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We show that pulses undergoing wave-breaking in nonlinear weakly dispersive fibers radiate, owing to phase-matching, assisted by higher-order dispersion, of linear dispersive waves with the shock wave front. Our theoretical results perfectly explain the radiation recently observed from pulses propagating in the normal dispersion (i.e. non solitonic) regime.

Bright solitons propagating in standard or photonic crystal fibers close to the zero-dispersion wavelength (ZDW) are known to emit radiation in the region of normal groupvelocity dispersion (GVD). The underlying mechanism is the resonant coupling with linear dispersive waves (DW) induced by higher-order dispersion [1,2]. DW emission plays a prominent role in supercontinuum generation [3,4], and is still attracting a lot of interest due to the richness of the possible scenarios which range from Raman-induced DW trapping [5] as opposed to dynamics dominated by soliton recoil in Raman-free settings [6], to the demonstration of new frequencies generated via coupling to negative frequencies [7]. More recently the idea that DW emission would be strictly related to solitons has been challenged by experimental results that have demonstrated DW emission occurring from a pump pulse propagating in the normal GVD regime [8], where the nonlinearity enforces the dispersive broadening of the pulse. The aim of this letter is to give a theoretical foundation to this observation by showing that, in this regime, DW emission stems from the wave-breaking phenomenon [9][10][11][12][13][14][15]. In particular, we show that the dispersive shock waves (DSW, similar to those arising in the spatial case [14,15]), which develop in the regime of weak dispersion, resonantly amplify DW at frequencies given by phasematching selection rules, where the DSW velocity plays a determinant role.

Specifically, we investigate the regime of pulse durations and powers considered in Ref. [8], where wave-breaking is driven, as we show below, by the Kerr effect in the regime of weak dispersion. Nevertheless, for sake of completeness, we describe the nonlinear pulse propagation by means of the Generalized Nonlinear Schrödinger Equation (GNLSE) [4]:

i∂ z A + d(∂ t )A + γ 1 + iτ s ∂ t A R(t ′ )|A(t -t ′ )| 2 = 0, (1) where d(∂ t ) = n≥2 βn n! (i∂ t ) n is the dispersion operator, γ is the nonlinear coefficient, R(t) = (1 -f R )δ(t) + f R h R (t)
includes both instantaneous (Kerr) and Raman response (f R = 0.18), τ s ≈ 1/ω p is the self-steepening time, ω p is the pump carrier frequency, around which d(∂ t ) is expanded, and t is the retarded time in the frame traveling at natural group velocity V g = V g (ω p ) = β -1

1 . For definiteness we consider a standard telecom fiber (Corning MetroCor) with nonlinear and dispersion parameters as follows: γ = 2.5 W -1 km -1 , β 2 = 6.4 ps 2 /Km, β 3 = 0.134 ps 3 /Km, and β 4 = -9 × 10 -4 ps 4 /Km (higher-order terms are negligible), which gives a ZDW λ ZDW = 1625 nm [8].

The shock formation process can be described, neglecting for the time being Raman (f R = 0) and self-steepening (τ s = 0) that play a minor role (see below), by applying a Madelung transform

A(z, t) = ρ(z, t) exp[-i t u(z, t ′ )dt ′ ].
In the small dispersion (or highly nonlinear) regime [12][13][14][15], we derive the following system of conservation laws of hydrodynamic type q z + f t (q) = 0, with q = (ρ, ρu) standing for equivalent mass and momentum of the flow [13]:

ρ z + β 2 ρu + β 3 2 ρu 2 + β 4 6 ρu 3 t = 0, (2) 
(ρu) z + β 2 ρu 2 + β 3 2 ρu 3 + β 4 6 ρu 4 + γ 2 ρ 2 t = 0. ( 3 
)
The derivation of Eqs. (2-3) implies to ignore higher order derivatives or averaging over the fast time oscillations of the solutions of Eq. ( 1), which corresponds to the WKB procedure. The goodness of this approximation is measured by the smallness of the parameter ε = L nl /L d , being L nl = (γP 0 ) -1 and L d = T 2 0 /β 2 the nonlinear and dispersion lengths associated with the input peak power P 0 and pulse duration T 0 [14,15].

Since Eqs. (2-3) turn out, for small β 3,4 , to be hyperbolic, they admit weak solutions in the form of classical shock waves, i.e. traveling jumps from left (ρ l , u l ) to right (ρ r , u r ) values, whose velocity V c can be found from the so-called Rankine-Hugoniot condition V c (q lq r ) = [f (q l )f (q r )] [16]. However, the jump is regularized by GVD in the form of a DSW, i.e. an expanding fan filled with oscillations described in terms of a modulated nonlinear periodic wave [10,14,15]. In this regime, the shock velocity can be identified with the velocity V s of the steep front near the deepest oscillation (DSW leading edge), which differs from V c and can be determined only numerically.

This scenario is illustrated in Fig. 1, that shows numerically evaluated profiles from an input pulse A 0 (t) = √ P 0 sech(t/T 0 ) with P 0 = 600 W and T 0 = 850 fs, after 20m of propagation. Integration of Eqs. (2-3) by means of a Lax-Wendorff scheme [16] shows the formation of traveling jumps (green dots). The process is asymmetric on the leading and trailing edges of the pulse due to the effect of β 3 . 1 In particular z = 20m nearly corresponds to the breaking distance of the leading edge, whereas on the trailing edge breaking occurs at z ≃ 13m (at z = 20 the different velocity V s of the DSW front with respect to V c starts to become visible in Fig. 1). This dynamic is essentially reproduced by Eq. ( 1) [see solid blue line], as expected due to the small value ε = 0.077. Beyond wave-breaking, Eqs. (2-3) cease to be valid, and the jumps are replaced by oscillating fronts (see insets). The dashed red line in Fig. 1, obtained by retaining in Eq. (1) only β 2,3 terms (τ s = f R = β 4 = 0) proves that the phenomenon is essentially driven by the Kerr effect.

The strong spectral broadening that accompanies steep front formation can act as an efficient seed for DW which are phase-matched to the shock in its moving frame at velocity V s . In such frame, linear waves have wavenumber k(ω) = [k(ω) -ω/V s ] (k(ω) = ωn(ω)/c is the full dispersion) whereas the pump has wavenumber kp = k(ω p ) -ω p /V s . By expanding k(ω) around ω p and setting ∆ω = ω -ω p , we find that the phase-matching condition k(ω) = kp , is fulfilled at frequency detunings ∆ω = ∆ω DW that solve the explicit equation

4 n=2 β n n! ∆ω n -∆ω∆k 1 = k N L , (4) 
where ∆k

1 = V -1 s -V -1 g
is the inverse velocity mismatch (with respect to V g ), and we included also the nonlinear contribution k N L due to the pump. Assuming β 4 and k N L to be negligible in Eq. ( 4), we obtain explicitly

∆ω DW = -3β 2 2β 3 1 + 1 + ∆k 1 β 3 6β 2 2 , (5) 
which, in the limit of negligible velocity mismatches (i.e.,

|∆k 1 | ≪ 6β 2 2 |β3|
), reduces to the simple formula [8] ∆ω DW ≈ -3 We show that, while k N L can be safely neglected in the regime considered below, Eq. ( 6) describes with good accuracy only DW emitted by solitons, characterized by ∆k 1 ≈ 0 [2]. Conversely, DSWs possess always non-zero velocity mismatches ∆k 1 that strongly affect the determination of ∆ω DW , thus requiring to use Eq. ( 4).

β 2 β 3 . (6) 
Figure 2 contrasts the two typical situations encountered when pumping in the normal (a-c) or anomalous (b-d) GVD regime, respectively. The DSW forming on the leading pulse edge in the temporal evolution in Fig. 2(a) is responsible for the resonant amplification of the DW at an activation distance nearly coincident with the breaking distance at which maximal spectral broadening also occurs [see Fig. 2(c)]. The velocity V s of the DSW leading edge (dashed white line) turns out to be significantly different from V g . By accounting for such mismatch (∆k 1 = -77 fs/m) in Eq. ( 4), we are able to accurately predict the DW frequency through the phase-matching curve shown in Fig. 3(a) [see also the corresponding dashed red line in Fig. 2(c)]. Although also the DSW on the trailing edge can in principle radiate, Eq. ( 4) predicts for positive and large ∆k 1 , a DW so strongly detuned (∆ω DW ≃ -23 THz in this case) that the seeding mechanism is no longer effective.

When the pump is a higher-order soliton (anomalous GVD) the onset of the DW occurs at the distance of maximal temporal compression (or spectral broadening), z ≃ 40m in Fig. 2(b)-(d). The substantial difference, in this case, is that the maximally compressed pulse has a (local) inverse velocity 15 times smaller than the previous case. As a result ∆k 1 turns out to be totally negligible in the phasematching curve in Fig. 3(b) and in the determination of ∆ω DW [also shown as a dashed red line in Fig. 2(d)].

We then performed a systematic study in a 100 m long fiber using the same input pump pulse though varying its 2 frequency. The results of our simulations are summarized in Fig. 4, where we plot the DW detunings as a function of pump detuning (both referred to ZDW). Note that we increase the power P 0 (as indicated in Fig. 4) as the detuning from ZDW (and hence the effective GVD) grows in order to maintain the wavebreaking and achieve a sufficient spectral broadening to seed the DW. In the anomalous GVD regime (negative detunings), simulation results (solid markers) are reasonably well fitted by the simplified formula (6) (dashed blue line), and the agreement improves when β 4 is account for in Eq. ( 4) (solid red curve). In fact the inverse velocity of the maximal compressed pulse that sheds the DW is extremely low, as shown in Fig. 5. The scenario is totally different in the normal GVD regime (positive detunings), where neither Eq. ( 6), nor the inclusion of β 4 fit the simulation results. Whereas, when the inverse velocity shown in Fig. 5 is accounted for, the agreement is nearly perfect. Interestingly enough, the inverse shock velocity scales linearly with pump detuning and is nearly independent on the pump power, a fact that does not simply follow from scaling arguments and need further assessment. 4) with ∆k 1 = 0 (solid red curve). The solid black line refers to the prediction from Eq. ( 4) with inverse velocity ∆k 1 shown in Fig. 5.

In summary, we have shown that the frequency of DW shed by pulses propagating in the normal GVD regime can be accurately predicted on the basis of phase-matching arguments which involve the velocity of the shock produced via wave-breaking.
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 1 Fig. 1. (Color online) Power profiles ρ = |A| 2 at z = 20m, comparing numerical solutions of Eqs. (2-3) (green dots) with those of the full GNLSE Eq. (1) (solid blue curve), and GNLSE with only β 3 perturbation (τ s = f R = β 4 = 0, dashed red curve). Thin black curve is the input sech-shaped pulse at λ p = 1568.5 nm. Here ε = 0.077.
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 2 Fig. 2. (Color online) Temporal (a) and spectral (c) evolution of an input sech pulse P 0 = 600 W, T 0 = 850 fs, at λ p = 1568.5 nm (normal GVD). (b,d) Same with anomalous GVD (λ p = 1661 nm), P 0 = 40 W. In (c,d) A/N labels anomalous/normal GVD regions, and the dashed red lines stand for the DW detuning predicted by Eq. (4) with inverse velocity ∆k 1 (of shock and soliton, respectively) given by oblique dashed lines in (a,b).
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 3 Fig. 3. (Color online) Phase matching curves from Eq. (4): (a) normal GVD regime (λ p = 1568.5 nm, 7.23 THz from ZDW); (b) anomalous GVD regime (λ p = 1661 nm, -4 THz from ZDW). The red markers give the DW frequency detuning, and the vertical dashed line stands for the ZDW.
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 4 Fig.4. (Color online) DW detuning as a function of pump detuning (both from ZDW), contrasting numerical simulations (filled circles) with the prediction from Eq. (6) (dashed blue line) and from Eq. (4) with ∆k 1 = 0 (solid red curve). The solid black line refers to the prediction from Eq. (4) with inverse velocity ∆k 1 shown in Fig.5.
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 51 Fig. 5. (Color online) Inverse velocity shifts ∆k 1= V -1 s -V -1g (filled circles) vs. pump detuning from ZDW for the shock (positive detunings) and solitons (negative detunings). Solid blue line: linear best-fit for ∆k 1 .