

Figure 1: Moves in the space of out-
puts. We quantify the influence of a
data point x over another one x′ by
how much the tuning of parameters θ
to obtain a desired output change v for
fθ(x) will affect fθ(x′) as well.

Formally, if one wants to change the value of fθ(x) by a small quantity ε, one needs to update θ by
δθ = ε ∇θfθ(x)

‖∇θfθ(x)‖2 . Indeed, after the parameter update, the new value at x will be:

fθ+δθ(x) = fθ(x) +∇θfθ(x) · δθ +O(‖δθ‖2) = fθ(x) + ε+O(ε2).

This parameter change induces a value change at any other point x′ :

fθ+δθ(x
′) = fθ(x

′) +∇θfθ(x′) · δθ +O(‖δθ‖2) = fθ(x
′) + ε

∇θfθ(x′) · ∇θfθ(x)
‖∇θfθ(x)‖2

+O(ε2).

Therefore the kernel kNθ (x,x′) =
∇θfθ(x) · ∇θfθ(x′)
‖∇θfθ(x)‖2

represents the influence of x over x′: if one

wishes to change the output value fθ(x) by ε, then fθ(x′) will change by ε kNθ (x,x′). In particular,
if kNθ (x,x′) is high, then x and x′ are not distinguishable from the point of view of the network, as
any attempt to move fθ(x) will move fθ(x′) as well (see Fig. 1). We thus see kNθ (x,x′) as a measure
of similarity. Note however that kNθ (x,x′) is not symmetric.

Symmetric similarity: correlation Two symmetric kernels natural arise: the inner product:
kIθ(x,x

′) = ∇θfθ(x) · ∇θfθ(x′) (1)
and its normalized version, the correlation:

kCθ (x,x
′) =

∇θfθ(x)
‖∇θfθ(x)‖

· ∇θfθ(x
′)

‖∇θfθ(x′)‖
(2)

which has the advantage of being bounded (in [−1, 1]), thus expressing similarity in a usual meaning.
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2.2 Properties for vanilla neural networks

Intuitively, inputs that are similar from the network perspective should produce similar outputs;
we can check that kCθ is a good similarity measure in this respect (all proofs are deferred to the
supplementary materials):
Theorem 1. For any real-valued neural network fθ whose last layer is a linear layer (without any
parameter sharing) or a standard activation function thereof (sigmoid, tanh, ReLU...), and for any
inputs x and x′,

∇θfθ(x) = ∇θfθ(x′) =⇒ fθ(x) = fθ(x
′) .

Corollary 1. Under the same assumptions, for any inputs x and x′,

kCθ (x,x
′) = 1 =⇒ ∇θfθ(x) = ∇θfθ(x′) ,

hence kCθ (x,x
′) = 1 =⇒ fθ(x) = fθ(x

′) .

Furthermore,
Theorem 2. For any real-valued neural network fθ without parameter sharing, if ∇θfθ(x) =
∇θfθ(x′) for two inputs x,x′, then all useful activities computed when processing x are equal to the
ones obtained when processing x′.

We name useful activities all activities ai(x) whose variation would have an impact on the output,
i.e. all the ones satisfying dfθ(x)

dai
6= 0. This condition is typically not satisfied when the activity is

negative and followed by a ReLU, or when it is multiplied by a 0 weight, or when all its contributions
to the output cancel one another (e.g., a sum of two neurons with opposite weights: fθ(x) =
σ(ai(x))− σ(ai(x))).

Link with the perceptual loss For a vanilla network without parameter sharing, the gradient
∇θfθ(x) is a list of coefficients ∇wji fθ(x) = dfθ(x)

dbj
ai(x), where wji is the parameter-factor that

multiplies the input activation ai(x) in neuron j, and of coefficients ∇bjfθ(x) =
dfθ(x)
dbj

for neuron

biases, which we will consider as standard parameters bj = wj0 that act on a constant activation
a0(x) = 1, yielding∇wj0fθ(x) =

dfθ(x)
dbj

a0(x). Thus the gradient∇θfθ(x) can be seen as a list of all
activation values ai(x) multiplied by the potential impact on the output fθ(x) of the neurons j using
them, i.e. dfθ(x)dbj

. Each activation appears in this list as many times as it is fed to different neurons.
The similarity between two inputs then rewrites:

kIθ(x,x
′) =

∑
activities i

λi(x,x
′) ai(x) ai(x

′) where λi(x,x
′) =

∑
neuron j using ai

dfθ(x)

dbj

dfθ(x
′)

dbj

are data-dependent importance weights. Such weighting schemes on activation units naturally
arise when expressing intrinsic quantities; the use of natural gradients would bring invariance to
re-parameterization [12, 13]. On the other hand, the inner product related to the perceptual loss would
be ∑

activities i 6=0

λlayer(i) ai(x) ai(x
′)

for some arbitrary fixed layer-dependent weights λlayer(i).

2.3 Properties for parameter-sharing networks

When sharing weights, as in convolutional networks, the gradient ∇θfθ(x) is made of the same
coefficients (impact-weighted activations) but summed over shared parameters. Denoting by S(i) the
set of (neuron, input activity) pairs where the parameter wi is involved,

kIθ(x,x
′) =

∑
params i

 ∑
(j,k)∈Si

ak(x)
dfθ(x)

dbj

 ∑
(j,k)∈Si

ak(x
′)
dfθ(x

′)

dbj


Thus, in convolutional networks, kIθ similarity does not imply similarity of first layer activations
anymore, but only of their (impact-weighted) spatial average. More generally, any invariance
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introduced by a weight sharing scheme in an architecture will be reflected in the similarity measure
kIθ , which is expected as kIθ was defined as the input similarity from the neural network perspective.

Note that this type of objects was recently studied from an optimization viewpoint under the name of
Neural Tangent Kernel [5, 1] in the infinite layer width limit.

3 Higher output dimension

Let us now study the more complex case where fθ(x) is a vector
(
f iθ(x)

)
i∈[1,d] in Rd with d > 1.

Under a mild hypothesis on the network (output expressivity), always satisfied unless specially
designed not to:
Theorem 3. The optimal parameter change δθ to push fθ(x) in a direction v ∈ Rd (with a force
ε ∈ R), i.e. such that fθ+δθ(x) − fθ(x) = εv, induces at any other point x′ the following output
variation:

fθ+δθ(x
′)− fθ(x′) = εKθ(x

′,x)Kθ(x,x)
−1 v + O(ε2) (3)

where the d× d kernel matrix Kθ(x
′,x) is defined by Kij

θ (x′,x) = ∇θf iθ(x′) · ∇θf
j
θ (x).

The similarity kernel is now a matrix and not just a single value, as it describes the relation between
moves v ∈ Rd. Note that these matrices Kθ are only d× d where d is the output dimension. They
are thus generally small and easy to manipulate or inverse.

Normalized similarity matrix The unitless symmetrized, normalized version of the kernel (3) is:
KC
θ (x,x

′) = Kθ(x,x)
−1/2 Kθ(x,x

′) Kθ(x
′,x′)−1/2 . (4)

It has the following properties: its coefficients are bounded, in [−1, 1]; its trace is at most d; its
(Frobenius) norm is at most

√
d; self-similarity is identity: ∀x, KC

θ (x,x) = Id; the kernel is
symmetric, in the sense that KC

θ (x
′,x) = KC

θ (x,x
′)T .

Similarity in a single value To summarize the similarity matrix KC
θ (x,x

′) into a single real value
in [−1, 1], we consider:

kCθ (x,x
′) =

1

d
TrKC

θ (x,x
′) . (5)

It can be shown indeed that if kCθ (x,x
′) is close to 1, then KC

θ (x,x
′) is close to Id, and recipro-

cally. See the supplementary materials for more details and a discussion about the links between
1
d TrK

C
θ (x,x

′) and
∥∥KC

θ (x,x
′)− Id

∥∥
F

.

Metrics on output: rotation invariance Similarity in Rd might be richer than just estimating
distances in L2 norm. For instance, for our 2D image registration task, the network could be known
(or desired) to be equivariant to rotations. The similarity between two output variations v and v′ can
be made rotation-invariant by applying the rotation that best aligns v and v′ beforehand. This can
actually be easily computed in closed form and yields:

kC,rotθ (x,x′) =
1

2

√∥∥KC
θ (x,x

′)
∥∥2
F
+ 2detKC

θ (x,x
′) .

Note that other metrics are possible in the output space. For instance, the loss metric quantifies the
norm of a move v by its impact on the loss dL(y)

dy

∣∣
fθ(x)

(v). It has a particular meaning though, and is
not always relevant, e.g. in the noisy label case seen in Section 5.

The case of classification tasks When the output of the network is a probability distribution
pθ,x(c), over a finite number of given classes c for example, it is natural from an information theoretic
point of view to rather consider f cθ (x) = − log pθ,x(c). This is actually the quantities computed in
the pre-softmax layer from which common practice directly computes the cross-entropy loss.

It turns out that the L2 norm of variations δf in this space naturally corresponds to the Fisher
information metric, which quantifies the impact of parameter variations δθ on the output probability
pθ,x, as KL(pθ,x||pθ+δθ,x). The matrices Kθ(x,x) =

(
∇θf cθ (x) · ∇θf c

′

θ (x)
)
c,c′ and Fθ,x =

Ec
[
∇θf cθ (x) ∇θf cθ (x)T

]
are indeed to each other what correlation is to covariance. Thus the

quantities defined in Equation (5) already take into account information geometry when applied to
the pre-softmax layer, and do not need supplementary metric adjustment.
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Faster setup for classification tasks with many classes In a classification task in d classes with
large d, the computation of d× d matrices may be prohibitive. As a workaround, for a given input
training sample x, the classification task can be seen as a binary one (the right label cR vs. the other
ones), in which case the d outputs of the neural network can be accordingly combined in a single real
value. The 1D similarity measure can then be used to compare any training samples of the same class.

When making statistics on similarity values Ex′
[
kCθ (x,x

′)
]
, another possible task binarization

approach is to sample an adversary class cA along with x′, and hence consider∇θf cRθ (x)−∇θf cAθ (x).
Both approaches will lead to similar results in the Enforcing Similarity section in the supplementary
materials.

4 Estimating density

In this section, we use similarity to estimate input neighborhoods and perform statistics on them.

4.1 Estimating the number of neighbors

Given a point x, how many samples x′ are similar to x according to the network? This can be
measured by computing kCθ (x,x

′) for all x′ and picking the closest ones, i.e. e.g. the x′ such that
kCθ (x,x

′) > 0.9. More generally, for any data point x, the histogram of the similarity kCθ (x,x
′) over

all x′ in the dataset (or a representative subset thereof) can be drawn, and turned into an estimate of
the number of neighbors of x. To do this, several types of estimates are possible:

• hard-thresholding, for a given threshold τ ∈ [0, 1]: Nτ (x) =
∑

x′ 1kCθ (x,x′)>τ

• soft estimate: NS(x) =
∑

x′ kCθ (x,x
′)

• less-soft positive-only estimate (α > 0): N+
α (x) =

∑
x′ 1kCθ (x,x′)>0 k

C
θ (x,x

′)α

In practice we observe that kCθ is very rarely negative, and thus the soft estimate NS can be justified
as an average of the hard-thresholding estimate Nτ over all possible thresholds τ :∫ 1

τ=0

Nτ (x)dτ =
∑
x′

∫ 1

τ=0

1kCθ (x,x′)>τ dτ =
∑
x′

kCθ (x,x
′)1kCθ (x,x′)>0 = N+

1 (x) ' NS(x)

4.2 Low complexity of the soft estimate NS(x)

The soft estimate NS(x) is rewritable as:∑
x′

kCθ (x,x
′) =

∑
x′

∇θfθ(x)
‖∇θfθ(x)‖

· ∇θfθ(x
′)

‖∇θfθ(x′)‖
=
∇θfθ(x)
‖∇θfθ(x)‖

· g with g =
∑
x′

∇θfθ(x′)
‖∇θfθ(x′)‖

and consequently NS(x) can be computed jointly for all x in linear time O(|D|p) in the dataset
size |D| and in the number of parameters p, in just two passes over the dataset, when the output
dimension is 1. For higher output dimensions d, a similar trick can be used and the complexity
becomes O(|D|d2p). For classification tasks with a large number d of classes, the complexity can be
reduced to O(|D|p) through an approximation consisting in binarizing the task (c.f . end of Section 3).

4.3 Test of the various estimators

In order to rapidly test the behavior of all possible estimators, we applied them to a toy problem
where the network’s goal is to predict a sinusoid. To change the difficulty of the problem, we vary its
frequency, while keeping the number of samples constant. More details and results of the toy problem
are in the supplementary materials. Fig. 2 shows for each estimator (with different parameters when
relevant), the result of their neighbor count estimation. When the frequency f of the sinusoid to
predict increases, the number of neighbors decreases in 1

f for every estimator. This aligns with our
intuition that as the problem gets harder, the network needs to distinguish input samples more to
achieve a good performance, thus the amount of neighbors is lower. In particular we observe that
the proposed NS(x) estimator behaves well, thus we will use that one in bigger studies requiring an
efficient estimator.
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Figure 2: Density estimation using the various approaches (log scale). All approaches behave
similarly and show good results, except the ones with extreme thresholds.

4.4 Further potential uses for fitness estimation

When the number of neighbors of a training point x is very low, the network is able to set any label to
x, as this won’t interfere with other points, by definition of our similarity criterion kθ(x,x′). This
is thus a typical overfit case, where the network can learn by heart a label associated to a particular,
isolated point.

On the opposite, when the set of neighbors of x is a large fraction of the dataset, comprising varied
elements, by definition of kθ(x,x′) the network is not able to distinguish them, and consequently it
can only provide a common output for all of them. Therefore it might not be able to express variety
enough, which would be a typical underfit case.

The quality of fit can thus be observed by monitoring the number of neighbors together with the
variance of the desired labels in the neighborhoods (to distinguish underfit from just high density).

Prediction uncertainty A measure of the uncertainty of a prediction fθ(x) could be to check how
easy it would have been to obtain another value during training, without disturbing the training of
other points. A given change v of fθ(x) induces changes kIθ(x,x

′)
‖∇θfθ(x)‖2v over other points x′ of the

dataset, creating a total L1 disturbance
∑

x′ ‖ kIθ(x,x
′)

‖∇θfθ(x)‖2v‖. The uncertainty factor would then be

the norm of v affordable within a disturbance level, and quickly approximable as ‖∇θfθ(x)‖
2∑

x′ kIθ(x,x
′)

.

5 Dataset self-denoising

5.1 Motivation: example of remote sensing image registration with noisy labels

In remote sensing imagery, data is abundant but noisy [10]. For instance RGB satellite images and
binary cadaster maps (delineating buildings) are numerous but badly aligned for various reasons (an-
notation mistakes, atmosphere disturbance, elevation variations...). In a recent preliminary work [4],
we tackled the task of automatically registering these two types of images together with neural
networks, training on a dataset [9] with noisy annotations from OSM[14], and hoping the network
would be able to learn from such a dataset of imperfect alignments. Learning with noisy labels is
indeed an active topic of research [16, 11, 8].

For this, we designed an iterative approach: train, then use the outputs of the network on the training
set to re-align it; repeat (for 3 iterations). The results were surprisingly good, yielding far better
alignments than the ground truth it learned from, both qualitatively (Figure 3) and quantitatively
(Figure 4, obtained on manually-aligned data): the median registration error dropped from 18 pixels to
3.5 pixels, which is the best score one could hope for, given intrinsic ambiguities in such registration
task. To check that this performance was not due to a subset of the training data that would be
perfectly aligned, we added noise to the ground truth and re-trained from it: the new results were
about as good again (dashed lines). Thus the network did learn almost perfectly just from noisy labels.
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Figure 3: Qualitative alignment results [4]
on a crop of bloomington22 from the Inria
dataset [9]. Red: initial dataset annota-
tions; blue: aligned annotations round 1;
green: aligned annotations round 2.

Figure 4: Accuracy cumulative distributions [4] mea-
sured with the manually-aligned annotations of bloom-
ington22 [9]. Read as: fraction of image pixels whose
registration error is less than threshold τ .

An explanation for this self-denoising phenomenon is proposed in [7] as follows. Let us consider a
regression task, with a L2 loss, and where true labels y were altered with i.i.d. noise ε of variance v.
Suppose a same input x appears n times in the training set, thus with n different labels ỹi = y + εi.
The network can only output the same prediction for all these n cases (since the input is the same),
and the best option, considering the L2 loss, is to predict the average 1

n

∑
i ỹi, whose distance to the

true label y is O( v√
n
). Thus a denoising effect by a factor

√
n can be observed. However, the exact

same point x is not likely to appear several times in a dataset (with different labels). Rather, relatively
similar points may appear, and the amplitude of the self-denoising effect will be a function of their
number. Here, the similarity should reflect the neural network perception (similar inputs yield the
same output) and not an a priori norm chosen on the input space.

5.2 Similarity experimentally observed between patches

We studied the multi-round training scheme of [4] by applying our similarity measure to a sampling
of input patches of the training dataset for one network per round. The principle of the multiple
round training scheme is to reduce the noise of the annotations, obtaining aligned annotations in
the end (more details in the supplementary materials). For a certain input patch, we computed its
similarity with all the other patches for the 3 networks. With those similarities we can compute the
nearest neighbors of that patch, see Fig. 5. The input patch is of a suburb area with sparse houses
and individual trees. The closest neighbors look similar as they usually feature the same types of
buildings, building arrangement and vegetation. However sometimes the network sees a patch as
similar when it is not clear from our point of view (for example patches with large buildings).

For more in-depth results, we computed the histogram of similarities for the same patch, see Fig. 6.
We observe that round 2 shows different neighborhood statistics, in that the patch is closer to all
other patches than in other rounds. We observe the same behavior in 19 other input patches (see
suppl. materials). An hypothesis for this phenomenon is that the average gradient was not 0 at the end
of that training round (due to optimization convergence issues, e.g.), which would shift all similarity
histograms by a same value.

Qualitatively, for patches randomly sampled, their similarity histograms tend to be approximately
symmetric in round 2, but with a longer left tail in round 1 and a longer right tail in round 3.
Neighborhoods thus seem to change across the rounds, with fewer and fewer close points (if removing
the global histogram shift in round 2). A possible interpretation is that this would reflect an increasing
ability of the network to distinguish between different patches, with finer features in later training
rounds.

5.3 Comparison to the perceptual loss

We compare our approach to the perceptual loss on a nearest neighbor retrieval task. We notice that
the perceptual loss sometimes performs reasonably well, but often not. For instance, we show in
Fig. 7 the closest neighbors to a structured residential area image, for the perceptual loss (first row:
not making sense) and for our similarity measure (second row: similar areas).
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Figure 5: Example of nearest neighbors for a patch. Each line corresponds to a round. Each patch
has its similarity written under it.

(a) Round 1
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(b) Round 2
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(c) Round 3
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Figure 6: Histograms of similarities for one patch across rounds.

5.4 From similarity statistics to self-denoising effect estimation

We now show how such similarity experimental computations can be used to solve the initial problem
of Section 5, by explicitly turning similarity statistics into a quantification of the self-denoising effect.

Let us denote by yi the true (unknown) label for input xi, by ỹi the noisy label given in the dataset,
and by ŷi = fθ(xi) the label predicted by the network. We will denote the (unknown) noise by
εi = ỹi − yi and assume it is centered and i.i.d., with finite variance σε. The training criterion
is E(θ) =

∑
j ||ŷj − ỹj ||2. At convergence, the training leads to a local optimum of the energy

landscape: ∇θE = 0, that is,
∑
j(ŷj − ỹj)∇θŷj = 0. Let’s choose any sample i and multiply by

∇θŷi : using kIθ(xi,xj) = ∇θŷi.∇θŷj , we get:∑
j

(ŷj − ỹj) kIθ(xj ,xi) = 0.

Let us denote by kINθ (xj ,xi) = kIθ(xj ,xi)
(∑

j k
I
θ(xj ,xi)

)−1
the column-normalized kernel, and

by Ek[a] =
∑
j aj k

IN
θ (xj ,xi) the mean value of a in the neighborhood of i, that is, the weighted

Pe
rc

ep
tu

al
Si

m
ila

ri
ty

Source | Closest neighbor patches

Figure 7: Closest neighbors to the leftmost patch, using the perceptual loss (first row) and our
similarity definition (second row).
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average of the aj with weights kIθ(xj ,xi) normalized to sum up to 1. This is actually a kernel
regression, in the spirit of Parzen-Rosenblatt window estimators. Then the previous property can be
rewritten as Ek[ŷ] = Ek[ỹ] . As Ek[ỹ] = Ek[y] + Ek[ε] , this yields:

ŷi − E
k
[y] = E

k
[ε] + (ŷi − E

k
[ŷ])

i.e. the difference between the predicted ŷi and the average of the true labels in the neighborhood of i
is equal to the average of the noise in the neighborhood of i, up to the deviation of the prediction ŷi
from the average prediction in its neighborhood.

We want to bound the error ‖ŷi − Ek[y]‖ without knowing neither the true labels y nor the noise ε.
One can show that Ek[ε] ∝ varε(Ek[ε])1/2 = σε ‖kINθ (·,xi)‖L2. The denoising factor is thus the
similarity kernel norm ‖kINθ (·,xi)‖L2, which is between 1/

√
N and 1, depending on the neighbor-

hood quality. It is 1/
√
N when all N data points are identical, i.e. all satisfying kCθ (xi,xj) = 1. On

the other extreme, this factor is 1 when all points are independent: kIθ(xi,xj) = 0 ∀i 6= j. This
way we extend noise2noise [7] to real datasets with non-identical inputs.

In our remote sensing experiment, we estimate this way a denoising factor of 0.02, consistent across
all training rounds and inputs (±10%), implying that each training round contributed equally to
denoising the labels. This is confirmed by Fig. 4, which shows the error steadily decreasing, on a
control test where true labels are known. The shift (ŷi − Ek[ŷ]) on the other hand can be directly
estimated given the network prediction. In our case, it is 4.4px on average, which is close to the
observed median error for the last round in Fig. 4. It is largely input-dependent, with variance 3.2px,
which is reflected by the spread distribution of errors in Fig. 4. This input-dependent shift thus
provides a hint about prediction reliability.

It is also possible to bound (ŷi − Ek[ŷ]) = Ek[ŷi − ŷ] using only similarity information (without
predictions ŷ). Theorem 1 implies that the application: ∇θfθ(x)

‖∇θfθ(x)‖ 7→ fθ(x) is well-defined, and it can
actually be shown to be Lipschitz with a network-dependent constant (under mild hypotheses). Thus

‖fθ(x)− fθ(x′)‖ 6 C

∥∥∥∥ ∇θfθ(x)‖∇θfθ(x)‖
− ∇θfθ(x′)
‖∇θfθ(x′)‖

∥∥∥∥ =
√
2C
√

1− kCθ (x,x′) ,

yielding ‖ŷi − ŷj‖ 6
√
2C
√
1− kCθ (xi,xj) and thus

∣∣Ek[ŷi − ŷ] ∣∣ 6 √2C Ek
[√

1− kCθ (xi, ·)
]
.

6 Conclusion

We defined a proper notion of input similarity as perceived by the neural network, based on the ability
of the network to distinguish the inputs. This brings a new tool to analyze trained networks, in plus
of visualization tools such as grad-CAM [15]. We showed how to turn it into a density estimator,
which was validated on a controlled experiment, and usable to perform fast statistics on large datasets.
It opens the door to underfit/overfit/uncertainty analyses or even control during training, as it is
differentiable and computable at low cost.

In the supplementary materials, we go further in that direction and show that, if two or more samples
are known to be similar (from a human point of view), it is possible to incite the network, during
training, to evolve in order to consider these samples as similar. We notice an associated dataset-
dependent boosting effect that should be further studied along with robustness to adversarial attacks,
as such training differs significantly from usual methods.

Finally, we extended noise2noise [7] to the case of non-identical inputs, thus expressing self-denoising
effects as a function of inputs’ similarities.

The code is available at https://github.com/Lydorn/netsimilarity .
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