
HAL Id: hal-02394498
https://hal.science/hal-02394498

Submitted on 4 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Computer-aided neurophysiology and imaging with
open-source PhysImage

John M. Hayes, X Eirini Papagiakoumou, Pierre-Louis Ruffault, Valentina
Emiliani, Gilles Fortin

To cite this version:
John M. Hayes, X Eirini Papagiakoumou, Pierre-Louis Ruffault, Valentina Emiliani, Gilles Fortin.
Computer-aided neurophysiology and imaging with open-source PhysImage. Journal of Neurophysi-
ology, 2018, 120, pp.23 - 36. �10.1152/jn.00048.2017�. �hal-02394498�

https://hal.science/hal-02394498
https://hal.archives-ouvertes.fr

INNOVATIVE METHODOLOGY Neural Circuits

Computer-aided neurophysiology and imaging with open-source PhysImage

X John A. Hayes,1 X Eirini Papagiakoumou,2,3 X Pierre-Louis Ruffault,1 Valentina Emiliani,2

and X Gilles Fortin1

1UMR9197, CNRS/Université Paris-Sud, Institut des Neurosciences Paris-Saclay, Université Paris-Saclay, Gif-sur Yvette,
France; 2UMR8250, Neurophotonics Laboratory, CNRS, Paris Descartes University, Paris, France; and 3Institut National de
la Santé et la Recherche Médicale-Inserm

Submitted 24 January 2017; accepted in final form 22 February 2018

Hayes JA, Papagiakoumou E, Ruffault PL, Emiliani V, Fortin
G. Computer-aided neurophysiology and imaging with open-source
PhysImage. J Neurophysiol 120: 23–36, 2018. First published Febru-
ary 28, 2018; doi:10.1152/jn.00048.2017.—Improved integration be-
tween imaging and electrophysiological data has become increasingly
critical for rapid interpretation and intervention as approaches have
advanced in recent years. Here, we present PhysImage, a fork of the
popular public-domain ImageJ that provides a platform for working
with these disparate sources of data, and we illustrate its utility using
in vitro preparations from murine embryonic and neonatal tissue.
PhysImage expands ImageJ’s core features beyond an imaging pro-
gram by facilitating integration, analyses, and display of 2D wave-
form data, among other new features. Together, with the Micro-
Manager plugin for image acquisition, PhysImage substantially im-
proves on closed-source or blended approaches to analyses and
interpretation, and it furthermore aids post hoc automated analysis of
physiological data when needed as we demonstrate here. Developing
a high-throughput approach to neurophysiological analyses has been a
major challenge for neurophysiology as a whole despite data analytics
methods advancing rapidly in other areas of neuroscience, biology,
and especially genomics.

NEW & NOTEWORTHY High-throughput analyses of both con-
current electrophysiological and imaging recordings has been a major
challenge in neurophysiology. We submit an open-source solution that
may be able to alleviate, or at least reduce, many of these concerns by
providing an institutionally proven mechanism (i.e., ImageJ) with the
added benefits of open-source Python scripting of PhysImage data that
eases the workmanship of 2D trace data, which includes electrophys-
iological data. Together, with the ability to autogenerate prototypical
figures shows this technology is a noteworthy advance.

calcium imaging; holographic optogenetic stimulation; image analy-
ses; whole-cell patch-clamp

INTRODUCTION

To solve neurophysiological problems increasingly requires
investigators to merge technical approaches such as electro-
physiological recordings, live-cell imaging like voltage/Ca2�

imaging (Grienberger and Konnerth 2012; Peterka et al. 2011),
and optogenetic stimulation/inhibition (Boyden et al. 2005;
Emiliani et al. 2015; Li et al. 2005; Lima and Miesenböck 2005).
An array of different software and hardware is typically required

for researchers to meaningfully integrate these data. To simplify
this type of workflow, we have developed PhysImage, a tool that
builds upon the widespread utility of Micro-Manager (Edelstein
et al. 2010) and ImageJ (Schneider et al. 2012) and is an all-in-one
open-source software platform for acquiring imaging and physi-
ology data, analyzing and processing data, and finally presenting
rapid results in the form of processed figures potentially suitable
for publication, or at least suitable for prototype reports. Finally,
the platform can be used for integrating the logical execution of
certain hardware and software analyses during the course of
experiments. These functions enable the development of increas-
ingly sophisticated experimental protocols in neurophysiology.

Here, we illustrate these principles using several examples in
the context of systems neuroscience using murine tissue in vitro.
First, we present a scripting mechanism for controlling image-
related analysis operations that tie together the generation and/or
manipulation of imaging and waveform data. After that, we show
how to import electrophysiology data from Axon Binary Files
(ABFs) recorded in pClamp (Molecular Devices, Sunnyvale, CA)
and perform several types of analyses on these waveform data.
We then transition into analyzing live calcium imaging data,
working with their time series records, and performing some
similar analysis with concurrent electrophysiology recordings and
automated figure generation. Building on these examples we show
how similar approaches can be used for automatable high-
throughput analyses of imaging/electrophysiology data. Finally,
we conclude by showing how we have integrated these ap-
proaches to perform optogenetic experiments. These use comput-
er-generated holographic laser stimulation (Kam et al. 2013) of
variable subsets of neurons identified using calcium activity while
monitoring population activity through nerve recordings.

A significant effort was made to ensure most of these examples
and figures are generated with scripts for reproducible and trans-
parent results (Ioannidis 2005), and serve as pedagogical exam-
ples. These scripts are included with the main distribution of
PhysImage in the “Plugins¡Paper_Examples” menu tree, with
the most pertinent coding points discussed in the Results section
below and much of the raw data needed to generate the example
analyses are here: https://osf.io/qf2d3/.

MATERIALS AND METHODS

Software. Public-domain ImageJ software (https://imagej.nih.gov/)
as well as open-source JFreeChart (http://www.jfree.org/jfreechart/),
Jython (http://www.jython.org/), and VectorGraphics (http://trac.

Address for reprint requests and other correspondence: J. A. Hayes, Depart-
ment of Applied Science, ISC 3, The College of William and Mary, Williams-
burg, VA 23185 (e-mail: jahaye1@gmail.com).

J Neurophysiol 120: 23–36, 2018.
First published February 28, 2018; doi:10.1152/jn.00048.2017.

230022-3077/18 Copyright © 2018 the American Physiological Societywww.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (193.054.110.055) on July 4, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.

https://orcid.org/0000-0003-2849-7672
https://orcid.org/0000-0002-7333-8796
https://orcid.org/0000-0002-3378-3828
https://orcid.org/0000-0002-2123-8603
https://doi.org/10.1152/jn.00048.2017
https://osf.io/qf2d3/
https://imagej.nih.gov/
http://www.jfree.org/jfreechart/
http://www.jython.org/
http://trac.erichseifert.de/vectorgraphics2d/
mailto:jahaye1@gmail.com

erichseifert.de/vectorgraphics2d/) were integrated to form the initial
foundation of the newly implemented PhysImage code we produced
(http://physimage.sourceforge.net/). The integrated suite of software
may be downloaded from here: https://sourceforge.net/projects/
physimage/files/latest/download. Installation instructions may be
found here: http://physimage.sourceforge.net/installation/installa-
tion.html. Java class objects and packages used by PhysImage are
distinguished within the text using monospaced font and method
names are indicated as follows: class_name::method_name()
and the structure illustrated in Fig. 1.

Mice and preparations. Animal experiments were done in accor-
dance with the guidelines issued by the European Community and
have been approved by the research ethics committees in charge
(Comités d’éthique pour l’expérimentation animale) and the French
Ministry of Research. Ca2�-imaging and electrophysiology in vitro
experiments were performed as described previously for pre-Bötz-
inger complex (preBötC) slices (Thoby-Brisson et al. 2005) as well as
for experiments using isolated embryonic hindbrains (Ruffault et al.
2015; Thoby-Brisson et al. 2009).

Imaging and electrophysiology. Briefly, for functional Ca2�-imag-
ing, a cooled Neo sCMOS camera (Andor Technology, Belfast, UK)
was used in Global Exposure mode on an Eclipse FN1 microscope
(Nikon Instruments, Tokyo, Japan). A “Frame_out” transistor–tran-
sistor logic voltage signal, marking the time each frame was acquired,
was routinely recorded directly from the camera through the Digidata
1550 A/D device with pClamp10 software (Molecular Devices) to
allow alignment of imaging and electrophysiology recordings. A
Nikon �40 objective was used for Figs. 5, 8, and 9 [NA 0.80 and
working distance (WD) 2.0], while a Nikon �4 objective was used for
Fig. 6 (NA 0.13 and WD 17.1). Patch recordings (Fig. 4) were
performed using a Multiclamp 700B using the aforementioned
pClamp10. Field (Fig. 3) and nerve (Figs. 6 and 9) recordings used a
Grass 7P511 high-gain AC amplifier (Grass Technologies, Warwick,
RI) with Neurolog integration (Digitimer, Hertfordshire, UK).

“Online” analysis of Ca2�-imaging data was performed using a
PhysImage module controlling an optional LabJack U3 device (Lab-
Jack, Lakewood, CO) through a 10 V digital-to-analog converter
(LJTick-DAC, LabJack). A Micro-Manager Beanshell script (http://
www.beanshell.org/) acquires time series images and calculates the
�F/F and sends an analog voltage signal to the Digidata in real-time
along with simultaneous electrophysiological (i.e., nerve) recordings.
“Offline” analysis of Ca2�-imaging data were performed after acqui-
sition on the image time series using �F/F processing PhysImage
plugins described in the text.

Holographic stimulation. Holographic patterned optogenetic stim-
ulation of ChR2-expressing parafacial respiratory oscillator (epF)
neurons (Ruffault et al. 2015) was performed with an optical system
built as described in detail elsewhere (Yang et al. 2011; Zahid et al.
2010), using a 300-mW maximum power diode-pumped solid-state
laser emitting at 473 nm (CNI, MBL-FN-473) and custom software to
control the spatial light modulator (LCOS-SLM) device (Hamamatsu,
X10468-01). The laser beam, after being expanded and spatially
filtered, illuminated the active area of the LCOS-SLM (16�12 mm),
which was then imaged at the back focal plane of the objective by a
telescope of lenses such as to fill its back aperture (see Zahid et al.
2010 for further details). Phase modulation created a laser pattern at
the sample plane simultaneously illuminating multiple regions of
interest (ROIs). The custom software (Lutz et al. 2008) received input
from PhysImage to generate the appropriate holographic phase masks
for creating the photostimulation patterns, as described under RESULTS.
The laser pulses were generated using a PhysImage plugin that drove
the same LabJack U3 device, as above, with its 10 V DAC to activate
the laser’s analog input at random intervals and customizable
intensities.

ij gui

io

macro

measure

plugin filter

frame

tool

process

text

wave

plugins

ChartPlugIn.java

Analysis_General_Tools

Analysis_ROI_Tools

Analysis_Wave_Tools

Automated_Acquisitions

CTA_ROI_Tools

CTA_Wave_Tools

EPSC_Analyses

Export_ROI_Tools

Export_Wave_Tools

Filters

Hardware

Hardware_Holographic

Paper_Examples

Processing_Tools

Programming

Protocols

Visualization_Tools_ROIs

Visualization_Tools_Waves

org physimage ephys abf

edf

PhysImage
Expansion
Modules

ImageJ1
Core
Modules

ElectrophysManager_Frame.java

Jython_Console.java

Layout.java

WaveManager.java

jfree

de erichseifert vectorgraphics2d

pythonorg

ru mipt edf

org

Fig. 1. Block diagram displaying the relationship between standard ImageJ
software packages and the PhysImage extension modules. The module orga-
nization relates to the directory tree that the source code is contained within.
Generally, ImageJ packages have a cyan background with black text and
PhysImage packages introduced in this project have green background. Open-
source packages that are used by PhysImage have blue text and a green
background, and newly written software, by the authors, has red text and a
green background. Files ending in .java, reflect the specific class objects
described in the main text (such as ChartPlugIn, Jython_Console,
etc.) and reflect the location of these code in the directory tree.

24 PHYSIMAGE: A TOOL FOR COMPUTER-AIDED NEUROPHYSIOLOGY

J Neurophysiol • doi:10.1152/jn.00048.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (193.054.110.055) on July 4, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.

http://trac.erichseifert.de/vectorgraphics2d/
http://physimage.sourceforge.net/
https://sourceforge.net/projects/physimage/files/latest/download
https://sourceforge.net/projects/physimage/files/latest/download
http://physimage.sourceforge.net/installation/installation.html
http://physimage.sourceforge.net/installation/installation.html
http://www.beanshell.org/
http://www.beanshell.org/

RESULTS

Python control of ImageJ/Micro-Manager through Jython
integration. To integrate raw imaging data, analyzed imaging
data, and electrophysiology data, we forked the Java program-
ming code of ImageJ (Schneider et al. 2012). This was neces-
sary to provide a platform for merging these disparate data
together in a reproducible way. Toward that goal, we embedded
the high-level programming language, Python, into the ImageJ
interface using Jython (Juneau et al. 2010), an open-source Java
implementation of Python. A high-level block diagram of pack-
ages that outline the standard ImageJ software and how they relate
to the extension modules included in PhysImage package are
displayed in Fig. 1. New modules and key class objects that
were produced by us are in red text with green backgrounds.
The core Jython library appears as org.python in Fig. 1.

Figure 2A illustrates the Jython console that appears in
PhysImage (ij.plugin.frame.Jython_Console.java
in Fig. 1). Because of Jython’s ability to control Java code,
combined with the relative simplicity of Python syntax and
coding, the console coordinates the flow of data sources and
analyses. It does this by allowing us to utilize ImageJ plugins,

such as Micro-Manager (Edelstein et al. 2010), as well as ImageJ
macros, or new and novel functionality that can arise from custom
code taking advantage of Jython’s ability to mix Java and Python
code cooperatively and nearly seamlessly.

Standard ImageJ already has support for writing and record-
ing its own simple macro language for later playback. There is
support for additional scripting languages as well such as
Python, Ruby, and Javascript, among others. However a key
difference here is that PhysImage always records interactions
with the program interface in the background. The code for
most actions is written to the console so that anyone can copy
and paste them into scripts for later execution. For example, if
the user opens an image file through the File¡Open dialog and
then runs Process¡Filters¡Gaussian Blur..., something like
the following will be reported on the console:

openImage(“/Users/default/Example1.tif”);
run(“Gaussian Blur...”, “sigma�1”);
This can be copied and pasted directly into a script or

console for reuse later, and actions like these can be mixed
with more conventional Python programming logic in the

B

A

B

a
clears the console history

b
save/load .py code

c
copy/paste to and from
the system’s clipboard

C
Fig2C.py

Fig. 2. Programmatically manipulating the
PhysImage environment. A: the central Python
console integrated into the PhysImage interface.
B: Python code (left) that is described in the
main text and generates 2 images (middle and
right). C: Python code (left) that generates sine
and cosine Waves. Middle: plots of the sine and
cosine Waves. Right: the WaveManager win-
dow is used to collect and manipulate Waves.

25PHYSIMAGE: A TOOL FOR COMPUTER-AIDED NEUROPHYSIOLOGY

J Neurophysiol • doi:10.1152/jn.00048.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (193.054.110.055) on July 4, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.

console or scripts, which provides for rapid prototyping of
trivial and even nontrivial scripts.

A significant benefit of embedding the interactive console in
the program is that it immediately interprets and executes any
code typed. For example, typing the following code into the
console will result in output that looks like Fig. 2A:
text � ‘Hello’
print text
The rest of Fig. 2A demonstrates some other code that

assigns values to variables and performs simple arithmetic.
Figure 2B is a more elaborate example illustrating how the

console may be used to access the ImageJ application program-
ming interface (API) to manipulate images. In this example,
two simple images are dynamically generated by incrementally
looping over the coordinates of the images and performing a
trivial trigonometric calculation to set the pixel intensities of
the images. ImagePlus and ByteProcessor are special
classes of objects provided by the ImageJ API, which itself is
superseded by the more expansive PhysImage API (http://
physimage.sourceforge.net/physimage_api/index.html). Math,
in turn, is a class within the standard Java library that provides
implementations for the sin and cos functions (https://docs.
oracle.com/javase/8/docs/api/java/lang/Math.html). Finally,
range is a special built-in function of Python (https://docs.
python.org/2/library/functions.html) that offers a succinct way
to loop over a range of numbers. In pseudo-code the Python in
Fig. 2B could be described as follows:
·assign 125 and 250 to the “width” and
“height” variables, respectively
·create a ByteProcessor that stores the
pixel values for the first image
·loop over the columns of the image (i.e.,
from 0 to 124)
·loop over the rows of the image (i.e.,
from 0 to 249)
·set the value of pixel (i,j) to
sin(0.1*i)*256
·generate and show the ImagePlus object to
display the ByteProcessor
·generate another image with a different
calculation for the pixels
Code like the above may be saved into a text file with a .py

file extension and run as an ImageJ plugin. The chief criterion
to accomplish that is the file must be saved in the “plugins”
directory tree, as other ImageJ plugins, and an entry for it will
appear in a Plugins submenu after restarting PhysImage. If
jEdit is installed (http://jedit.org), one can just click the plugin-
name in the submenu while holding Ctrl down to open the
script code to edit it after it has been loaded into your menu,
save it, and the changes will be reflected the next time the .py
plugin is run without restarting PhysImage.

A final benefit of embedding the Jython interpreter is that its
execution has access to core ImageJ code that is otherwise
hidden from the user. As a consequence, it provides a means of
persistence across plugins and scripts that is not otherwise
present or easily accessible from ImageJ plugins. For example,
PhysImage relies on a large number of parameters whose
values are stored in a Configuration_ class object and
persists across plugins and scripts. In particular, a “base direc-
tory” is frequently used in both analysis and acquisition scripts
as seen in subsequent subsections. All these values can be

programmatically manipulated and the most commonly changed
values may be changed from the “Plugins¡Analysis_General_
Tools¡Analysis_Configuration” dialog.

Together, these features allow rapid prototyping of a se-
quence of actions, by a combination of graphical interaction
and coding interactivity, to create sophisticated scripts for later
playback. To illustrate this quality, most of the figures in this
manuscript have corresponding scripts with the main Phys-
Image distribution that demonstrate how to generate them from
sample raw data. The following sections illustrate how the
expanded features of PhysImage can be used to work with
physiological data acquired under various conditions.

Chart generation of time series data. The analysis of imag-
ing data are ImageJ’s principal forte, but time series data need
to frequently be acquired and analyzed to solve physiological
questions as well (these time series may be derived from
uniformly sampled time series or elsewhere). To strengthen
ImageJ’s ability to manipulate time series data, we have added
the ability to manipulate one-dimensional waveforms, or
“Waves,” similar to images within ImageJ.
Waves can be generated programmatically, by importing the

data from other software files, pasted from ASCII text at the
system clipboard, or imported from imaging time series ROIs.
Waves may be displayed with ChartPlugins (ij.
plugin.frame.ChartPlugin in Fig. 1), which can dis-
play many types of time series data. ChartPlugIns provide
convenience functions for making some simple changes to the
format of the graphics. This was implemented by incorporating
the open-source JFreeChart package (Gilbert 2002; org.
jfree in Fig. 1), which provides an extensive library of chart
functionality that may be programmatically accessible from the
ChartPlugIns when convenience functions are not already
available for maximum flexibility.
Waves may be collected into the WaveManager, analo-

gous to ImageJ’s RoiManager. This provides an easy way to
manipulate several Waves and perform such operations as
copying/saving the contents, normalizing and scaling the val-
ues of the Waves, or reordering/renaming the Waves. The
WaveManager is also a useful place to store waves and may
be programmatically added or removed and offers the flexibil-
ity to transform the 1D data from the scripting environment
like in MATLAB (MathWorks, Natick, MA) or other mathe-
matical software tools. With access to the waveform data, the
contents may be manipulated with fine granularity and may be
used in many PhysImage plugins. Finally, multiple Waves can
be selected and plotted or analyzed with other plugins.

To illustrate these concepts, Fig. 2C shows how to dynam-
ically generate two waves that represent sine and cosine wave-
forms in two dimensions. The code is similar to Fig. 2B in that
it uses the Java Math class for sin/cos functionality and the
Python range function for looping. However, this code as-
signs the sin/cos values to specific indices of the Wave
arrays instead of image pixel locations and then adds the Waves
to the WaveManager to plot them using a ChartPlugIn with
the plot2D() function. The plot2D() itself is just a convenience
function for calling the “Visualization_Tools_Waves¡Wave_
2DPlot” plugin from the PhysImage menus, while calling the
latter directly provides more options for displaying the selected
wave(s) in the WaveManager. There is also a plot2D()
convenience function that can be called directly from a Wave
reference like so:

26 PHYSIMAGE: A TOOL FOR COMPUTER-AIDED NEUROPHYSIOLOGY

J Neurophysiol • doi:10.1152/jn.00048.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (193.054.110.055) on July 4, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.

http://physimage.sourceforge.net/physimage_api/index.html
http://physimage.sourceforge.net/physimage_api/index.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
https://docs.python.org/2/library/functions.html
https://docs.python.org/2/library/functions.html
http://jedit.org

wave1.plot2D()
or from the Waves class that can be used for collecting a set
of Waves. For example,
waves � Waves()
waves.addWave(wave1)
waves.addWave(wave2)
waves.plot2D()

is equivalent in outcome to the previously illustrated code that
uses the WaveManager. The key difference is that the
WaveManager provides a graphical window that is some-
times more convenient for manipulating the Waves than pro-
grammatically working with them. Most of the other Wave-
related plugins packaged with PhysImage start with assuming
that the Waves to be manipulated are in the WaveManager.

By default, Waves represent time series waveforms so the
abscissa of the resulting plots are in seconds and the scale is
determined by the sampling rate specified by the value passed to
the Wave::setSamplingRateHz() function. Later exam-
ples show additional ways of displaying the contents of Waves.

Importing electrophysiological data. Although generating
Waves from scratch can be useful, the principal utility of
Waves is derived from storing and manipulating experimental
data with them. One type of experimental data that may be
imported as Waves come from analog-to-digital converter

(ADC) devices saved in electrophysiological files (“ephys
files”). Within PhysImage, these files are internally saved as
EphysFile objects specified in the org.physimage.ep-
hys package (Fig. 1) and agnostic to the underlying source of
electrophysiological file. For our examples in this paper, we
used an Axon Instrument’s Digidata ADC, along with their
pClamp10 software, to record our electrophysiology data in
many different channels and save the data, metadata, and related
comments into ABF format (ABF/.abf files). We have added the
ability to read ABF files directly within PhysImage where data
may be imported into the WaveManager by developing an ABF
class object (specified in org.physimage.ephys.abf, Fig.
1) that extends the EphysFile interface. However, other elec-
trophysiology storage file formats can easily be supported as well,
such as the openly specified European Data Format (EDF�,
http://www.edfplus.info/) that is commonly used for EEG/EMG/
ECG data. We have added a respective EDF class object (specified
in org.physimage.ephys.edf, Fig. 1) that functions sim-
ilar to ABF as an extended EphysFile and can read .edf files.

We have also introduced an ElectrophysManager (Ephys_
Manager, Fig. 3A) that dynamically detects new ephys files,
irrespective of their underlying source whether .abf, .edf., etc., or
any other extended EphysFile, in the currently defined base
directory and reports any new files when the window is opened. It

A

ephys files in
the base
directory

 (3)

comments
across all
ephys files

 (2)

easily switch
base directory

(1)

enter a name
for an epoch
to import into
WaveManager

an epoch is defined as a region
within the ephys file corresponding
to some event of interest. For example,
an imaging epoch that may correspond to
a time-series acquisition (the above was
roughly 1 min).

 (5)

Clear the cache to update the ephys files' metadata

 (4)

B DB

0.
00

25
.0

0

50
.0

0

75
.0

0

10
0.

00

12
5.

00

15
0.

00

17
5.

00

20
0.

00

22
5.

00

25
0.

00

27
5.

00

30
0.

00

32
5.

00

35
0.

00

37
5.

00

time (s)

0.45
0.50
0.55
0.60
0.65

pbc

C

pbc_CTA

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00

time (s)

pbc_CTA

Fig. 3. Loading and manipulating electrophysiology data in PhysImage. A: the ElectrophysManager window may be used to navigate across experiments, view
metadata including tags/comments, detect epochs of data, and import channel data into the WaveManager. B: a field recording of a medullary slice retaining the
respiratory rhythm generator. C: the same field recording showing detected bursts annotated using vertical bars exported as an EPS file. D: a cycle-triggered
average window (bold) of bursts identified in C and displayed in the lighter shades with a red mean in the bottom trace. pbc, Integrated pre-Bötzinger complex
activity; pbc_CTA, cycle-triggered averages of these data.

27PHYSIMAGE: A TOOL FOR COMPUTER-AIDED NEUROPHYSIOLOGY

J Neurophysiol • doi:10.1152/jn.00048.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (193.054.110.055) on July 4, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.

http://www.edfplus.info/

provides a means to interactively view summary information
associated with each file and contains metadata such as the
number and names of channels recorded, the length of the file,
associated tags/comments, sampling rate, etc. The middle panel
principally shows this metadata while the left three panels main-
tain lists that can be used to navigate through the data easily.

The panel just to the left of the metadata panel shows the list of
ephys files in the base directory. The middle-left panel shows a list
of comments (“tags” in pClamp parlance) across all the ephys files
in the base directory. New comments may be inserted and other
comments edited or deleted, and selecting a comment will also
select and retrieve the ephys file the tag was associated with. The
far left panel shows other directories that are siblings of the
current base directory. Selecting a different sibling will change
the current base directory and reload the ephys files, which makes
it easier to navigate across experiments.

The entire channel contents of a selected ephys file may be
imported into the WaveManager, or just a subsection of the file
based on a user-defined window of time, i.e., an “epoch,” where
the channel name will provide the associated Wave name. Epochs
of data sent to the WaveManager may be defined in several
ways. The first is simply based on a user-defined range of time. A
second way is with a search feature built in to PhysImage that uses
one of the channels of electrophysiological data to define the start
and stop of an epoch such as when an image acquisition has
started or stopped. In the following part, we illustrate how to
import data using the first approach over a user-defined range.

Figure 3B shows an extracellular field recording from the
preBötC in a transverse slice of the medulla oblongata from a
newborn mouse brain, which retains the ability to generate
respiratory network oscillations (Funk and Greer 2013; Smith
et al. 1991). A selected ephys file was right-clicked within the
ElectrophysManager and the “Send data to WaveManager”
option was picked. This popped up a window giving the
minimum and maximum time of the file in seconds where an
intervening interval may be specified. When importing from
ephys files the sampling rate, units, and tags for the interval

will be associated with the Wave and can be accessed from the
“Info” button of the WaveManager, or programmatically via
the WaveManager::info() function, or the Wave::g-
etInfo() function of the Wave class.

With data like these, it may be of interest to automatically
identify the bursts of activity in the “preBötC” recording and
average them to determine the general trajectory of the bursts.
Figure 3C shows blue WaveMarkers that indicate automat-
ically identified bursts that uses a “CTA From Wave and
Above AbsThreshold” plugin we wrote. The “CTA” represents
a cycle-triggered average whose mean is shown in red in Fig.
3D with the raw cycles in black in the top panel. Similarly,
period information may be extracted using the blue Wave-
Markers illustrated in Fig. 3C.

Other types of experiments stored in ephys files represent
episodic protocols where a long stretch of recording is essentially
the concatenation of multiple sweeps of recording. For example,
current-voltage recordings from neurons are often recorded and
represented in this manner (Fig. 4A). These may be imported as
specialized EpisodicWaves into the WaveManager. The
different class of object denotes the different way the traces will
be shown in a ChartPlugIn, but it also provides expanded
logical access to the underlying data to facilitate programmatic
control. This can be leveraged in a few ways. First, traces may be
easily queried to report the mean values at each step from 0.5 to
0.6 s like so (Fig. 4B):
iwaves � WaveManager.getWave(‘Ch1Primar’)
vwaves � WaveManager.getWave(‘Ch1Second’)
iwave � iwaves.getMeanValues(0.5, 0.6)
vwave � vwaves.getMeanValues(0.5, 0.6)
iwave.setXWave(vwave)
iwave.plot2D()
As in Fig. 4B, the resulting data may then be fit to report

values of physiological interest such as input resistance (RN):
lfit � LinearFitWave(iwave, 0, 2)
FrontChart().addWave(lfit)
rn � 1000.0/lfit.getSlope()

A B

DC

-50

-100

-150
-65
-75

C
h1

P
rim

ar
(p

A
)

C
h1

S
ec

on
d

(m
V

)
C

h1
P

rim
ar

(p
A

)
C

h1
S

ec
on

d
(m

V
)

time (s)
0.04 0.120.08

100

50

0

0

-75

0

2000

-2000

1000

-1000

0.1 0.70.4

time (s)

time (s)
0.040.00

-140

-10

Vc (mV) 057-

Im (pA)

-100

800

400

C
h1

P
rim

ar
(p

A
)

Fig. 4. Analyses of episodic electrophysiology pro-
tocols. A: a voltage-clamp step protocol showing
the whole-cell membrane current recordings (top)
from a medullary neuron. B: steady-state current vs.
holding command voltages derived from the traces
in A. The blue data points are the mean current
measured between 0.5 and 0.6 s, and the black
curve is a spline fit to those data points. C: brief
step-protocols to determine input resistance (RN),
series resistance (RS), and membrane capacitance
(CM). D: voltage-clamp step exponential fits from
Fig. 3C detailing how to measure the whole-cell
CM, RS, and RN of a neuron. Ch1Primar and
Ch1Second, primary and secondary channel1 ac-
quisitions, respectively; Im, whole-cell membrane
current; Vc, command voltage.

28 PHYSIMAGE: A TOOL FOR COMPUTER-AIDED NEUROPHYSIOLOGY

J Neurophysiol • doi:10.1152/jn.00048.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (193.054.110.055) on July 4, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.

vrest � lfit.getRoot()
calcs � ‘Rn � ’ � str(format(rn, 1)) �
‘MOhm\n’
calcs �� ‘Vrest � ’ �
str(format(vrest, 1)) � ‘mV\n’
IJ.showMessage(calcs)
EpisodicWaves also allow logical access to the underlying

episodes so that other types of analysis may be performed. For
example, to measure the whole-cell membrane capacitance (CM),
input resistance (RN), and series resistance (RS) in voltage-clamp
configuration a step protocol like Fig. 4C may be used as we have
described elsewhere (Hayes and Del Negro 2007). Then, we can
calculate the CM by integrating the difference in the current
recorded before from the current recorded during the step (IM) for
�Q � �IM. The change in charge (�Q) divided by the change in
command voltages (�Vc) during the step protocol allow us to
calculate CM (i.e., CM � �Q/�Vc). While fitting exponentials to
the charging decay allows us to calculate the RS from the time
constant (i.e., RS � �m/CM).

Rather than just performing this calculation on one trace it is
more representative to calculate it over several traces and
average the results. Scripted in PhysImage, these calculations
may be performed as the code for Fig. 4D with the most critical
parts as follows:
rs, rn, cm � [], [], []
for iwave, vwave in zip(iwaves, vwaves):
iwave � iwave-ileak
expWave � ExpFitWave(iwave)
vwave � vwave-vleak
rnval � iwave.getMeanValue(0.034, 0.037)/
vwave.getMeanValue()
cmval � abs(iwave.calculateArea()/
vwave.getMeanValue())
rs.append(1e6*expWave.getTau()/cmval)
rn.append(1000.0*rnval)
cm.append(1000.0*cmval)
calcs � ‘Rs � ’ � str(format(mean(rs),
1)) � ‘ MOhm\n’
calcs �� ‘Rn � ’ � str(format(mean(rn),
1)) � ‘ MOhm\n’
calcs �� ‘Cm � ’ � str(format(mean(cm),
1)) � ‘ pF\n’
IJ.showMessage(calcs)
In this code, iwaves and vwaves refer to the collection of

current and voltage traces during the steps, iwave and vwave
are a current/voltage step within the collections, and vleak and
ileak are the first voltage and current steps. ExpFitWave is an
extended Wave class that fits an exponential to raw Wave data
(i.e., iwave in the above) and can be used to get the fit charac-
teristics like the �m. (e.g., ExpFitWave::getTau()).

Identifying neuronal activities from imaging. Physiologi-
cally relevant signals are often identified by processing raw
imaging time series. A common processing step for calcium
imaging is the generation of �F/F traces that help discriminate
signal from noise. �F/F traces are generally defined as
(F�F0)/F0 where F0 represents background fluorescence, F is
the fluorescence at a given instance, and therefore �F/F is the
normalized change in fluorescence. However, how the F0 is
defined can vary depending on the type and manner that a
specimen is imaged. PhysImage provides several plugins that
utilize different strategies for generating time series �F/F

images with the principal difference being how F0 is defined.
When ROIs are plotted in 2D as a function of time from these
processed images it represents �F/F traces.

Figure 5 illustrates a time series acquisition of the epF of the
murine embryo (Thoby-Brisson et al. 2009) acquired using the
Ca2�-indicator dye calcium green 1-AM. A frame capture
representing the raw time series is in Fig. 5A and pseudo-
colored with a green lookup table. This population of neurons
is characterized by periodic bursts of activity at ~0.2 Hz. A
common task for scientists analyzing images with dynamically
changing intensities, such as these, is to identify ROIs that
represent candidate neurons. First, the �F/F time series can be
generated using PhysImage’s “Forward Moving Average Fil-
ter” plugin and the standard deviation of the resulting time
series can be displayed (Fig. 5B). In this plugin, each frame’s
spatial pixel represents the F value in the �F/F calculation,
while the F0 is calculated by the mean pixel values of the next
x number of frames (100 in this case). In these data, similar to
the electrophysiological data of Fig. 3, we can produce a CTA
image from bursting activity in the ROI delineated by a white
outline in Fig. 5C to show which cells are on average behav-
iorally related (Fig. 5D). ROIs that represent neuronal candi-
dates of interest can be identified using an “ROI Detector”
plugin we wrote (Fig. 5E) implementing an iterative thresh-
olding algorithm (Wang et al. 2013) similar to what others
have done (Mellen and Tuong 2009; Valmianski et al. 2010).

Once these ROIs are identified, they can be used to generate
time series plots within PhysImage. Individually, Waves can
be generated by importing the data from imaging time series
for each ROI (Fig. 5F, top), processed (Fig. 5F, bottom), and
visualized using a 3D raster in a ChartPlugIn (Fig. 5G).
ChartPlugIns can also be used to combine waves with
differing sampling rates, such as electrophysiology data along
with imaging data that may be sampled at a slower rate, or any
arbitrary waves that may have been manually generated with a
certain sampling rate.

Of note as well, is that when a Wave is retrieved from the
WaveManager, the original ROI may be retrieved natively if
it was produced from a time series image using Wave::
getRoi(). Spatial attributes for a Wave can therefore be
easily retrieved by accessing the associated ROI. However, a
Wave cannot be produced from an ROI alone, fundamentally,
because a time series (i.e., an ImagePlus window) is essen-
tial for a Wave to be produced.

Auto-generated figures using Layouts. Time series chart and
imaging data may be combined in Layouts (ij.plugin.
frame.Layout in Fig. 1), which can be used to build full
figures analogous to ones that may be printed in papers or at
least serve as useful prototypes. The latter are particularly
useful for stubbing out the general figure layout of analyzed
data in a structured and reproducible manner across many
different experiments as well as for internal reports. After a
Layout has been built, it may also be exported as vector-
based .eps files or as raster images in any format that ImageJ
provides, such as JPEG, TIF, or PNG.

There are three general approaches to generating layouts. The
first is to use the graphical interface and create a new Layout
using the File¡New menu, which is a new addition from Phys-
Image. This creates a blank window representing a sheet of paper.
By right-clicking the field, popup menus can be used to add open
charts and images to the Layout at arbitrary locations. Text

29PHYSIMAGE: A TOOL FOR COMPUTER-AIDED NEUROPHYSIOLOGY

J Neurophysiol • doi:10.1152/jn.00048.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (193.054.110.055) on July 4, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.

labels can be also be added in a similar manner, which is useful
for annotating a report with the date or other experiment details.

The second way of generating layouts is programmatically.
As with many PhysImage operations, the analogous code will
be represented in the Jython console in real-time as the graph-
ical user interface operation commences. This makes an excel-
lent starting point for creating new, more flexible, code. How-
ever, the basic way to create a Layout, and add an image
(e.g., here named “Image1’) and text label, is as follows:
layout � Layout()
layout.addComponent(‘Image1’, 50, 45)
layout.addText(“A”, Color(0,0,0),
Font(‘Arial’, Font.BOLD, 48), 15, 15)
The first line simply creates an instance of the Layout class

for us to reference, the second line adds the “Image1” compo-
nent to the layout at position (x � 50, y � 45) and the third line
adds a black “A” label to position (x � 15, y � 15) with an
Arial, Bold font of 48 point size. Note: Color and Font are
Java classes specified in the Java API documentation. Named
ChartPlugIn windows can also be added to Layouts as
“Image1” as above.

To save the layout to the computer’s file system we can use
the following code:

layout.saveLayout(‘/Users/default/
Layout1.layout’)
layout.exportToJpeg(‘/Users/default/
Layout1.jpg’)
layout.exportToTiff(‘/Users/default/
Layout1.tif’)
layout.exportToEps(‘/Users/default/
Layout1.eps’)
The first line saves the layout as a binary file that can be

reproduced in PhysImage while the last three will save the
layout as JPEG, TIFF, and EPS files, respectively.

The last way of generating a layout is to load charts or
images into a Layout template. To make this even easier,
once a layout is configured to our liking, we can save a
template of that layout for later use by scripts or it can be
autoloaded using any available opened images and/or charts
that will be arranged according to the template.

Figure 6 illustrates an example that uses the template system
and many of the principles previously discussed to build each
panel of the final figure. Figure 6G shows a reproduction of the
Layout template used to generate Fig. 6 itself. This was graph-
ically built by adding the alphabetic labels and adding some
previously opened images and chart. After that, right-clicking the

0 25 50 75 100 125 150 175
time (s)

0

10

20

30

40

50

60

70

80

W
av

e

71921243239414244454850515456620
56
910141631607413204057586369721
4117122234647525373772
55753
3715263035658
182728293667681249641734253343617670385966787980

0

1

2

P
op

.

A B C D E

GF

-2.5

0

2.5

5

7.5

W
av

e
#0

0 25 50 75 100 125 150 175

time (s)

0
0.5

1
1.5

2
2.5

3

W
av

e
#0

Fig. 5. Detection of neurons active during population activity by calcium imaging. A: unprocessed wide-field fluorescent imaging of calcium-loaded respiratory
neurons. B: the same field showing the maximum �F/F acquired over the time course. C: the same image as B with a region of interest (ROI) delineating the
region to use as reference for the imaging cycle-triggered averaging (CTA) in D. D: a CTA of the activities in the observed field. E: ROIs detected over the field
in D. The scale bar represents 50 �m. F, top: a single waveform derived from an ROI in E. Bottom: the same waveform processed as truncated z-scores. G, top:
a raster plot showing the Waves corresponding to the full ensemble of ROIs shown in E with analogous processing to that performed in F, bottom. Increasing
values are lighter (higher �F/F) and decreasing values darker (lower �F/F). The ordinate positions were selected by sorting the Waves as described in the text.
Bottom: the mean of the ensemble of Waves. Pop., population.

30 PHYSIMAGE: A TOOL FOR COMPUTER-AIDED NEUROPHYSIOLOGY

J Neurophysiol • doi:10.1152/jn.00048.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (193.054.110.055) on July 4, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.

layout window and the “Save layout as template...” option pro-
vides a means of preserving the template on the file system.

Figure 6A shows the hindbrain with calcium imaging and a
concurrent cervical nerve recording while Fig. 6B shows the
standard deviation of the CTA of �F/F activity. Figure 6, C and
D show identified ROIs overlaid with Fig. 6, B and A, respec-
tively. These ROIs produced the traces in Fig. 6E and the CTAs
of Fig. 6F. The content of these panels may be generated with
small scripts (see related content in the main distribution). Then a
separate script may be used to call the smaller scripts that generate
each panel with the template instantiated as follows:
Configuration_.setBaseDirectory(“data/
Fig6”)
run(“Fig6a”)

run(“Fig6b”)
run(“Fig6c”)
run(“Fig6d”)
run(“Fig6e”)
run(“Fig6f”)
layout � Layout(“Layout_Fig6.layout.
template”)

which loads the images and charts into the first slots in the
template (Fig. 6G). This templating system is ideal for the col-
lection stage of an experiment, where a specific protocol will be
repeated many times and assist researchers to have ready access to
many examples displayed the same way.

Automating experimental analyses. With this combination of
tools available, many repetitive experimental protocols and

A

G

B C D

E F
2
1
0

-1

0.4
0.3
0.2
0.1

3.5

3.23

1

0

1
0

-1

2.5
0

2.5

0

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 0 1 2 3 4

time (s) time (s)

offline

online

pTRG

mVlln

epF

vrc

C4

A B C D

E F

G

Fig. 6. Combined analyses of imaging and electrophysiology data in Layouts. A: a merged view of the hindbrain-spinal cord preparation used in this figure. B:
a cycle-triggered averaging (CTA) of the �F/F activity in this region over 170 s. C: the same view as B with regions of interest (ROIs) outlined for respiratory
nuclei of interest. D: the same ROIs as C over the wide-field image of the hindbrain in A. The scale bar represents 200 �m. E: The traces of �F/F in D; here
“offline” represents the cyan ROI measured after the recording, the “online” was the same region during acquisition using a LabJack (see METHODS), pTRG
(paratrigeminal respiratory group) are the purple ROIs, green are the embryonic parafacial respiratory group (epF) ROIs, red is facial motonucleus ROIs, and
blue is the ventral respiratory column ROIs. F: the CTAs for the respective ROIs from D and E. G: The Layout template used to generate this figure.

Input
S1.stk
(pH 7.4)

S2.stk
(pH 7.2)

Calc F/F

Calc Stdev

Calc CTA

Detect ROIs

Normalize
detected Waves

Calc F/F

Calc Stdev
Detect ROIstect ROIs

Normalize
detected Waves

Input
S1.stk
(pH 7.4)

S2.stk
(pH 7.2) Build raster

plot of activity

Output
Report-style

Figure

Calc mean
activity

Fig. 7. Automated analyses of raw data across
1 or more data sets. A flowchart showing the
processing pipeline of the script that produces
Fig. 8. Calc, calculate; CTA, cycle-triggered
averaging; Stdev, standard deviation.

31PHYSIMAGE: A TOOL FOR COMPUTER-AIDED NEUROPHYSIOLOGY

J Neurophysiol • doi:10.1152/jn.00048.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (193.054.110.055) on July 4, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.

32 PHYSIMAGE: A TOOL FOR COMPUTER-AIDED NEUROPHYSIOLOGY

J Neurophysiol • doi:10.1152/jn.00048.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (193.054.110.055) on July 4, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.

analyses can now be automated. For example, Fig. 7 shows a
flowchart of the analysis that produces full Layouts like Fig.
8. These Layouts are programmatically generated from raw
imaging data run under different experimental conditions. This
script (Fig. 8.py) uses most of the same principles that have
already been presented but targeted at a more complex output
for the final figure, and it notably delegates potentially redun-
dant code into user-defined Python functions.

The objective of these experiments was to examine a set of
mouse mutants and compare the functional viability of their
epF by subjecting each to a pH challenge (Ruffault et al. 2015).
The raw data were two TIFF files that respectively contain
time series calcium imaging data under pH � 7.4 and
pH � 7.2 conditions and whose filenames end with “.stk.”
In combination with the Programming¡Iterate_Plugin_

Through_Directory_Tree plugin the same script may be
used to generate similar reports across many different sets of
experiments for automated high-throughput analyses.

Automating experimental acquisitions and analyses. To ex-
tend these examples to acquisition and intervention during an
experiment, our short-term goal was to generate a pattern of
light on a relatively confined population of neurons (up to 11
in this case) and then sequentially holographically stimulate
each of these targets individually (Figs. 9 and 10). To accom-
plish this, we generated a .py script plugin that takes a .zip file
containing the full list of target ROIs identified using an 80-s
time series imaging acquisition along with online detection of
the population Ca2�-activity (similar to Figs. 5, 7, and 8). The
script then generates source images with target masks that are
subsequently sent to the custom software controlling the SLM

Fig. 8. Autogenerated report using the analysis flowchart of Fig. 7. The top line labels the experiment directory with the raw .stk files. S1.stk from Fig. 7 represents
the calcium activity under pH � 7.4 conditions while S2.stk represents the activity at pH � 7.2. The leftmost 4 images show the activity over the whole time
series (green) with autodetected regions of interest (ROIs) (red) as determined based on standard deviation (Stdev, top 2) or cycle-triggered averaging (CTA)
(bottom 2). The 4 images to the right of those show the ROIs color coded so that the earliest active neurons are in warmer colors. The middle raster plots show
the corresponding activities with lighter colors indicating higher activity. Note the higher number of neurons and increased coherence of activity under the
pH � 7.2 conditions as compared with pH � 7.4. The far right images show overlays of the pH � 7.4 (red) and pH � 7.2 (green) conditions as determined using
the Stdev or CTA images, which highlights the new neurons activated under the pH � 7.2 conditions. Pop., population.

H

G

75% laser

100% laser

Acquire Imaging/Electrophys

Identify Potential Targets

Make Target Mask

Stimulate at Random Intervals

Change Laser Intensity

Generate Analyses Reports

F

A B C

ED

100% laser

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

0.55
0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15

0.275
0.250
0.225
0.200
0.175
0.150
0.125
0.100

0.50
0.45
0.40
0.35
0.30
0.25
0.20
0.15

Integ

Integ

Integ

Fig. 9. Optogenetic stimulation and analyses of
respiratory neurons. A: a flowchart showing the
analyses in both Fig. 9 and 10. B: higher magnifi-
cation of the embryonic parafacial respiratory (epF)
region. C: analyzed �F/F of the same region as B.
D: a mask of the active neurons in C that are targets
for laser stimulation. E: full population activity of
the epF punctuated by random laser stimuli. The
scale bar represents 50 �m. F: 3 neurons stimulated
at full power (100%) repetitively. G: 10 targets in
the same region stimulated with the same total laser
power. H: the target from G stimulated at just 75%
power and the corresponding response. Integ, inte-
grate nerve activity.

33PHYSIMAGE: A TOOL FOR COMPUTER-AIDED NEUROPHYSIOLOGY

J Neurophysiol • doi:10.1152/jn.00048.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (193.054.110.055) on July 4, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.

device, which calculates the appropriate phase mask and proj-
ects the corresponding holographic pattern for each target on
the SLM. PhysImage then acquires an 80 s time series with any
nerve recording while periodically generating a command
pulse to our laser stimulator. The script also analyzes data from
that time series similar to the previous panel and loads a
Layout with these data. Finally, it saves the Layout figure
to the computer’s local hard disk and then moves on to the next
target until all targets have been examined. This principle is
illustrated in the flowchart of Fig. 9A.

The initial set of potential targets was found over the epF as
shown in Fig. 9, B–E (similar to Fig. 5). Figure 9F shows the
response to stimulation at maximum power of our 473 nm laser
(blue markers) on 3 autodetected ROIs (Fig. 9F, left). The

response to stimulation of 11 targets is shown in Fig. 8G with
the same targets and decreased laser power in Fig. 9H.

Figure 10 shows an acquired run of the full 11 targets loaded
into a Layout. Following to the right and downward, the
target templates are automatically loaded (Fig. 10A), the stim-
ulation command is automatically set, and the figures are
autogenerated to convey the distribution of laser responses
relative to the spatially/temporally confined stimuli at full
power (Fig. 10B) or reduced power (Fig. 10C). Notably, these
data illustrate with decreased laser power that the same holo-
graphic-stimulation pattern had a reduced likelihood of popu-
lation entrainment by light compared with maximum power. It
also shows that weak, but broad, stimulation was less effective
than more potent stimulation on a restricted number of neurons

A

B

Target Masks

100% laser

C 75% laser

10

8

6

4

2

0
0 5 10 15

counts

ne
xt

 b
ur

st
 -

st
im

ul
us

 ti
m

e
(s

) 10

8

6

4

2

0
0 5 10 15

counts
ne

xt
 b

ur
st

 -
st

im
ul

us
 ti

m
e

(s
) 10

8

6

4

2

0
0 5 10 15

counts

ne
xt

 b
ur

st
 -

st
im

ul
us

 ti
m

e
(s

) 10

8

6

4

2

0
0 5 10 15

counts

ne
xt

 b
ur

st
 -

st
im

ul
us

 ti
m

e
(s

)

10

8

6

4

2

0
0 5 10 15

counts

ne
xt

 b
ur

st
 -

st
im

ul
us

 ti
m

e
(s

) 10

8

6

4

2

0
0 5 10 15

counts

ne
xt

 b
ur

st
 -

st
im

ul
us

 ti
m

e
(s

) 10

8

6

4

2

0
0 5 10 15

counts
ne

xt
 b

ur
st

 -
st

im
ul

us
 ti

m
e

(s
) 10

8

6

4

2

0
0 5 10 15

counts

ne
xt

 b
ur

st
 -

st
im

ul
us

 ti
m

e
(s

)

10

8

6

4

2

0
0 5 10 15

counts

ne
xt

 b
ur

st
 -

st
im

ul
us

 ti
m

e
(s

) 10

8

6

4

2

0
0 5 10 15

counts

ne
xt

 b
ur

st
 -

st
im

ul
us

 ti
m

e
(s

) 10

8

6

4

2

0
0 5 10 15

counts

ne
xt

 b
ur

st
 -

st
im

ul
us

 ti
m

e
(s

) 10

8

6

4

2

0
0 5 10 15

counts
ne

xt
 b

ur
st

 -
st

im
ul

us
 ti

m
e

(s
)

10

8

6

4

2

0
0 5 10 15

counts

ne
xt

 b
ur

st
 -

st
im

ul
us

 ti
m

e
(s

) 10

8

6

4

2

0
0 5 10 15

counts

ne
xt

 b
ur

st
 -

st
im

ul
us

 ti
m

e
(s

) 10

8

6

4

2

0
0 5 10 15

counts

ne
xt

 b
ur

st
 -

st
im

ul
us

 ti
m

e
(s

) 10

8

6

4

2

0
0 5 10 15

counts

ne
xt

 b
ur

st
 -

st
im

ul
us

 ti
m

e
(s

)

Fig. 10. Automated acquisition, analyses, holographic
intervention, and an autogenerated report using
PhysImage. This entire figure was produced by a
PhysImage script shortly after acquisition in tandem
with Fig. 9. A: images that represent the autodetected
pattern of masks for holographic stimulation in B and
C. The field of view encapsulates the area containing
the red regions of interest in Fig. 9, D and E. B:
histograms depicting the time a burst arrives after a
given stimuli (i.e., Fig. 9, F–H) where bins 0–2 s on
the ordinate axes represent entrainment. This was at
100% 473 nm power. C: the same data and patterns of
holographic stimulation at 75% power intensity.

34 PHYSIMAGE: A TOOL FOR COMPUTER-AIDED NEUROPHYSIOLOGY

J Neurophysiol • doi:10.1152/jn.00048.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (193.054.110.055) on July 4, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.

to evoke nerve activity. Beyond the immediate results, this
shows how combining tools and reporting can facilitate the
exploitation of sophisticated experiments.

DISCUSSION

Our code intrinsically depends on the seminal ImageJ
(Schneider et al. 2012) and subsequent software built on this
foundation and benefitting from this history like Fiji (Schin-
delin et al. 2012) and Micro-Manager (Edelstein et al.
2010).

Within the context of open and extensible electrophysiology
and imaging software are notable exceptions such as ACQ4
(Campagnola et al. 2014) and Ephus (Suter et al. 2010) for
researchers interested in similarly integrating imaging and
electrophysiological analyses, but we exceed the others, in our
view, because we build directly off the great open efforts of
Wayne Rasband and his colleagues at NIH, the Fiji project and
Micro-Manager project, and the globally distributed ImageJ
community.

PhysImage substantially improves on the previous closed-
source, patchwork approach to analysis and interpretation, and
it furthermore aids post hoc high-throughput analysis of phys-
iological data when needed. Automated high-throughput and
reproducible analyses has remained a major challenge for
neurophysiologists as a whole despite being greatly advanced
in other areas of neuroscience as with the genomics. We hope
that our additions to the field may allow more easily transfer-
able analysis protocols between laboratories (via simple and
relatively simple scripts and PhysImage plugins).

PhysImage may contribute to equalizing this divide between
neurophysiology and other disciplines of neuroscience. This
tool may also be of great utility to investigators that require
extensive and rapid interaction with their imaging/electrophys-
iological data or that wish to meet future demands linked to
combinatorial probing of neural functions. Lastly, we believe
the open nature of the project, like ImageJ, Fiji, and subse-
quently Micro-Manager have proven, will promote the ex-
change of successful strategies, ideas, code, and extensions,
which will be extremely helpful for the neurophysiologist
community in coming years.

The ability to interactively manipulate the acquisition and
analysis environment of our experimental tools is very power-
ful because it provides a means of rapidly developing auto-
mated routines catered to specific protocols that can then be
easily repeated. For similar reasons, these tools can be used
post hoc to automate analyses for a similar class of experiments
that would otherwise be distracting and make for tediously
repetitive manual labor.

These tools will provide the means to generate creative
experimental designs and more reproducible and consistent
results and analysis, while allowing progressive refinements
according to one’s individual interests.

ACKNOWLEDGMENTS

We thank Christopher A. Del Negro and Christopher G. Wilson for kind
assistance in reviewing drafts of this manuscript.

Present address for J. A. Hayes: Department of Applied Science, The
College of William and Mary, Williamsburg, VA 23187.

Present address for P.-L. Ruffault: Max-Delbrueck-Center (MDC) for
Molecular Medicine, Robert-Roessle-Strasse 10, 13125 Berlin, Germany.

GRANTS

This work was supported by the Centre national de la recherche scienti-
fique, Agence Nationale de la Recherche Grants: ANR-2010-BLAN-141001
(G. Fortin), ANR-12-BSV5-0011-02 (G. Fortin and V. Emiliani), ANR-15-
CE16-0013-02 (G. Fortin); and Fondation pour la Recherche Médicale Grant
DEQ20120323709 (G. Fortin).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

J.A.H., E.P., V.E., and G.F. conceived and designed research; J.A.H. and
P.-L.R. performed experiments; E.P. built the holographic system used in this
study; J.A.H. analyzed data; J.A.H. and G.F. interpreted results of experiments;
J.A.H. prepared figures; J.A.H. drafted manuscript; J.A.H., E.P., P.-L.R., and
G.F. edited and revised manuscript; J.A.H., E.P., P.-L.R., V.E., and G.F.
approved final version of manuscript.

REFERENCES

Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K. Millisecond-
timescale, genetically targeted optical control of neural activity. Nat Neu-
rosci 8: 1263–1268, 2005. doi:10.1038/nn1525.

Campagnola L, Kratz MB, Manis PB. ACQ4: an open-source software
platform for data acquisition and analysis in neurophysiology research.
Front Neuroinform 8: 3, 2014. doi:10.3389/fninf.2014.00003.

Edelstein A, Amodaj N, Hoover K, Vale R, Stuurman N. Computer control
of microscopes using �Manager. In: Current Protocols in Molecular Biol-
ogy, edited by Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG,
Smith JA, Struhl K. Hoboken, NJ: Wiley, 2010, Chapt. 14, Unit 14.20.
doi:10.1002/0471142727.mb1420s92.

Emiliani V, Cohen AE, Deisseroth K, Häusser M. All-optical interroga-
tion of neural circuits. J Neurosci 35: 13917–13926, 2015. doi:10.1523/
JNEUROSCI.2916-15.2015.

Funk GD, Greer JJ. The rhythmic, transverse medullary slice preparation in
respiratory neurobiology: contributions and caveats. Respir Physiol Neuro-
biol 186: 236–253, 2013. doi:10.1016/j.resp.2013.01.011.

Gilbert D. JFreeChart Developer Guide. Harpenden, UK: Object Refinery,
2002.

Grienberger C, Konnerth A. Imaging calcium in neurons. Neuron 73:
862–885, 2012. doi:10.1016/j.neuron.2012.02.011.

Hayes JA, Del Negro CA. Neurokinin receptor-expressing pre-Botzinger
complex neurons in neonatal mice studied in vitro. J Neurophysiol 97:
4215–4224, 2007. doi:10.1152/jn.00228.2007.

Ioannidis JPA. Why most published research findings are false. PLoS Med 2:
e124, 2005. doi:10.1371/journal.pmed.0020124.

Juneau J, Baker J, Ng V, Soto LM, Wierzbicki F. The Definitive Guide to
Jython. New York: Springer, 2010. doi:10.1007/978-1-4302-2528-7.

Kam K, Worrell JW, Ventalon C, Emiliani V, Feldman JL. Emergence of
population bursts from simultaneous activation of small subsets of preBötz-
inger complex inspiratory neurons. J Neurosci 33: 3332–3338, 2013. doi:
10.1523/JNEUROSCI.4574-12.2013.

Li X, Gutierrez DV, Hanson MG, Han J, Mark MD, Chiel H, Hegemann
P, Landmesser LT, Herlitze S. Fast noninvasive activation and inhibition
of neural and network activity by vertebrate rhodopsin and green algae
channelrhodopsin. Proc Natl Acad Sci USA 102: 17816–17821, 2005.
doi:10.1073/pnas.0509030102.

Lima SQ, Miesenböck G. Remote control of behavior through genetically
targeted photostimulation of neurons. Cell 121: 141–152, 2005. doi:10.
1016/j.cell.2005.02.004.

Lutz C, Otis TS, DeSars V, Charpak S, DiGregorio DA, Emiliani V.
Holographic photolysis of caged neurotransmitters. Nat Methods 5: 821–
827, 2008. doi:10.1038/nmeth.1241.

Mellen NM, Tuong C-M. Semi-automated region of interest generation for
the analysis of optically recorded neuronal activity. Neuroimage 47: 1331–
1340, 2009. doi:10.1016/j.neuroimage.2009.04.016.

Peterka DS, Takahashi H, Yuste R. Imaging voltage in neurons. Neuron 69:
9–21, 2011. doi:10.1016/j.neuron.2010.12.010.

Ruffault P-L, D’Autréaux F, Hayes JA, Nomaksteinsky M, Autran S,
Fujiyama T, Hoshino M, Hägglund M, Kiehn O, Brunet J-F, Fortin G,
Goridis C. The retrotrapezoid nucleus neurons expressing Atoh1 and

35PHYSIMAGE: A TOOL FOR COMPUTER-AIDED NEUROPHYSIOLOGY

J Neurophysiol • doi:10.1152/jn.00048.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (193.054.110.055) on July 4, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.

https://doi.org/10.1038/nn1525
https://doi.org/10.3389/fninf.2014.00003
https://doi.org/10.1002/0471142727.mb1420s92
https://doi.org/10.1523/JNEUROSCI.2916-15.2015
https://doi.org/10.1523/JNEUROSCI.2916-15.2015
https://doi.org/10.1016/j.resp.2013.01.011
https://doi.org/10.1016/j.neuron.2012.02.011
https://doi.org/10.1152/jn.00228.2007
https://doi.org/10.1371/journal.pmed.0020124
https://doi.org/10.1007/978-1-4302-2528-7
https://doi.org/10.1523/JNEUROSCI.4574-12.2013
https://doi.org/10.1073/pnas.0509030102
https://doi.org/10.1016/j.cell.2005.02.004
https://doi.org/10.1016/j.cell.2005.02.004
https://doi.org/10.1038/nmeth.1241
https://doi.org/10.1016/j.neuroimage.2009.04.016
https://doi.org/10.1016/j.neuron.2010.12.010

Phox2b are essential for the respiratory response to CO2. eLife 4: e07051,
2015. doi:10.7554/eLife.07051.

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch
T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ,
Hartenstein V, Eliceiri K, Tomancak P, Cardona A. Fiji: an open-source
platform for biological-image analysis. Nat Methods 9: 676–682, 2012.
doi:10.1038/nmeth.2019.

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years
of image analysis. Nat Methods 9: 671–675, 2012. doi:10.1038/nmeth.2089.

Smith JC, Ellenberger HH, Ballanyi K, Richter DW, Feldman JL. Pre-
Bötzinger complex: a brainstem region that may generate respiratory rhythm
in mammals. Science 254: 726–729, 1991. doi:10.1126/science.1683005.

Suter BA, O’Connor T, Iyer V, Petreanu LT, Hooks BM, Kiritani T,
Svoboda K, Shepherd GMG. Ephus: multipurpose data acquisition soft-
ware for neuroscience experiments. Front Neural Circuits 4: 100, 2010.
doi:10.3389/fncir.2010.00100.

Thoby-Brisson M, Karlén M, Wu N, Charnay P, Champagnat J, Fortin G.
Genetic identification of an embryonic parafacial oscillator coupling to the

preBötzinger complex. Nat Neurosci 12: 1028–1035, 2009. doi:10.1038/nn.
2354.

Thoby-Brisson M, Trinh J-B, Champagnat J, Fortin G. Emergence of the
pre-Bötzinger respiratory rhythm generator in the mouse embryo. J Neurosci
25: 4307–4318, 2005. doi:10.1523/JNEUROSCI.0551-05.2005.

Valmianski I, Shih AY, Driscoll JD, Matthews DW, Freund Y, Kleinfeld
D. Automatic identification of fluorescently labeled brain cells for rapid
functional imaging. J Neurophysiol 104: 1803–1811, 2010. doi:10.1152/jn.
00484.2010.

Wang X, Hayes JA, Picardo MCD, Del Negro CA. Automated cell-specific
laser detection and ablation of neural circuits in neonatal brain tissue. J
Physiol 591: 2393–2401, 2013. doi:10.1113/jphysiol.2012.247338.

Yang S, Papagiakoumou E, Guillon M, de Sars V, Tang C-M, Emiliani V.
Three-dimensional holographic photostimulation of the dendritic arbor. J
Neural Eng 8: 046002, 2011. doi:10.1088/1741-2560/8/4/046002.

Zahid M, Vélez-Fort M, Papagiakoumou E, Ventalon C, Angulo MC,
Emiliani V. Holographic photolysis for multiple cell stimulation in mouse
hippocampal slices. PLoS One 5: e9431, 2010. doi:10.1371/journal.pone.
0009431.

36 PHYSIMAGE: A TOOL FOR COMPUTER-AIDED NEUROPHYSIOLOGY

J Neurophysiol • doi:10.1152/jn.00048.2017 • www.jn.org

Downloaded from www.physiology.org/journal/jn by ${individualUser.givenNames} ${individualUser.surname} (193.054.110.055) on July 4, 2018.
Copyright © 2018 American Physiological Society. All rights reserved.

https://doi.org/10.7554/eLife.07051
https://doi.org/10.1038/nmeth.2019
https://doi.org/10.1038/nmeth.2089
https://doi.org/10.1126/science.1683005
https://doi.org/10.3389/fncir.2010.00100
https://doi.org/10.1038/nn.2354
https://doi.org/10.1038/nn.2354
https://doi.org/10.1523/JNEUROSCI.0551-05.2005
https://doi.org/10.1152/jn.00484.2010
https://doi.org/10.1152/jn.00484.2010
https://doi.org/10.1113/jphysiol.2012.247338
https://doi.org/10.1088/1741-2560/8/4/046002
https://doi.org/10.1371/journal.pone.0009431
https://doi.org/10.1371/journal.pone.0009431

