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Abstract

Motivation: Nanopore long-read sequencing technology offers promising alternatives to high-throughput
short read sequencing, especially in the context of RNA-sequencing. However this technology is currently
hindered by high error rates in the output data that affect analyses such as the identification of isoforms,
exon boundaries, open reading frames, and the creation of gene catalogues. Due to the novelty of such
data, computational methods are still actively being developed and options for the error-correction of
Nanopore RNA-sequencing long reads remain limited.
Results: In this article, we evaluate the extent to which existing long-read DNA error correction methods
are capable of correcting cDNA Nanopore reads. We provide an automatic and extensive benchmark tool
that not only reports classical error-correction metrics but also the effect of correction on gene families,
isoform diversity, bias towards the major isoform, and splice site detection. We find that long read error-
correction tools that were originally developed for DNA are also suitable for the correction of Nanopore
RNA-sequencing data, especially in terms of increasing base-pair accuracy. Yet investigators should be
warned that the correction process perturbs gene family sizes and isoform diversity. This work provides
guidelines on which (or whether) error-correction tools should be used, depending on the application type.
Benchmarking software: https://gitlab.com/leoisl/LR_EC_analyser
Supplementary information: Supplementary data are available at Briefings in Bioinformatics online.
Key words: Long reads, RNA-sequencing, Nanopore, Error correction, Benchmark
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1 Introduction
The most commonly used technique to study transcriptomes is through
RNA sequencing. As such, many tools were developed to process
Illumina or short RNA-seq reads. Assembling a transcriptome from short
reads is a central task for which many methods are available. When
a reference genome or reference transcriptome is available, reference-
based assemblers can be used (such as Cufflinks [1], Scallop [2],
Scripture [3], and StringTie [4]). When no references are available, de novo
transcriptome assembly can be performed (using tools such as Oases [5],
SOAPdenovo-Trans [6], Trans-ABySS [7] and Trinity [8]). Potential
disadvantages of reference-based strategies include: i) the resulting
assemblies might be biased towards the used reference, and true variations
might be discarded in favour of known isoforms; ii) they are unsuitable for
samples with a partial or missing reference genome [8]; iii) such methods
depend on correct read-to-reference alignment, a task that is complicated
by splicing, sequencing errors, polyploidism, multiple read mapping,
mismatches caused by genome variation, and the lack or incompleteness of
many reference genomes [7, 8]; iv) sometimes, the model being studied is
sufficiently different from the reference because it comes from a different
strain or line such that the mappings are not altogether reliable [5].
On the other hand, some of the shortcomings of de novo transcriptome
assemblers are: i) low-abundance transcripts are likely to not be fully
assembled [9]; ii) reconstruction heuristics are usually employed, which
may lead to missing alternative transcripts, and highly similar transcripts
are likely to be assembled into a single transcript [10]; (iii) homologous or
repetitive regions may result in incomplete assemblies [11]; (iv) accuracy
of transcript assembly is called into question when a gene exhibits complex
isoform expression [11].

Recent advances in long-read sequencing technology have enabled
longer, up to full-length sequencing of RNA molecules. This new approach
has the potential to eliminate the need for transcriptome assembly, and thus
also eliminate from transcriptome analysis pipelines all the biases caused
by the assembly step. Long read sequencing can be done using either
cDNA-based or direct RNA protocols from Oxford Nanopore (referred
to as ONT or Nanopore) and Pacific Biosciences (PacBio). The Iso-Seq
protocol from PacBio consists in a size selection step, sequencing of
cDNAs, and finally a set of computational steps that produce sequences
of full-length transcripts. ONT has three different experimental protocols
for sequencing RNA molecules: cDNA transformation with amplification,
direct cDNA (with or without amplification), and direct RNA.

Long-read sequencing is increasingly used in transcriptome studies,
not just to prevent problems caused by short-read transcriptome assembly,
but also for several of the following reasons. Mainly, long reads can better
describe exon/intron combinations [12]. The Iso-seq protocol has been
used for isoform identification, including transcripts identification [13],
de novo isoform discovery [14] and fusion transcript detection [15].
Nanopore has recently been used for isoform identification [16] and
quantification [17].

The sequencing throughput of long-read technologies is significantly
increasing over the years. It is now conceivable to sequence a full eukaryote
transcriptome using either only long reads, or a combination of high-
coverage long and short (Illumina) reads. Unlike the Iso-Seq protocol that
requires extensive in silico processing prior to primary analysis [18], raw
Nanopore reads can in principle be readily analyzed. Direct RNA reads also
permit the analysis of base modifications [19], unlike all other cDNA-based
sequencing technologies. There also exist circular sequencing techniques
for Nanopore such as INC-Seq [20] which aim at reducing error rates, at
the expense of a special library preparation. With raw long reads, it is up
to the primary analysis software (typically a mapping algorithm) to deal
with sequences that have significant per-base error rate, currently around
13% [21].

In principle, a high error rate in the data complicates the analysis of
transcriptomes especially for the accurate detection of exon boundaries, or
the quantification of similar isoforms and paralogous genes. Reads need
to be aligned unambiguously and with high base-pair accuracy to either
a reference genome or transcriptome. Indels (i.e. insertions/deletions)
are the main type of errors produced by long-read technologies, and
they confuse aligners more than substitution errors [22]. Many methods
have been developed to correct errors in RNA-seq reads, mainly in the
short-read era [23, 24]. They no longer apply to long reads because they
were developed to deal with low error rates, and principally substitutions.
However, a new set of methods have been proposed to correct genomic long
reads. There exist two types of long-read error-correction algorithms, those
using information from long reads only (self or non-hybrid correction),
and those using short reads to correct long reads (hybrid correction). In this
article, we will report on the extent to which state-of-the-art tools enable
to correct long noisy RNA-seq reads produced by Nanopore sequencers.

Several tools exist for error-correcting long reads, including ONT
reads. Even if the error profiles of Nanopore and PacBio reads are
different, the error rate is quite similar and it is reasonable to expect
that tools originally designed for PacBio data to also perform well on
recent Nanopore data. There is, to the best of our knowledge, very little
prior work that specifically addresses error-correction of RNA-seq long
reads. Notable exceptions include: a) LSC [25], which is designed to
error correct PacBio RNA-seq long reads using Illumina RNA-seq short
reads; b) PBcR [26] and c) HALC [27], which are mainly designed for
genomes but are also evaluated on transcriptomic data. Here we will take
the standpoint of evaluating long-read error-correction tools on RNA-seq
data, most of which were designed to process DNA sequencing data only.

We evaluate the following DNA hybrid correction tools: HALC [27],
LoRDEC [28], NaS [29], PBcR [26], proovread [30]; and the following
DNA self-correction tools: Canu [31], daccord [32], LoRMA [33],
MECAT [34], pbdagcon [35]. We also evaluate an additional hybrid tool,
LSC [25], the only one specifically designed to error correct (PacBio)
RNA-seq long reads. A majority of hybrid correction methods employ
mapping strategies to place short fragments on long reads and correct long
read regions using the related short read sequences. But some of them rely
on graphs to create a consensus that is used for correction. These graphs
are either k-mer graphs (de Bruijn graphs), or nucleotide graphs resulting
from multiple alignments of sequences (partial order alignment). For self-
correction methods, strategies using the aforementioned graphs are the
most common. We have also considered evaluating nanocorrect [36],
nanopolish [36], Falcon_sense [37], and LSCPlus [38], but some tools
were deprecated, not suitable for read correction, or unavailable. Our
detailed justifications can be found in Section S1.12 of the Supplementary
Material. We have selected what we believe is a representative set of tools
but there also exist other tools that were not considered in this study, e.g.
HG-Color [39], HECIL [40], MIRCA [41], Jabba [42], nanocorr [43], and
Racon [44].

Other works have evaluated error correction tools in the context of
DNA sequencing. LRCstats [45], and more recently ELECTOR [46],
provide automated evaluations of genomic long read correction using a
simulated framework. A technical report from Bouri and Lavenier [47]
provides an extensive evaluation of PacBio/Nanopore error-correction
tools, in the context of de novo assembly. This analysis is completed
with more recent results in Fu et al. [48] on hybrid correction methods.
Perhaps the closest work to ours is the AlignQC software [21], which
provides a set of metrics for the evaluation of RNA-sequencing long-read
dataset quality. In Weirather et al. [21] a comparison is provided between
Nanopore and PacBio RNA-sequencing datasets in terms of error patterns,
isoform identification and quantification. While Weirather et al. [21] did
not compare error-correction tools, we will use and extend AlignQC
metrics for that purpose.
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In this article, we will focus on the qualitative and quantitative
measurements of Nanopore error-corrected long reads, with transcriptomic
features in mind. First we examine basic metrics of error-correction,
e.g. mean length, base accuracy, homopolymers errors, and performance
(running time, memory) of the tools. Then we ask several questions
that are specific to transcriptome applications: (i) how is the number
of detected genes, and more precisely the number of genes within a
gene family, impacted by read error correction? (ii) can error correction
significantly change the number of reads mapping to genes or transcripts,
possibly affecting downstream analysis based on these metrics? (iii)
do error-correction tools perturb isoform diversity, e.g. by having a
correction bias towards the major isoform? (iv) what is the impact of
error correction on identifying splice sites? To answer these questions, we
provide an automatic framework (LC_EC_analyser, see Methods) for the
evaluation of transcriptomic error-correction methods, that we apply to
eleven different error-correction tools.

2 Results

2.1 Error-correction tools

Table 1 presents the main characteristics of the hybrid and non-hybrid
error-correction tools that were considered in this study. For the sake of
reproducibility, in the Supplementary Material Section S1 are described
all the versions, dependencies, and parameters. Note that these error-
correction tools were all tailored for DNA-seq data except for LSC.

The output of each error correction method can be classified into on of
the four following types: full-length, trimmed, split, and micro-assembly.
Usually, due to methodological reasons, extremities of long reads are
harder to correct. As an example, hybrid correctors based on mapping
short to long reads, and calling a consensus from the mapping, have
difficulties aligning short reads to the extremities of long reads. As such,
some methods output trimmed error-corrected reads, i.e. error-corrected
reads such that their uncorrected ends are removed. Examples of methods
producing this type of output considered in this study are HALC, LoRDEC,
LSC, proovread, daccord, and pbdagcon. Sometimes, internal parts of long
reads can also be hard to correct, due to a lack of coverage of short reads, or
a drop of sequencing quality, or due to mapping issues. Some algorithms
thus output split error-corrected reads, splitting one long read into several
well-corrected fragments, such as HALC, LoRDEC, PBcR, and LoRMA.
Finally, some tools decide to not trim nor split the original reads, outputting
full-length error-corrected reads. Examples include HALC, LoRDEC,
LSC, proovread, canu, daccord, MECAT, and pbdagcon. NaS does not fit
the previous three categories, as it uses a micro-assembly strategy, instead
of a classical polishing of the consensus, in which the long read is used as
a template to recruit Illumina reads and, by performing a local assembly,
build a high-quality synthetic read. As can be noted, some tools produce
more than one type of output, sometimes three types. In the following
sections, we add the suffixes (t) and (s) to a tool name to denote its
trimmed and split outputs, respectively. We further add the suffix (µ) to
NaS, as a reminder that it is based on a micro-assembly strategy. Outputs
that have no suffixes are considered full-length corrections. For example,
HALC denotes the HALC full-length error-corrected reads, HALC(t), the
HALC trimmed output, and HALC(s), the HALC split output. As we
will see, there is no type of output that outperforms all the others in all
metrics. Choosing the appropriate type of output is heavily dependent on
the application.

2.2 Evaluation datasets

Our main evaluation dataset consists of a single 1D Nanopore run using
the cDNA preparation kit of RNA material taken from a mouse brain,

containing 740,776 long reads. An additional Illumina dataset containing
58 million paired-end 151 bp reads was generated on the same sample
but using a different cDNA protocol. For more details on the sequencing
protocol, see Section 4. The Nanopore and Illumina reads from the mouse
RNA sample are available in the ENA repository under the following study:
PRJEB25574. In this paper, we provide a detailed analysis of this dataset,
from Section 2.3 to Section 2.11.

In order to obtain a more comprehensive understanding of the
evaluated tools, we further analysed the correction of the methods
on one human Nanopore direct RNA sequencing data from the
Nanopore-WGS-Consortium (dataset from centre Bham, run#1,
sample type RNA, kit SQK-RNA001, pore R9.4, available at https:
//github.com/nanopore-wgs-consortium/NA12878/

blob/master/nanopore-human-transcriptome/fastq_

fast5_bulk.md). We concatenated the fail and pass RNA-direct reads
from the aforementioned dataset, obtaining 894,289 reads. Further, to
correctly run all tools, we transformed bases U into T.

2.3 Error-correction improves base accuracy and splits,
trims, or entirely removes reads

Table 2 shows an evaluation of error-correction based on AlignQC results,
for the hybrid and non-hybrid tools. The error rate is 13.72% in raw reads,
0.33-5.45% for reads corrected using hybrid methods and 2.91-6.43%
with self-correctors. Notably, the hybrid tools NaS(µ), Proovread(t),
and HALC(s) output micro-assembled, trimmed and split error-corrected
reads, respectively, with the lowest error rates (<0.5%). We observe that
HALC produced the full-length error-corrected reads with the lowest error-
rate (1.85%), but that is still significantly higher than the error-rate of the
three aforementioned methods. This is expected, as micro-assembling,
trimming or splitting reads usually do not retain badly corrected regions
of the reads, lowering the error rate. LoRMA(s), which is the only split
self-correction tool, was the one that decreased the error-rate the most
among non-hybrid tools, but still just managed to reach 2.91%, one order
of magnitude higher than the best hybrid correctors. If we look at non-
split outputs among the self-correctors, MECAT and daccord(t) obtained
the lowest error rates for full-length and trimmed error-corrected reads,
respectively, but still presenting an error-rate higher that 4%. It is not
a surprise that the best error correctors are hybrid when looking at the
error rates, given their usage of additional high-quality Illumina reads. As
expected, trimming and splitting error-corrected reads reduces a lot the
error-rate, e.g. LoRDEC reduced the error rate from 4.5% to 3.73% by
trimming, and to 1.59% by splitting. As such, the split output consistently
outperformed trimmed and full-length outputs, regarding the error-rate. A
detailed error-rate analysis will be carried in Section 2.5.

In terms of throughput after the correction step, tools that do not trim
nor split reads tend to return a number of reads similar to that of the
uncorrected (raw) reads. Notably, HALC and LoRDEC returned exactly
the same number of reads, and Proovread returned just 3k less reads. On the
other hand, Canu and MECAT decreased a lot the number of output reads,
probably due to post-filtering procedures. Moreover, many of full-length
outputs (HALC, LoRDEC, LSC, Proovread, and daccord) increased the
mean length of the raw reads while also increasing the number of output
bases, showing that they tend to further extend the information contained
in the long reads.

Trimming almost always decreased the number of output reads,
like in HALC(t), LoRDEC(t), Proovread(t), and pbdagcon(t), probably
due to post-filtering procedures. However, in LSC(t), trimming has no
effect on the number of reads, and in daccord(t), trimming actually
increased the number of reads. In half of the trimmed outputs (HALC(t),
LoRDEC(t), and LSC(t)), the mean length of the reads was usually
preserved, decreasing only by around 100bps. However, in the other half

https://github.com/nanopore-wgs-consortium/NA12878/blob/master/nanopore-human-transcriptome/fastq_fast5_bulk.md
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/nanopore-human-transcriptome/fastq_fast5_bulk.md
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/nanopore-human-transcriptome/fastq_fast5_bulk.md
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/nanopore-human-transcriptome/fastq_fast5_bulk.md
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Table 1. Main characteristics of the error correction tools considered in this study

(A) Hybrid tools

HALC LoRDEC LSC NaS PBcR Proovread

Reference [27] [28] [25] [29] [26] [30]

Context RNA or DNA DNA RNA DNA RNA or DNA DNA

Technology PacBio PacBio or ONT PacBio ONT PacBio or ONT PacBio

Main
algorithmic
idea

Aligns short reads contigs
to long reads. HALC
implements a strategy to
desambiguify multiple
alignments instead of
avoiding them. It uses a
short reads contig graph
in order to select the best
set of contigs to correct a
long read region.

Construction of short
read de Bruijn graph
(dBG), path search
between k-mers in long
reads. Regions between
k-mers are corrected with
the optimal path.

Operate a homopolymer
compression of short and
long reads to increase
alignment recall. Recruits
short reads on long reads
sequences. Corrects
errors from short reads
sequences and uses
homopolymers from
short reads to replace
those in long reads.

Long reads are used
as templates to recruit
short (seed) reads through
alignment. The set of seeds
is extended by searching,
using shared k-mers, for
similar reads in the initial
read set. A micro-assembly
of the reads is performed.
Resulting contigs are aligned
back to the input long reads,
and a path in the contig graph
is used as the corrected read.

Alignment of short reads
to long reads, and multi-
alignment of the short
reads recruited to one
region. A consensus is
derived from the multiple
alignement.

Alignment of short
reads to long reads
and consensus. Uses a
specific scoring system
to adapt the mapping to
the high error rates.

(B) Non-hybrid tools

Canu daccord LoRMA MECAT pbdagcon

Reference [31] [32] [33] [34] [35]

Context DNA DNA DNA DNA DNA

Technology PacBio or ONT PacBio PacBio or ONT PacBio or ONT PacBio

Main
algorithmic
idea

First, All-versus-all read
overlap and alignment
filtering. Directed acyclic
graph is built from the
alignments, that produce
quasi-multiple alignments.
Highest-weight path search in
these graph yield consensus
sequences that are used for
correction.

Reads are compared pairwisely
to obtain alignment piles.
Several overlapping windows
of hundreds of nucleotides are
derived from these piles, on
which micro-assembly (DBG
with very small k-mers) is
performed. A heaviest path
in each DBG is heuristically
selected as the consensus to
correct the given window.

Path search in dBG built
from long reads. Multi-
iterations over k-mer size for
graph construction. The same
framework than LoRDEC is
used to correct read regions.

k-mer based read matching,
pairwise alignment between
matched reads, alignment-
based consensus calling on
’easy’ regions, local consensus
calling (partial order graph)
otherwise.

Align long reads to "backbone"
sequences, correction by
iterative directed acyclic graph
consensus calling from the
multiple sequence alignments.

(Proovread(t), daccord(t), and pbdagcon(t)), read lengths were, on average,
reduced by 200-500bp.

Splitting reads significantly increased the number of output reads,
as expected. LoRDEC(s), PBcR(s), and LoRMA(s) tend to split reads
into two or more shorter reads during the correction step, as they return
∼2x more reads after correction that are also shorter (mean length of
respectively 816bp, 776bp and 497bp, versus 2011bp in raw reads) and
overall have significantly less bases in total (loss of respectively 207Mbp,
298Mbp and 553Mbp). HALC(s), on the other hand, managed to increase
the number of reads only by 23%, with no significant loss of bases, but
still with a significant reduction on the mean length (1378bp). We observe
that NaS(µ), based on micro-assembly, obtained a mean length similar to
the trimmed outputs (HALC(t), LoRDEC(t), and LSC(t)). This suggests
that NaS(µ) has trouble either getting seed short reads or recruiting short
reads mapping to the ends of long reads, or assembling the reads mapped
to the ends.

These observations indicate that care should be taken when considering
which type of output should be used. For example, all split and half of

the trimmed outputs should not be used in applications trying to describe
the full transcript structure, or distant exons coupling, as the long read
connectivity is lost in many cases in these types of outputs.

Overall, no correction tool outperforms all the others across the metrics
analysed in this section. However, hybrid correctors are systematically
better than self-correctors at decreasing the error-rate (and preserving the
transcriptome diversity, as we will discuss in the next Section). Trimming
and splitting usually increase the read accuracy (and also mapping rate, as
we see next), but decrease the total amount of bases in the read set and the
mean read length, which can lead to loss of long-range information that
was present in the raw reads.

2.4 Error-correction facilitates mapping yet generally
lowers the number of detected genes

Apart from HALC, LoRDEC, Proovread, and daccord, for which only
85-92% of reads were mapped, corrected reads from all the other tools
were mapped at a rate of 94-99%, showing a significant improvement
over raw reads (mapping rate of 83.5%). We observe that these four tools
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Table 2. Statistics of error correction tools on the 1D run RNA-seq dataset. To facilitate the readability of this table and the next ones, we highlighted values that we deemed satisfactory
in green colour, borderline in brown, and unsatisfactory in red, noting that such classification is somewhat arbitrary.

(A) Hybrid tools

Raw HALC HALC(t) HALC(s) LoRDEC LoRDEC(t) LoRDEC(s) LSC LSC(t) NaS(µ) PBcR(s) Proovread Proovread(t)

nb reads 741k 741k 709k 914k 741k 677k 1388k 619k 619k 619k 1321k 738k 626k

mapped
reads

83.5% 88.1% 95.6% 98.8% 85.5% 95.5% 97.5% 97.1% 97.6% 98.7% 99.2% 85.5% 98.9%

mean
length

2011 2174 1926 1378 2097 1953 816 2212 1901 1931 776 2117 1796

nb bases 1313M 1469M 1334M 1245M 1394M 1289M 1106M 1332M 1151M 1179M 1015M 1400M 1112M

mapped
basesa

89.0% 90.3% 96.6% 99.2% 90.6% 95.9% 99.1% 90.9% 97.7% 97.5% 99.2% 92.4% 99.5%

error
rateb

13.72% 1.85% 1.32% 0.44% 4.5% 3.73% 1.59% 5.45% 4.36% 0.38% 0.68% 2.65% 0.33%

nb
detected
genes

16.8k 17.0k 16.8k 16.6k 16.8k 16.6k 16.5k 16.5k 16.2k 15.0k 15.6k 16.6k 14.6k

(B) Non-hybrid tools

Raw Canu daccord daccord(t) LoRMA(s) MECAT pbdagcon pbdagcon(t)

nb reads 741k 519k 675k 840k 1540k 495k 778k 775k

mapped
reads

83.5% 99.1% 92.5% 94.0% 99.4% 99.4% 98.2% 97.9%

mean length 2011 2192 2102 1476 497 1992 1473 1484

nb of bases 1313M 1125M 1350M 1212M 760M 980M 1136M 1141M

mapped
basesa

89.0% 92.0% 92.5% 94.7% 99.2% 96.9% 97.0% 96.7%

error rateb 13.72% 6.43% 5.2% 4.12% 2.91% 4.57% 5.65% 5.71%

nb detected
genes

16.8k 12.4k 15.5k 13.9k 6.8k 10.4k 13.2k 13.2k

aAs reported by AlignQC. Percentage of bases aligned among mapped reads, taken by counting the M parts of CIGAR strings in the BAM file. Bases in
unmapped reads are not counted.
bAs reported by AlignQC, using a sample of 1 million bases from aligned reads segments.

with the lowest percentages of mapped reads had high mean read length,
indicating that trimming, splitting or discarding reads seems necessary in
order to obtain shorter but overall less error-prone reads. In general in all
tools (except pbdagcon), trimming and splitting increased the proportion
of mapped reads and bases, sometimes significantly (e.g. Proovread).
However some tools which do not offer the option to trim or split reads,
such as Canu and MECAT, showed very high mapping rate with high mean
read length and error-rate. This is related to their aggressive post-filtering
measure, which removed a significant portion of the reads (29-33%).

On verifying if error-correctors are able to preserve transcriptome
diversity, we can see a striking difference between hybrid and self-
correctors: in general, hybrid correctors present a far higher number of
detected genes than the self ones. Interestingly, HALC was able to even
increase the number of detected genes by 221 with regard to the raw
reads, indicating that some genes were maybe not detected before due
to imperfect mapping caused by the high error rate. We also found that 72
genes were detected in the raw reads but not in any of the error-corrected

outputs. Furthermore, 354 genes are absent from the results of nearly all
correction methods (≥ 16 out of 19).

Overall, all hybrid tools presented a satisfactory amount of detected
genes, except for NaS(µ), PBcR(s) and Proovread (t), while self-correctors
did not present any satisfactory results, with Canu, LoRMA(s) and MECAT
reducing by 35%-59% the number of detected genes reported in raw reads.
We can also note that trimming and splitting systematically resulted in a
loss of the sensitivity to detect new genes. Moreover, except for HALC(s),
tools with very high percentage of mapped reads (NaS(µ), PBcR(s),
Proovread(t), Canu, LoRMA(s), MECAT, pbdagcon, pbdagcon(t)) had
the largest losses in number of detected genes, hinting that error correction
can reduce gene diversity in favor of lower error-rate, and/or that clusters
of similar genes (e.g. paralogous) are corrected towards a single gene.
Therefore, if preserving the transcriptome diversity is required for the
downstream application, self-correctors should be avoided altogether,
along with some hybrid correctors (NaS(µ), PBcR(s), and Proovread(t)).
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Table 3. Error rate in the raw reads and in the corrected reads for each tool, on the 1D run RNA-seq dataset, computed from 1M random aligned bases.

(A) Hybrid tools

Raw HALC HALC(t) HALC(s) LoRDEC LoRDEC(t) LoRDEC(s) LSC LSC(t) NaS(µ) PBcR(s) Proovread Proovread(t)

Error rate 13.72% 1.85% 1.32% 0.44% 4.5% 3.73% 1.59% 5.45% 4.36% 0.38% 0.68% 2.65% 0.33%

Mismatch 5.11% 0.79% 0.54% 0.22% 2.04% 1.76% 1.13% 2.35% 2.01% 0.2% 0.18% 0.93% 0.13%

Deletion 7.41% 0.85% 0.64% 0.17% 2.15% 1.73% 0.39% 2.64% 1.94% 0.09% 0.3% 1.51% 0.18%

Insertion 1.2% 0.21% 0.14% 0.05% 0.32% 0.24% 0.07% 0.47% 0.4% 0.08% 0.19% 0.22% 0.03%

(B) Non-hybrid tools

Raw Canu daccord daccord(t) LoRMA(s) MECAT pbdagcon pbdagcon(t)

Error rate 13.72% 6.43% 5.2% 4.12% 2.91% 4.57% 5.65% 5.71%

Mismatch 5.11% 1.33% 1.1% 0.67% 0.37% 0.33% 0.49% 0.49%

Deletion 7.40% 4.82% 3.82% 3.27% 2.51% 4.18% 5.06% 5.17%

Insertion 1.20% 0.28% 0.28% 0.19% 0.04% 0.06% 0.09% 0.05%

2.5 Detailed error-rate analysis

The high error-rate of transcriptomic long reads significantly complicates
their primary analysis [49]. While Section 2.3 presented a general per-
base error rate, this section breaks down sequencing errors into several
types and examines how each error-correction tool deals with them. A
general, and expected, trend that we find in all tools and in all types of
errors is that trimming and splitting the reads result in less substitutions,
deletions and insertion errors. We will therefore focus in other aspects
in this analysis. The data presented here is a compilation of AlignQC
results. Note that AlignQC computed the following metrics only on reads
that could be aligned, thus unaligned reads are not counted, yet they may
possibly be the most erroneous ones. AlignQC also subsampled aligned
reads to around 1 million bases to calculate the presented values.

2.5.1 Deletions are the most problematic sequencing errors
Table 3 shows the error rate in the raw reads and in the corrected reads
for each tool. In raw reads, deletions are the most prevalent type of errors
(7.41% of bases), closely followed by subsitutions (5.11%), then insertions
(1.2%). LoRDEC, LSC and LSC(t) are the least capable of correcting
mismatches (>2% of them remaining), even though they are all hybrid
tools. For LoRDEC, we were able to verify that this is related to the
large amount of uncorrected reads in its output (90k totally uncorrected
reads out of 741k - 12%), as computed by exactly matching raw reads to
its corrected output. For LSC and LSC(t), we were unable to pinpoint a
reason. The majority of other hybrid tools (HALC, HALC(t), HALC(s),
NaS(µ), PBcR(s), Proovread, Proovread(t)) result in less than 1% of
substitution errors. Surprisingly, the non-hybrid tools also presented very
low mismatches rates: all of them showed rates lower than 1%, except
for Canu (1.33%) and daccord (1.1%). This suggests that the rate of
systematic substitution errors in ONT data is low, as self-correctors were
able to achieve results comparable to the hybrid ones, even without access
to Illumina reads. Still, the three best performing tools were all hybrid
(NaS(µ), PBcR(s), and Proovread(t)), which should therefore be preferred
for applications that require very low mismatch rates.

The contrast between self and hybrid tools is more visible on deletion
errors. In general, all hybrid tools outperformed the non-hybrid ones
(the only exception is LSC (2.64%), with higher deletion error rate than
LoRMA(s) (2.51%)). Although in the hybrid ones, LoRDEC (2.15%), LSC
(2.64%), LSC(t) (1.94%) and Proovread (1.51%) still showed moderate
rates of deletions, all the other seven corrected outputs were able to lower
the deletion error rate from 7.4% to less than 1%. Notably, HALC(s) and
Proovread(t) to less than 0.2%, and NaS(µ) to less than 0.1%. All non-
hybrid tools presented a high rate (3% or more) of deletion errors, except
LoRMA(s) (2.51%). This comparison suggests that ONT reads exhibit
systematic deletions, that cannot be well corrected without the help of
Illumina data. The contribution of homopolymer errors will be specifically
analyzed in Section 2.5.2. Considering insertion errors, all tools performed
equally well. It is worth noting that several hybrid (HALC(s), LoRDEC(s),
NaS(µ), and Proovread(t)) and non-hybrid tools (LoRMA(s), MECAT,
pbdagcon, and pbdagcon(t)) achieved sub-0.1% insertion rate errors.

Overall, hybrid tools outperformed non-hybrid ones in terms of error-
rate reduction. However, the similar results obtained by both types of tools
when correcting mismatches and insertions, and the contrast in correcting
deletions, seem to indicate that the main advantage of hybrid correctors
over self-correctors is the removal of systematic errors using Illumina data.

2.5.2 Homopolymer insertions are overall better corrected than
deletions

In this section we further analyze homopolymers indels, i.e. insertion or
deletion errors consisting of a stretch of the same nucleotide. Table 4 shows
that homopolymer deletions are an order of magnitude more abundant
in raw reads than homopolymer insertions. It is worth noting that, by
comparing the values for the raw reads in Tables 3 and 4, homopolymers
are involved in 40% of all deletions and 31% of all insertions.

A closer look at Table 4 reveals that hybrid error correctors outperform
non-hybrid ones, as expected, mainly as homopolymer indels are likely
systematic errors in ONT sequencing. Hybrid correctors correct them
using Illumina reads that do not contain such biases. Moreover, all tools
performed well on correcting homopolymer insertions, reducing the rate
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Table 4. Homopolymer error rate in the raw reads and in the corrected reads for each tool, on the 1D run RNA-seq dataset, computed from 1M random aligned bases.

(A) Hybrid tools

Raw HALC HALC(t) HALC(s) LoRDEC LoRDEC(t) LoRDEC(s) LSC LSC(t) NaS(µ) PBcR(s) Proovread Proovread(t)

Homop.
deletion

2.96% 0.28% 0.19% 0.03% 0.77% 0.63% 0.19% 0.62% 0.42% 0.02% 0.1% 0.46% 0.04%

Homop.
insertion

0.38% 0.05% 0.03% 0.01% 0.09% 0.07% 0.02% 0.11% 0.09% 0.01% 0.02% 0.06% 0.01%

(B) Non-hybrid tools

Raw Canu daccord daccord(t) LoRMA(s) MECAT pbdagcon pbdagcon(t)

Homop.
deletion

2.96% 2.46% 2.14% 2.05% 1.82% 2.09% 2.26% 2.27%

Homop.
insertion

0.38% 0.08% 0.06% 0.03% 0.01% 0.01% 0.02% 0.01%

from 0.38% to less than 0.11%. In particular, the hybrid tools HALC(s),
NaS(µ) and Prooovread(t), as well as the non-hybrid ones LoRMA(s),
MECAT and pbdagcon(t) reached 0.01% homopolymer insertion error
rate. Regarding homopolymer deletions, the majority of hybrid tools
returned less than 0.5% of them, except LoRDEC (0.77%) , LoRDEC(t)
(0.63%), and LSC (0.62%). Notably, HALC(s), NaS(µ), and Proovread(t)
presented less than 0.05% of homopolymer deletion error rate. Non-hybrid
tools performed more pooly, returning 1.8-2.4% of homopolymers deletion
errors – a small improvement over the raw reads.

HALC(s), NaS(µ) and Proovread(t) showed the best reduction of
homopolymers indels. It is also worth noting that hybrid correctors are
able to correct homopolymer deletions even better than non-homopolymer
deletions. For instance the ratio of homopolymer deletions over all
deletions is 39.9% in raw reads, and decreases for all hybrid correctors,
except LoRDEC(s), dropping to 17.6% for HALC(s), and 22.2% for
NaS(µ) and Proovread(t), but increases to at least 43.9% (pbdagcon(t)) up
to 72.5% (LoRMA(s)) in non-hybrid tools (see Supplementary Material
Section S2).

2.6 Error-correction perturbs the number of reads mapping
to the genes and transcripts

Downstream RNA-sequencing analyses typically rely on the number of
reads mapping to each gene and transcript for quantification, differential
expression analysis, etc. In the rest of the paper, we define the coverage
of a gene or a transcript as the number of reads mapping to it. For short we
will refer to those coverages as CG and CT , respectively. In this section
we investigate if the process of error correction can perturb CG and CT ,
which in turn would affect downstream analysis. Note that error correction
could potentially slightly increase coverage, as uncorrected reads that were
unmapped can become mappable after correction. Figure 1 shows the
CG before and after correction for each tool. We can note, as expected,
that splitting a long read into several well-corrected fragments generates
multiple counts, skewing up the observed coverages (see HALC(s),
LoRDEC(s), PBcR(s), LoRMA(s) in Figure 1). Therefore, users are
recommended to not use this type of output for gene coverage estimation.
Further, apart from the split outputs, all the other tools presented good
correlation and the expected slight increase in CG due to better mapping,
except for MECAT, which presented the lowest correlation and a significant
drop in CG. All tools systematically presented a similar trend and lower
correlation values on CT (see Supplementary Material Section S3), in
comparison to CG. This is expected, as it is harder for a tool to correct

a read into its true isoform than into its true gene. The behaviour of the
tools in the isoform level are in coherence with their behaviour in the gene
level (CG): split outputs inflateCT ; MECAT deflates it; and all the others
present a slight increase.

2.7 Error-correction perturbs gene family sizes

Table 2 indicates that error correction generally results in a lower number
of detected genes. In this section we explore the impact of error-correction
on paralogous genes. By paralogous gene family, we denote a set of
paralogs computed from Ensembl (see Section 4.3). Figure 2 represents
the changes in sizes of paralogous gene families before and after correction
for each tool, in terms of number of genes expressed within a given
family. Overall, error-correctors do not strictly preserve the sizes of gene
families. Correction more often shrinks families of paralogous genes than
it expands them, likely due to erroneous correction in locations that are
different between paralogs. In summary, 36-87% of gene families are
kept of the same size by correctors, 1-17% are expanded and 6-61%
are shrunk. Supplementary Material Figure S2 shows the magnitude of
expansion/shrinkage for each gene family.

2.8 Error-correction perturbs isoform diversity

We further investigated whether error-correction introduces a bias towards
the major isoform of each gene. Note that AlignQC does not directly
address this question. To answer it, we computed the following metrics:
number of isoforms detected in each gene before and after correction by
alignment of reads to genes, coverage of lost isoforms in genes having at
least 2 expressed isoforms, and coverage of the major isoform before and
after correction.

2.8.1 The number of isoforms varies before and after correction
Figure 3 shows the number of genes that have the same number of isoforms
after correction, or a different number of isoforms (-3, -2, -1, +1, +2, +3).
In this Figure, only the genes that are expressed in both the raw and the
corrected reads (for each tool) are taken into consideration. The negative
(resp. positive) values indicate that isoforms were lost (resp. gained). We
observe that a considerable number of genes (∼1.9k for LoRDEC(s), LSC
and PBcR(s), and ∼5.4k for MECAT) lose at least one isoform in all
tools, which suggests that current methods reduce isoform diversity during
correction. NaS(µ), Proovread(t), Canu, and MECAT tend to lose isoforms
the most, and HALC(s), LoRDEC(s), and PBcR(s) identify the highest
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Fig. 1. Number of reads mapping to genes (CG) before and after correction for each tool. The genes taken into account here were expressed in either the raw dataset or after the correction
by the given tool.
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Fig. 3. Histogram of genes having more or less isoforms after error-correction.

number of new isoforms after correction. It is however unclear whether
these lost and new isoforms are real (present in the sample) or due to
mapping ambiguity, as these three latter tools split corrected reads into
shorter sequences that may map better to other isoforms. We observe that
the effect of trimming, on the other hand, is generally slight. Overall, the
number of isoforms is mostly unchanged in LoRDEC, LoRDEC(t), and
LSC.

2.8.2 Multi-isoform genes tend to lose lowly-expressed isoforms after
correction

Figure 4 explores the relative coverage of isoforms that were possibly lost
after correction, in genes having two or more expressed isoforms. The
relative coverage of a transcript is the number of raw reads mapping to
it over the number of raw reads mapping to its gene in total. Only the
genes that are expressed in both the raw and the error-corrected reads
(for each tool) are taken into consideration here. We anticipated that raw
reads that map to a minor isoform are typically either discarded by the
corrector, or modified in such a way that they now map to a different

isoform, possibly the major one. The effect is indeed relatively similar
across all correctors, except for MECAT, that tends to remove a higher
fraction of minor isoforms, and LoRDEC and LSC, that tend to be the most
conservatives. We can also note that trimming and splitting reads increase
even further isoform losses in all tools, except for pbdagcon. This can be
explained by the fact that lowly-expressed isoforms possibly share regions
(e.g. common exons) with highly-expressed isoforms, and these shared
regions are usually better corrected than regions that are unique to the
lowly-expressed isoforms. If read splitting then takes places, such unique
regions will then be removed from the output. Even if there are variations
between a highly-expressed isoform I and a lowly-expressed isoform i,
if these variations are relatively small (e.g. a small exon skipping) and
are flanked by long shared regions, it is probable that the methods will
truncate the variation, correcting the unique fragment of i into I, and
potentially losing the signal that i is expressed (this is explored in details
in Section 2.8.4). This result suggests that current error-correction tools
overall do not conservatively handle reads that belong to low-expression
isoforms.
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Fig. 4. Histogram of isoforms that are lost after correction, in relation to their relative transcript coverage, in genes that have 2 or more isoforms. The y axis reflects the percentage of
isoforms lost in each bin. Absolute values can be found in the Supplementary Material Figure S3.

2.8.3 Minor isoforms are corrected towards major isoforms
We define a major isoform of a gene as the isoform with the highest
coverage of that gene in the raw dataset, all other isoforms are considered to
be minor. To follow-up on the previous subsection, we investigate whether
correctors tend to correct minor isoforms towards major isoforms. We do
so by comparing the difference of coverage of the major and the minor
isoforms before and after correction. In Figure 5, we observe that the
coverage of the major isoform generally slightly increases after correction.
The exceptions are tools that split reads (HALC(s), LoRDEC(s), PBcR(s),
and LoRMA(s)), where the coverage is increased significantly, and
MECAT, where the coverage decreases significantly, likely due to a feature
of MECAT’s own correction algorithm. Since these 5 tools seem to heavily
distort the coverage of isoforms due to aggressive splitting or filtering
steps, we will focus now on the 14 other results. The slight increase of
a transcript coverage after correction is expected, as already discussed in
Section 2.6: uncorrected reads that were unmapped can become mappable
after correction. Therefore, the effect presented in Figure 5 could be
simply due to reads being corrected to their original respective isoforms,
instead of correction inducing a switch from a minor isoform to the major
isoform. To verify this hypothesis, Supplementary Material Figure S4
shows that the coverage of the minor isoforms usually decreases after
correction (R2 ∈ [0.5; 0.8]), except for: i) tools that split reads (HALC(s),
LoRDEC(s), PBcR(s), LoRMA(s)), which skews even more the coverage
of minor isoforms, and ii) both HALC and HALC(t). This indicates that
error-correction tools tend to correct reads towards the major isoforms. It
is worth noting that the increase of the coverage of the major isoform is not
pronounced. This is expected, as the sum of the expression of the minor
isoforms is, by nature, a small fraction of the total gene expression. On the
other hand, the correlation of the coverage of the minor isoforms before
and after correction are far more spurious, suggesting a stronger effect. It
is noteworthy that correction biases with respect to the major isoform do
not appear to be specific to self-correctors nor to hybrid correctors, but an
effect that happens in both types of correctors.

2.8.4 Correction towards the major isoform is more prevalent when
the alternative exon is small

In order to observe if particular features of alternative splicing have an
impact on error-correction methods, we designed a simulation over two
controlled parameters: skipped exon length and isoform relative expression

ratio. Using a single gene, we created a mixture of two simulated alternative
transcripts: one constitutive, one exon-skipping. Several simulated read
datasets were created with various relative abundances between major and
minor isoform (in order to model a local differential in splicing isoform
expression), and sizes of the skipped exon. Due to the artificial nature and
small size of the datasets, many of the error-correction methods could not
be run. We thus tested these scenarii on a subset of the correction methods.

In Figure 6, we distinguish results from hybrid and self-correctors,
presented with respectively 100x coverage of short reads and 100x
coverage of long reads, and only 100x coverage of long reads. Results
on more shallow coverage (10x) and impact of simulation parameters on
corrected reads sizes are presented in Supplementary Material Sections S7
and S8. Overall, hybrid correctors are less impacted by isoform collapsing
than self-correctors. LoRDEC shows the best capacity to preserve isoforms
in presence of alternatively skipped exons. Thus, regardless of the
abundance of inclusion reads in the dataset to be corrected, 99% of reads
from inclusion are corrected to inclusion form for an exon size of 10,
and 100% of reads from inclusion are corrected to inclusion form for exon
sizes of 50 and 100. However with less coverage, e.g. due to low-expressed
genes and rare transcripts, all tools tend to mis-estimate the expression of
isoforms (see Supplementary Material Sections S7 and S8). Self-correctors
generally have a minimum coverage threshold (only daccord could be run
on the 10x coverage dataset of long reads, with rather erratic results, see
Supplementary Material Section S8). Even with higher coverage, not all
correctors achieve to correct this simple instance. Among all correctors,
only LoRDEC seems to report the expected number of each isoforms
consistently in all scenarii. We could not derive any clear trend concerning
the relative isoform ratios, even if the 90% ratio seems to be in favor of
overcorrection towards the major isoform. Skipped exon length seems
to impact both hybrid and self-correctors, small exons being a harder
challenge for correctors.

2.9 Error-correction affects splice site detection

The identification of splice sites from RNA-seq data is an important but
challenging task [50]. When mapping reads to a (possibly annotated)
reference genome, mapping algorithms typically guide spliced alignments
using either a custom scoring function that takes into account common
splices sites patterns (e.g. GT-AG), and/or a database of known junctions.
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Fig. 5. Coverage of the major isoform of each gene before and after error-correction. The x-axis reflects the number of reads mapping to the major isoform of a gene before correction, and
the y-axis is after correction. Blue line: regression, black line: x=y.
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Fig. 6. Mapping of simulated raw and error-corrected reads to two simulated isoforms, and measurements of the percentage of reads mapping to the major isoform. The two isoforms represent
an alternatively skipped exon of variable size: 10 bp, 50 bp, 100bp. Left: isoform structure conservation using 100X short reads coverage and 10X long reads, using three error-correction
programs, one per row: LoRDEC, PBcR, and proovread. Right: same with three self-correctors and 100X long reads: daccord, LoRMA and pbdagcon. Columns are alternative exon sizes.
Bars are plots for each isoform ratio (50%; 75% and 90%) on the x-axis. On the y-axis, the closer a bar is to its corresponding ratio value on the x, the better. For instance, the bottom left
light blue bar corresponds to a 50% isoform ratio with an exon of size 10, and we do not retrieve a 50% ratio after correction with Proovread (the bar does not go up to 50% on the vertical
axis, but around 75% instead). The same layout applies to the right plot, where self-correctors are presented.

With long reads, the high error rate makes precise splice site detection even
more challenging, as indels (see Section 2.5) confuse aligners, shifting
predicted spliced alignments away from the true splice sites.

In this section, we evaluate how well splice sites are detected before
and after error-correction. Figure 7 shows the number of correctly and
incorrectly mapped splice sites for the raw and corrected reads, as
computed by AlignQC. One would expect that a splice site is correctly
detected when little to no errors are present in reads mapping around
it. Thus, as expected, the hybrid error correction tools present a clear
advantage over the non-hybrid ones, as they better decrease the per-
base error rate. In the uncorrected reads, 27% of the splice sites were
incorrectly mapped, which is brought down to less than 1.2% in 8 hybrid
corrected outputs: HALC, HALC(t), HALC(s), LoRDEC(s), NaS(µ),
PBcR(s), Proovread and Proovread(t). Notably, Proovread(t) presented
only 0.28% incorrectly mapped splice sites. LoRDEC (2.43%) and
LoRDEC(t) (2.12%) presented higher rates, but still manageable, but LSC
(7.27%) and LSC(t) (5.68%) underperformed among the hybrid correctors.
Among self-correction tools, LoRMA presented the lowest proportion of
incorrectly detected splice sites (3.04%), however it detects∼6.7 times less
splice sites (∼280k) than the raw reads (∼1.9M), due to read splitting. The
other non-hybrid tools incorrectly detected splice sites at a rate between
5.61% (daccord(t)) and 11.95% (Canu). It is worth noting that trimming
usually decreased the proportion of incorrectly mapped splice sites, with
a very slight impact on the total amount of identified splice sites. On the
other hand, the three tools with lowest number of identified splice sites
output split reads (LoRDEC(s), PBcR(s), and LoRMA(s)), identifying
less than ∼1.1M splicing sites, compared to the ∼1.9M in the raw reads,
and thus not being adequate for splice sites analyses. Additional detailed
plots on incorrectly mapped splice sites can be found in the Supplementary
Material Section S9.

2.10 Running time and memory usage of error-correction
tools

Table 5 shows the running time and memory usage of all evaluated tools,
measured using GNU time. The running time shown is the elapsed wall
clock time (in hours) and the memory usage is the maximum resident set
size (in gigabytes). All tools were ran with 32 threads. Overall, all tools
were able to correct the dataset within 7 hours, except for LSC, NaS, PBcR,
and Proovread, which took 63-116 hours, but also achieved some of the
lowest post-correction error rates in Table 2 (except for LSC). In terms
of memory usage, all tools required less than 10 GB of memory except
for HALC, PBcR, Proovread and LoRMA, which required 53-166 GB.
It is worth noting, however, that hybrid error correctors have to process
massive Illumina datasets, which contributes to them taking higher CPU
and memory usage for correction.

2.11 Using a different read aligner mildly but not
significantly affects the evaluation

We chose GMAP (version 2017-05-08 with parameters -n 10) [51] to
perform long reads mapping to the Ensembl r87 Mus Musculus unmasked
reference genome in our analysis, since Križanović et al. [49] show it
produces the best alignment results between five alignment tools. The
GMAP parameters are those from the original AlignQC publication [15].
However, Minimap2 [52] is not evaluated in [49], and it is also widely used,
being the default long-read mapper in several studies. In this subsection,
we verify to which extent the differences between GMAP and Minimap2
can influence our evaluation. To try to highlight such differences, we
chose some correctors with the worst and best performances in some
measures presented in the previous analysis (made with GMAP). We
thus further mapped with Minimap2 (version 2.14-r883 with parameters
-ax splice) the following read datasets: i) raw reads; ii) LoRDEC, the
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Fig. 7. Statistics on the correctly and incorrectly mapped splice sites (abbreviated SSs) for the uncorrected (raw) and corrected reads.

Table 5. Running time and memory usage of error-correction tools on the 1D run RNA-seq dataset

HALC LoRDEC LSC NaS1 PBcR2 Proovread Canu daccord3 daccord
trimmed3

LoRMA4 MECAT pbdagcon3 pbdagcon3

trimmed

Running
time

3.6h 2.4h 99.5h 63.2h 116h 107.1h 0.7h 6.9h
(7.4h)

6.6h
(7.1h)

3.4h 0.3h 5.7h
(6.2h)

5.6h
(6.1h)

Memory
usage

60GB 5.6GB 2.7GB 3GB 166.5GB 53.6GB 2.2GB 6.9GB
(27.2GB)

6.8GB
(27.2GB)

79GB 9.9GB 6.4GB
(27.2GB)

6.4GB
(27.2GB)

1NaS was ran in batches on a different system (TGCC cluster) than other tools; total running time was estimated based on subset of batches.
2PBcR was ran on a machine different from the others.
3daccord and pbdagcon need DAZZ_DB and DALIGNER to be ran before performing their correction. DAZZ_DB execution time and memory usage was disregarded due to
being negligible. DALIGNER, however, took 0.5h and 27.2Gb of RAM. The runtime in parenthesis denotes the runtime of the tool plus DALIGNER. The memory usage in
parenthesis denotes the maximum memory usage between the tool and DALIGNER.
4LoRMA was using more than its allocated 32 cores in some (short) periods of time during the run.

corrector with the least proportion of mapped reads, but which preserves
well the transcriptome diversity; iii) LoRMA(s), the tool with the highest
ratio of mapped reads and number of reads, but with the lowest mean reads
length, number of detected genes, and number of bases; iv) Proovread(t),
the method with the lowest error rate, and highest rate of correctly mapped
splice sites; v) Canu, the corrector with the highest error rate and lowest
rate of correctly mapped splice sites.

We present in Table 6 the main differences between Minimap2 and
GMAP on the aforementioned correctors. We can note that Minimap2
is able to map more reads than GMAP across all tools but Proovread(t).
However, when both mappers are able to map almost all reads (≥98.9%),
the mapping rate difference between them is low (<1%). The largest
differences is when both mappers do not perform well, mapping less than
90% of the reads. In this case, Minimap2 does a better job, mapping
3.3% and 1.9% more reads than GMAP in the raw and LoRDEC reads,
respectively, which is noticeable, but not high. A similar conclusion can
be derived by looking at the mapped bases rate. The reported error rate
is very similar between both mappers, with the largest difference being
0.32% in the raw reads. There is a noticeable difference, however, when
we break down the errors by types. GMAP reported more mismatches,
while Minimap2 reported more deletions and insertions. Nevertheless, the
differences are only noticeable in the raw reads. The measure in which
GMAP clearly outperformed Minimap2 is the number of detected genes,

identifying between 453 (Proovread(t)) and 723 (LoRDEC) more genes,
which can be considered significant. On the other hand, Minimap2 was
considerably better than GMAP on mapping splice sites correctly. The
difference between both mappers when they performed well, mapping
more than 96.9% of the splice sites, was not significant (≤1.15%). The
largest discrepancies can be seen on mapping the splice sites of the raw and
Canu reads, with Minimap2 correctly aligning 18.49% and 6.64% more
splice sites than GMAP.

We can thus conclude that Minimap2 was slightly better on mapping
reads and bases, and significantly better at correctly mapping splice sites.
On the other hand, GMAP was considerably better at detecting genes.
The error rate of the reads mapped by both tools are very similar, with
GMAP reporting slightly more mismatches, and Minimap2 reporting
slightly more deletions and insertions. However, these differences are
mainly concentrated on the raw reads dataset, which is the less accurate.

The data shown and discussed in this section suggest that the main
takeaway points from the results presented in the previous sections should
not change when GMAP is replaced by Minimap2. The full report of the
analysis of both mappers, containing further details, can be found in the
support page of our method: https://leoisl.gitlab.io/LR_
EC_analyser_support/.

https://leoisl.gitlab.io/LR_EC_analyser_support/
https://leoisl.gitlab.io/LR_EC_analyser_support/
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Table 6. GMAP and Minimap2 results across a selection of metrics for the raw, LoRDEC, LoRMA(s), Proovread(t), and Canu reads. (G) indicates GMAP results, and (M2) Minimap2 results.

Metric raw(G) raw(M2) LoRDEC(G) LoRDEC(M2) LoRMA(s)(G) LoRMA(s)(M2) Proovread(t)(G) Proovread(t)(M2) Canu(G) Canu(M2)

mapped
reads

83.5% 86.8% 85.5% 87.4% 98.9% 99.8% 99.4% 99.1% 99.1% 100.0%d

mapped
basesa

89.0% 91.0% 90.6% 92.6% 99.5% 99.8% 99.2% 99.3% 92.0% 93.2%

error rateb 14.11% 13.79% 4.67% 4.65% 0.33% 0.31% 2.9% 2.73% 6.2% 5.97%

mismatches 5.26% 3.98% 2.15% 1.89% 0.15% 0.11% 0.37% 0.22% 1.22% 0.85%

deletions 7.58% 8.09% 2.17% 2.29% 0.14% 0.17% 2.51% 2.46% 4.72% 4.79%

insertions 1.26% 1.73% 0.34% 0.47% 0.04% 0.03% 0.03% 0.05% 0.26% 0.32%

nb detected
genes

16.8k 16.2k 16.8k 16.0k 14.6k 14.2k 6.8k 6.3k 12.4k 11.7k

correctly
mapped ssc

72.97% 91.46% 97.56% 98.69% 99.71% 99.58% 96.92% 98.07% 88.03% 94.67%

aAs reported by AlignQC. Percentage of bases aligned among mapped reads, taken by counting the M parts of CIGAR strings in the BAM file. Bases in unmapped reads are not counted.
bAs reported by AlignQC, using a sample of 1 million bases from aligned reads segments.
c ss stands for splice sites.
d 100.0% is obtained due to rounding. A more precise mapped reads rate is 99.988%.

2.12 Analysing human Nanopore direct RNA-sequencing
data

We further analysed a human Nanopore direct RNA-sequencing dataset
from the Nanopore-WGS-Consortium (see Section 2.2 for details). Since
there was no corresponding Illumina sequencing for this dataset, we were
able to evaluate only the non-hybrid error correction tools. Moreover,
although LoRMA could be successfully executed, AlignQC could not
process its output so we removed LoRMA from the evaluation. Table 7
presents some main statistics of non-hybrid error correction tools on
the aforementioned dataset. In the rest of this section, we highlight the
major differences and similarities between cDNA and direct RNA datasets,
keeping in mind that they were performed on two different species (human
and mouse, respectively).

In general, self-correctors discarded more reads on the direct RNA
dataset than on the 1D cDNA dataset. Daccord(t) discarded the least
number of reads (102k), while Canu and MECAT discarded a considerable
amount of reads (361k and 670k, respectively), due to post-correction
filtering. Due to our choice of parameters, the shortest reads in Canu
and MECAT outputs were of lengths 101 and 100 bases, respectively.
However, the removal of shorter reads explains only a fraction of the
read losses, as the raw dataset contains only∼59k reads smaller than 101
bases. GMAP mapped a smaller percentage of raw reads in the direct RNA
dataset (76% vs 83.5% for the 1D cDNA dataset), but on the other hand,
the mapping rate of error-corrected reads was generally higher. Notably,
97.5% of the daccord reads (resp. 98.2% for daccord(t)) were mapped, as
opposed to 92.5% (resp. 94%) in the 1D cDNA dataset. The mean length
of the corrected reads when compared to the mean length of the raw reads
was also in general higher in the direct RNA dataset, which translated into
tools having a number of output bases more similar to the number of bases
in the raw reads in this dataset, except for MECAT.

The error rate of the raw direct RNA reads was 14.61%, 0.89% higher
than in the raw 1D cDNA reads. As expected, the error rates in all tools
were also higher in the direct RNA dataset, leading to worse results. The
largest difference is with pbdagcon(t), where the error rate after correction
of direct RNA reads is 2.55% higher than on the 1D cDNA dataset. The
distribution of errors in the direct RNA dataset was more balanced, with

mismatches and deletions having almost the same representation (around
5.85%), but insertions still being less represented (2.87%). The correction
behaviour of the tools is similar across both datasets: insertion is the
best corrected type of error, followed by mismatches, with satisfactory
results, and deletions, in which the methods overall did a poor job. In
particular, pbdagcon and pbdagcon(t) even increased the deletion error
rate by 0.84% and 0.99%, respectively. The behaviour was similar on
correcting homopolymer errors: homopolymer deletions were poorly
corrected, with MECAT, pbdagcon and pbdagcon(t) not reducing the
homopolymer deletion error rate at all, while homopolymer insertions were
well corrected. The number of detected genes in the raw direct RNA dataset
(14.1k) is less than in the raw 1D cDNA dataset (16.8k), although this is
consistent with the difference in human/mouse genes count. Moreover,
the tools also lose more genes in the direct RNA dataset. In particular,
MECAT loses 6.4k genes in the 1D cDNA dataset, and 7.8k in the direct
RNA dataset. The rate of correctly mapped splice sites was slightly higher
in the raw direct RNA reads (76.95% vs 72.94%), but in the error corrected
reads, this rate was highly similar (the largest difference was 0.44% in the
daccord(t) correction).

As a result of our evaluation, and in accordance with the cDNA
analysis, care should be taken when applying self-correctors to remove
errors from Nanopore direct RNA-seq data. For example, Canu and
MECAT present the undesirable side effect of discarding a lot of input
reads, thus reducing the amount of information in the long reads, and
decreasing considerably the number of detected genes. Although the tools
perform well at correcting mismatches and insertions, they have trouble
correcting deletions. In particular, MECAT, pbdagcon, and pbdagcon(t)
perform rather poorly, with the last two even increasing the deletion error
rate. Nonetheless, all tools manage to decrease the error rate so that the
large majority of reads are mappable, increasing the proportion of mapping
from 76% in the raw reads to at least 97.5%. If very low error-rate (<1%)
must be achieved due to requirements of a downstream application, then
it seems that using hybrid correction tools is a must.

The full report of the analysis output by our method on this
dataset, containing further details, can be found at https://leoisl.
gitlab.io/LR_EC_analyser_support/.

https://leoisl.gitlab.io/LR_EC_analyser_support/
https://leoisl.gitlab.io/LR_EC_analyser_support/
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Table 7. Statistics of non-hybrid error correction tools on one human Nanopore direct RNA-sequencing data from the
Nanopore-WGS-Consortium.

Raw Canu daccord daccord(t) MECAT pbdagcon pbdagcon(t)

nb reads 894k 533k 744k 792k 224k 772k 771k

mapped
reads

76.0% 99.2% 97.5% 98.2% 99.2% 98.6% 98.5%

mean length 739 917 849 755 1095 666 675

nb of bases 587M 484M 620M 591M 243M 510M 516M

error ratea 14.61% 7.61% 6.03% 5.47% 6.36% 8.1% 8.26%

mismatches 5.79% 2.12% 1.56% 1.3% 0.7% 1.19% 1.18%

deletions 5.95% 4.77% 4.13% 3.9% 5.5% 6.79% 6.94%

insertions 2.87% 0.72% 0.34% 0.27% 0.17% 0.12% 0.14%

homop.
deletions

2.18% 2.01% 1.84% 1.81% 2.24% 2.18% 2.22%

homop.
insertions

1.13% 0.3% 0.14% 0.11% 0.09% 0.06% 0.07%

nb detected
genes

14.1k 8.8k 12.3k 10.8k 6.3k 10.0k 10.1k

correctly
mapped ssb

76.95% 87.97% 92.52% 93.94% 92.86% 91.16% 91.14%

aAs reported by AlignQC, using a sample of 1 million bases from aligned reads segments.
b ss stands for splice sites.

3 Discussion
This work shed light on the versatility of long-read DNA error-correction
methods, which can be successfully applied to error-correction of
Nanopore RNA-sequencing data as well. In our tests, error rates can
be reduced from 13.7% in the original reads down to as low as 0.3%
in the corrected reads. This is perhaps an unsurprising realization as the
error-correction of RNA-sequencing data presents similarities with DNA-
sequencing, however a collection of caveats are described in the Results
section. Most importantly, the number of genes detected by alignment of
corrected reads to the genome was reduced significantly by several error-
correction methods, mainly the non-hybrid ones. Furthermore, depending
on the method, error-correction results have a more or less pronounced
bias towards correction to the major isoform for each gene, jointly with
a loss of the most lowly-expressed isoforms. We provided a software
that enables automatic benchmarking of long-read RNA-sequencing error-
correction software, in the hope that future error-correction methods will
take advantage of it to avoid biases.

Detailed error-rate analysis showed that while hybrid correctors have
lower error rates than self-correctors, the latter achieved comparable
performance to the former in correcting substitutions and insertions.
Deletions appear to be caused by systematic sequencing errors of
the Nanopore technology, making them fundamentally hard (or even
impossible) to address in a self-correction setting. Moreover PBcR, NaS,
and Proovread are one of the most resource-intensive error-correction
tools, but also are some of the few correctors able to reduce the base error
rate below 0.7%. The only exception to this is HALC, which presents a
low running time, and <0.5% error rate in its split output.

We observe that hybrid correctors were able to better preserve the
number of detected genes than self-correctors. The large majority of the
hybrid corrections (9/12) were able to identify an amount of genes similar

to the raw reads, with only NaS(µ), PBcR(s), and Proovread(t) being
less sensitive, but still obtaining reasonable results. On the other hand,
daccord was the only self-correction tool that reached the same gene
identification level of the three aforementioned hybrid tools, while the
others heavily truncated the transcriptome diversity. HALC, LoRDEC,
LSC, Proovread (only in full-length mode) and daccord (only in full-length
mode) appear to also better preserve the number of detected isoforms
better than other correctors (Section 2.8.1). All tools tend to lose lowly-
expressed isoforms after correction (Section 2.8.2). Several tools also tend
to correct minor isoforms towards major isoforms (Section 2.8.3), mainly
when the variation between them is small (Section 2.8.4). These points are
expected, as most tools were mainly tailored to process DNA data where
heterogeneous coverage is not expected. Furthermore, hybrid correctors
outperformed self-correctors in the correction of errors near splice site
junctions (Section 2.9).

As a result, we conclude that no evaluated corrector outperforms all
the others across all metrics and is the most suited in all situations, and the
choice should be guided by the downstream analysis, yet hybrid correction
tools generally outperformed the self-correctors. For quantification, we
have shown that error-correction introduces undesirable coverage biases,
as per Section 2.6, therefore we would recommend avoiding this step
altogether. For isoform detection, HALC, LoRDEC, LSC and Proovread
(only in full-length mode) appear to be the methods of choice as they result
in the highest number of detected genes in Table 2 and also preserve the
number of detected isoforms as per Section 2.8. If Illumina reads are not
available, then daccord (only in full-length mode) seems to be the best
choice. For splice site detection, we recommend using hybrid correctors,
preferably HALC, NaS, PBcR or Proovread, as per Section 2.9. The same
four tools (however, HALC should be in split mode, and Proovread, in
trimmed mode) are also recommended if downstream analyses require very
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low general error rate. Finally for all other applications, we make some
general recommendations. A reasonable balance appears to be achieved
by tools with no unsatisfactory values in Table 2: HALC(t), NaS(µ), and
Proovread(t). If Illumina reads are unavailable, then the best overall self
correctors seem to be daccord(t), pbdagcon and pbdagcon(t). Moreover,
trimming and splitting usually increase the mapping rate and the read
accuracy, but can lead to loss of information that was present in the raw
reads, complicating the correct identification of genes.

Our analyses relied on a single mapping software (GMAP [51]) to
align raw and error-corrected reads, as in previous benchmarks [21, 49].
However, we were also able to verify that Minimap2 [52], another widely
used mapper, produces similar results than GMAP (see Section 2.11), and
thus the main messages of the analyses presented in this paper should not
change by replacing GMAP by Minimap2.

As a side note, AlignQC reports that raw reads contained 1% of
chimeric reads, i.e. either portions of reads that align to different loci, or
to overlapping loci. The number of chimeric reads after error-correction
remains in the 0.7%-1.3% range except for LoRDEC(s) (0.2%), PBcR(s)
(0.1%), Proovread(t) (0.1%), LoRMA(s) (0.04%), and MECAT (0.2%),
which either correctly split reads or discarded chimeric ones. We observe
that HALC (4.2%), HALC(t) (3.9%), and daccord (1.7%) increased
considerably the proportion of chimeric reads in the output.

Furthermore, we focused our evaluation on a single technology:
Nanopore. We did an extensive analysis of 1D cDNA Nanopore data, using
Illumina data for hybrid correction. We also performed a brief analysis of
Nanopore direct RNA-seq data. While it would be natural to also evaluate
PacBio data, we note that data from the PacBio Iso-Seq protocol is of
different nature as the reads are pre-corrected by circular consensus.

In the evaluation of tools, we did not record the disk space used by
each method, yet we note that it may be a critical factor for some tools (e.g.
Canu) on larger datasets. We note also that genes that have low Illumina
coverage are unlikely to be well corrected by hybrid correctors. Therefore
our comparison does not take into account differences in coverage biases
between Illumina and Nanopore data, which may benefit self-correctors.
Finally, transcript and gene coverages are derived from the number of long
reads aligning to a certain gene/transcript. This method enables to directly
relate the results of error-correction to transcript/gene counts, but we note
that in current RNA-seq analysis protocols, transcript/gene expression is
still generally evaluated using short reads.

4 Methods

4.1 Nanopore library preparation and sequencing

RNA MinION sequencing cDNA were prepared from 4 aliquots (250ng
each) of mouse commercial total RNA (brain, Clontech, Cat# 636601),
according to the Oxford Nanopore Technologies (Oxford Nanopore
Technologies Ltd, Oxford, UK) protocol "1D cDNA by ligation (SQK-
LSK108)". The data generated by MinION software (MinKNOW 1.1.21,
Metrichor 2.43.1) were stored and organized using a Hierarchical
Data Format. FASTA reads were extracted from MinION HDF files
using poretools [53]. We obtained 1,256,967 Nanopore 1D reads
representing around 2 Gbp of data with an average size of 1650 bp and a
N50 of 1885 bp. These reads were then filtered in silico to remove mtRNA
and rRNA using BLAT [54] and est2genome [55], obtaining 740,776
long reads.

4.2 Illumina library preparation and sequencing

RNA-Seq library preparations were carried out from 500 ng total RNA
using the TruSeq Stranded mRNA kit (Illumina, San Diego, CA, USA),
which allows mRNA strand orientation (sequence reads occur in the same

orientation as anti-sense RNA). After quantification by qPCR, each library
was sequenced using 151 bp paired end reads chemistry on a HiSeq4000
Illumina sequencer.

4.3 Reference-based evaluation of long read error
correction

A tool coined LR_EC_analyser, available at https://gitlab.

com/leoisl/LR_EC_analyser, was developed using the Python
language to analyze the output of long reads error correctors. The required
arguments are the BAM files of the raw and corrected reads aligned
to a reference annotated genome, as well as the reference genome in
Fasta file format and the reference annotation in GTF file format. A
file specifying the paralogous gene families can also be provided if
plots on gene families should be created. In our main analysis, gene
families were computed by selecting all paralogs from Ensembl r87
mouse genes with 80%+ identity. Note that paralogs from the same
family may have significantly different lengths, and no threshold was
applied with respect to coverage. The complete selection procedure
is reported here: https://gitlab.com/leoisl/LR_EC_

analyser/blob/master/GettingParalogs.txt. The main
processing of our method involves running the AlignQC software [21]
(https://github.com/jason-weirather/AlignQC) on the
input BAMs and parsing its output to create custom plots. It then
aggregates information into a HTML report. For example, Tables 2 − 4
are compilations from AlignQC results, as well as Tables 6 and 7,
and Figure 7. Figures 1 − 5 were created processing text files built
by AlignQC called "Raw data" in their output. In addition, an in-
depth gene and transcript analysis can be performed using the IGV.js
library (https://github.com/igvteam/igv.js) [56, 57].
In this paper, we did not include all plots and tables created
by the tool. To visualise the full latest reports, visit https:

//leoisl.gitlab.io/LR_EC_analyser_support/.

4.4 Simulation framework for biases evaluation

In the simulation framework of Section 2.8.4, exons length and number
were chosen according to resemble what is reported in eukaryotes [58]
(8 exons, 200 nucleotides). A skipped exon, whose size can vary, was
introduced in the middle of the inclusion isoform. Skipped exon can have
a size of 10, 50 or 100 nt. We also allowed the ratio of minor/major isoforms
(M/m) to vary. For a coverage ofC and a ratioM/m, the number of reads
coming from the major isoform is MC and the number of minor isoform
reads ismC. We chose relative abundances ratios for the inclusion isoform
as such: 90/10, 75/25 and 50/50. All reads are supposed to represent
the full-length isoform. Finally for hybrid correction input, short reads
of length 150 were simulated along each isoform, with 10X and 100X
coverage.

During the simulation, we produced two versions of each read. The
reference read is the read that represents exactly its isoform, without errors.
The uncorrected read is the one in which we introduced errors. We used
an error rate and profile that mimics observed R9.4 errors in ONT reads
(total error rate of∼13%, broken down as∼5% of substitutions,∼1% of
insertions and∼7% of deletions). After each corrector was applied to the
read set, we obtained a triplet (reference, uncorrected, corrected) read that
we used to assess the quality of the correction under several criteria.

We mapped the corrected reads on both exclusion and inclusion
reference sequences using a fast Smith-Waterman implementation [59],
from which we obtained a SAM file. It is expected that exclusion corrected
reads will map on exclusion reference with no gaps, and that a deletion of
the size of the skipped exon will be reported when mapping them to the
inclusion. For each read, if it could be aligned to one of the two reference
sequences in one block (according to the CIGAR), then we assigned it to

https://gitlab.com/leoisl/LR_EC_analyser
https://gitlab.com/leoisl/LR_EC_analyser
https://gitlab.com/leoisl/LR_EC_analyser/blob/master/GettingParalogs.txt
https://gitlab.com/leoisl/LR_EC_analyser/blob/master/GettingParalogs.txt
https://github.com/jason-weirather/AlignQC
https://github.com/igvteam/igv.js
https://leoisl.gitlab.io/LR_EC_analyser_support/
https://leoisl.gitlab.io/LR_EC_analyser_support/
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this reference. If more blocks were needed, we assigned the read to the
reference sequence with which the cumulative length of gaps is the lowest.
We also reported the ratio between corrected reads size of each isoform
kind and the real expected size of each reference isoform.

Key points
• Long-read transcriptome sequencing is hindered by high error rates

that affect analyses such as the identification of isoforms, exon
boundaries, open reading frames, and the creation of gene catalogues.

• This review evaluates the extent to which existing long-read DNA error
correction methods are capable of correcting cDNA Nanopore reads.

• Existing tools significantly lower the error rate, but they also
significantly perturb gene family sizes and isoform diversity.
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Figure legends
Fig. 1. Number of reads mapping to genes (CG) before and after correction
for each tool. The genes taken into account here were expressed in either
the raw dataset or after the correction by the given tool.
Fig. 2. Summary of gene family size changes across error-correction tools.
Fig. 3. Histogram of genes having more or less isoforms after error-
correction.
Fig. 4. Histogram of isoforms that are lost after correction, in relation to
their relative transcript coverage, in genes that have 2 or more isoforms.
The y axis reflects the percentage of isoforms lost in each bin. Absolute
values can be found in the Supplementary Material Figure S3.
Fig. 5. Coverage of the major isoform of each gene before and after error-
correction. The x-axis reflects the number of reads mapping to the major
isoform of a gene before correction, and the y-axis is after correction. Blue
line: regression, black line: x=y.
Fig. 6. Mapping of simulated raw and error-corrected reads to two
simulated isoforms, and measurements of the percentage of reads mapping

to the major isoform. The two isoforms represent an alternatively skipped
exon of variable size: 10 bp, 50 bp, 100bp. Left: isoform structure
conservation using 100X short reads coverage and 10X long reads, using
three error-correction programs, one per row: LoRDEC, PBcR, and
proovread. Right: same with three self-correctors and 100X long reads:
daccord, LoRMA and pbdagcon. Columns are alternative exon sizes. Bars
are plots for each isoform ratio (50%; 75% and 90%) on the x-axis. On
the y-axis, the closer a bar is to its corresponding ratio value on the x,
the better. For instance, the bottom left light blue bar corresponds to a
50% isoform ratio with an exon of size 10, and we do not retrieve a 50%
ratio after correction with Proovread (the bar does not go up to 50% on
the vertical axis, but around 75% instead). The same layout applies to the
right plot, where self-correctors are presented.
Fig. 7. Statistics on the correctly and incorrectly mapped splice sites
(abbreviated SSs) for the uncorrected (raw) and corrected reads.
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