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We obtain dark and antidark soliton solutions in binary waveguide arrays with focusing and/or
defocusing Kerr nonlinearity and with alternating positive and negative linear couplings between
adjacent waveguides. For both stationary and moving solitons, we analyze the properties of these
solutions in the presence of uniform and non–uniform nonlinearity along the array.
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I. INTRODUCTION

In the last years, discrete optical systems and waveg-
uide arrays have been a very active research area in op-
tics [1]. Binary waveguide arrays in particular have been
studied because their intrinsic two bands structure can
be very helpful in order to control wave propagation in
the linear and nonlinear regimes [2–4]. More recently,
the interplay between plasmonic waveguiding and peri-
odicity has been also considered, inasmuch as plasmonic
confinement offers an extra degree of freedom to be use-
fully exploited in all–optical devices [5–7].
In this framework solitons represent an important class

of solutions, as their particle like behaviour can be very
useful for switching applications and their peculiar fea-
tures often represent an unvaluable tool to understand
the overall dynamics of the system in the nonlinear
regime. This certainly explains the huge effort that the
scientific community has put in finding soliton solutions
in these systems [4, 9–14].
It is well known that in nonlinear discrete systems as

those describing light propagation in waveguide arrays,
bright localized modes may exist in the form of gap soli-
tons when a gap opens in the linear dispersion relation
[13, 15]. On the other hand, without the band gap in the
linear dispersion relation, a forbidden frequency region
can still exist for a nonuniform nonlinear response and
solitons sitting on a pedestal can be found [14, 16, 17].
Among the situations where the nouniform nonlinearity
can be exploited it is certainly worth quoting the case of
the linear–nonlinear interlaced waveguide arrays [18].
In previous papers we have used a continuous approx-

imation to exploit bright solitary wave solutions of this
system [13] and we have then used a fully discrete model
to explore the existence and stability of solitons sitting on
a non zero background [14]. In this paper we extend the
continuous approximation to the case of a non zero back-
ground and we demonstrate that this continuous approxi-
mation can capture many features of the discrete system;
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remarkably we also show that the continuum approxima-
tion gives a reasonable description of discrete states even
when they are confined to a very small number of sites.

II. PHYSICAL SETTINGS

AND THEORETICAL ANALYSIS

According to coupled mode theory and taking into ac-
count third-order nonlinearities in the form of a pure Kerr
effect, the field amplitude propagation in a binary waveg-
uide array can be described by the following two sets of
coupled equations with constant coefficients: [10, 13]

iAnz +
∆β
2
An + C1Bn + C2Bn+1 + γ1|An|2An = 0

iBnz − ∆β
2
Bn + C2An−1 + C1An + γ2|Bn|2Bn = 0(1)

where An, Bn are respectively the mode amplitudes in
the even and odd waveguides, ∆β represents the differ-
ence between the propagation constants in even and odd
waveguides, γ1 (γ2) is the site-dependent nonlinear co-
efficient for n even (odd), C1 and C2 are the coupling
coefficients when n is odd and even respectively. Finally,
without loss of generality we can set C2 = 1.

In close proximity of the band edge (i.e. around kx = 0
for C1 < 0 and for kx around π for C1 > 0) a very use-
ful equivalent continuous model can be derived by per-
forming a Taylor expansion to obtain (as a first order
approximation):

iuz +
∆β

2
u+ wx + ǫw + γ1|u|2u = 0

iwz −
∆β

2
w − ux + ǫu+ γ2|w|2w = 0 (2)

where we have also defined C1 = ±1+ ǫ, with the + (−)
sign that has to be used for kx = 0 (kx = π). To look
for both stationary and walking self confined solutions of
the system defined by Eqs. (2), we use the following trial
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functions [19]:

u(x, z) =
1

2
(K1g1(ξ) + iK2g2(ξ)) exp(i cos(Q)ψ)

w(x, z) =
1

2i
(K1g1(ξ)− iK2g2(ξ)) exp(i cos(Q)ψ)

ξ =
x+ vz√
1− v2

, ψ =
vx+ z√
1− v2

K1 = (
1 + v

1− v
)1/4 , K2 = (

1− v

1 + v
)1/4 (3)

with g1,2 two arbitrary complex functions, −1 < v < 1.
Although not necessary, for the sake of clarity, from now
on we set ∆β = 0.
Substituting the ansatz (3) into Eqs. (2) and following

the procedure as in [13], it is straightforward to obtain
an Hamiltonian form for the equations, observing that
P = |g1|2 − |g2|2 is a constant of motion for the dynami-
cal system. Indeed, setting g1,2(ξ) = f1,2(ξ)exp[iθ1,2(ξ)],
η = f22 and µ = θ1 − θ2, η and µ obey the following
Hamiltonian system:

η̇ = −∂H
∂µ

µ̇ =
∂H

∂η

H = 2η cosQ+ 2
√

η(η + P )ǫ cosµ

− s

8
η

(

η

(

K4
1

2
+
K4

2

2
+ 2− cos(2µ)

)

+ P

(

K4
1 + 2− cos(2µ)

)

)

− d

4

√

η(η + P )

(

η(K2
1 +K2

2 ) + PK2
1

)

sinµ. (4)

where we also set s = γ1 + γ2 and d = γ1 − γ2.
It is straightforward to show that this Hamiltonian has

the following symmetry: mapping P and v into −P and
−v induces only a non nonessential shift by a constant
into the Hamiltonian’s value. For this reason, from now
on we set P ≥ 0. Note also that the Hamiltonian sys-
tem described by Eqs.(4) reduces obviously to the one
considered in [13] for P = 0. Moreover in the situation
considered in [13] the condition ǫ 6= 0 was necessary in
the quest for bright soliton solutions; here, on the con-
trary, we are interested in discussing solitons with a non
zero background and their existence is not related to the
presence of a band gap in the linear spectrum, i.e. they
exist even in the case ǫ = 0 as we have discussed in
[14]. As a matter of fact, the key properties of these so-
lutions sitting on a non zero background do not depend
on the presence of a bandgap in the linear spectrum; for
these reasons from now on we consider the case ǫ = 0,
corresponding to the presence of a Dirac point at zero
transverse momentum in the linear spectrum. Soliton
solutions of Eqs. 2 correspond to separatrix trajectories
emanating from and sinking into unstable fixed points of
the dynamical system described by Eqs. 4.
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FIG. 1: Comparison between approximated soliton states ob-
tained from the continuum limit (blue crosses and dashed
line) and exact numerical results obtained using the Newton
conjugate–gradient method (red open circles). With reference
to Eqs. 1 here we set γ1 = 1, γ2 = 0, C1 = −1, C2 = 1,∆β = 0
and limn→±∞ |An| =

√
2. a): even sites; b): odd sites.

Obviously the validity of the continuum approximation
becomes more questionable as the degree of localization
of the solitons increases; in order to get a feeling of how
far one can pushes the use of the continuum model while
still having a reasonable description of the discrete sys-
tem, we performed a thorough comparison between the
approximated soliton solutions obtained in the contin-
uum limit and exact soliton states obtained numerically
using the Newton conjugate–gradient method [20].
To summarize our findings we report in figure 1 the

comparison between the modulus of the approximated
soliton states obtained from the continuum limit (blue
crosses and dashed line) and exact numerical results ob-
tained using the Newton conjugate–gradient method (red
open circles). Note that despite the very strong degree
of localization (the soliton structure is basically confined
to 5 sites only), the continuum approximation still shows
an excellent agreement with the exact solution and this
holds true both for the modulus (reported in figure 1)
and the phase (not shown here). If we further increase
the degree of confinement we gradually loose the validity
of the continuum approximation and for soliton states
confined to 3 sites only the continuum approximation is
not able to capture closely the features of the discrete
solutions. For such an high level of confinement one has
to go back to the discrete model and find there solutions
as was recently done by using asymptotic expansions in
[14]. It is remarkable to note that by using these two
different approximations (asymptotic expansion and con-
tinuum model) one can describe in a simple and accurate
fashion the entire spectrum of the dark–antidark soliton
states of this system.
The derived hamiltonian system thus represents a valu-

able tool in describing and in understanding the features
of the solutions of the problem; the goal of the rest of
the paper is to prove that thanks to this hamiltonian
system we are able to introduce new soliton solutions
for the problem at hand. Moreover, we will always test
the validity of our results, obtained in the framework of a
continuum approximation, in the original (truly discrete)
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system. The above goals will be pursued using some rep-
resentative examples; we will thus focus our attention on
three different binary arrays: the first case we will dis-
cuss is the case of uniform nonlinearity in the array; the
second case we will face is that of the linear–nonlinear
interlaced binary array and the third case will be the
case of nonlinearities with different signs along the array,
i.e. the focusing–defocusing interlaced binary waveguide
array.

III. EXAMPLES

In this section we present some results derived from
the analysis of the Hamiltonian system (Eqs. 4). We
thus first look for unstable fixed points of the dynamical
system and then obtain the separatrices corresponding
to solitary wave solutions. To assess the validity of our
approach we then propagate the obtained waveforms in
the truly discrete system described by Eqs.1. If we were
looking for bright solitons, as we did in [13], we would
pick P = 0 and this in turn would simplify considerably
the algebra required in the analysis of the dynamical sys-
tem described by Eqs.4; here, on the contrary, we can not
limit ourselves to the simplest case P = 0 and thus we
focus on the more general case P 6= 0.

As a first example, we consider an array with uniform
nonlinearity (i.e. d = 0). In figure 2a we report the bi-
furcation diagram of the amplitude η of the fixed points
as a function of Q; unstable fixed points and thus dark
solitons do exist only for Q < arccos

(

sP (3 + k21)/16
)

;
note that the unstable fixed points here correspond to
two different branches with different generalized phase
(µ = ±π/2). In figure 2b we report the phase plane
analysis of the system and we see there two saddle points
at µ = ±π/2 and η = (16 cos(Q)− sP (K4

1 +3))/(s(K4
1 +

K4
2 + 6)); the separatrices emanating from and sinking

into the saddles turn around the center located at µ = 0
and η = (16 cosQ − sP (K4

1 + 1))/(s(K4
1 + K4

2 + 2)).
The existence of these saddle points is possible if the
following constraints on Q and P are satisfied: 0 < Q <
arccos(sP (K4

1 + 3)/16) and 0 < P < 16/(s(K4
1 + 3)).

To test the validity of these results we use the obtained
solutions as the initial condition (i.e. at z=0) in the nu-
merical integration of the equations describing propaga-
tion in the binary waveguide array (i.e. Eqs. 1); the
results are reported in figure 3a where the initial con-
dition corresponds to the trajectory enlightened with a
thicker line in the inset of the figure. Note that propa-
gation of this solution into the array reveals only a small
amount of radiation (almost non visible) thus proving
the validity of the continuum approximation; moreover
these solutions are strong enough to survive for non zero
transverse velocities; in figure 3b we report one example
of non zero transverse velocity and we observe once again
that the continuum system is able to capture the nature
of the discrete one. Obviously the solution cannot move
without radiating some energy; however the amount of

0 0,5 1 1,5
0

0,5

1

1,5

2

Q

η

 

 

(a)

µ

η

−2 −1 0 1 2
0

0.4

0.8

1.2

(b)

FIG. 2: s = 2, d = 0, P = 1, v = 0. a) Bifurcation diagram of
the Hamiltonian system: continuous lines for stable centers,
dashed lines for unstable saddle points. b) Phase plane anal-
ysis (Q = 1): crosses correspond to the unstable points; the
dot shows the stable center. The thicker lines are the hete-
roclinic separatrices connecting the two unstable saddles and
correspond to solitons on a non zero background.

(a)

(b)

FIG. 3: Field evolution along the array for s = 2, d = 0,P = 1:
the initial condition is the dark soliton solution corresponding
to the thicker line in the inset where the phase plane of system
4 is reported. a): Q = 1, v = 0; b): Q = 0.7, v = 0.5

radiation is almost negligible and the soliton can prop-
agate with high velocity along the array. As a second
example we consider the case of an array of alternating
linear-nonlinear waveguides, i.e. s = d. The situation is
quite different with respect to the d = 0 case; two fixed
points (one center and one saddle) exist forQ < π/2; only
one stable center exists for Q > π/2 (see figure 4a). In
figure 5 we report the beam propagation along the array
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FIG. 4: s = 2, d = 2, P = 0.6, v = 0. a) Bifurcation diagram
of the Hamiltonian system: continuous lines for stable cen-
ters, dashed lines for unstable saddle points. b) Phase plane
analysis (Q = 0.6): the cross corresponds to the unstable
point; the dot shows the stable center. The thicker line is the
homoclinic separatrix corresponding to solitons on a non zero
background.

FIG. 5: Field evolution along the array: the initial condition
corresponds to the separatrix enlightened in figure 4b.

using as initial condition the field profiles obtained from
Eqs. 3 after having solved for the the trajectory along
the separatrix described as a thick line in figure 4b. The
third example we consider corresponds to an array of al-
ternating focusing-defocusing nonlinearities, i.e. d > s
(s = 2 and d = 2.1 in what follows). As we can see in
figure 6a, for Q > π/2 we find one center and one saddle.
In the corresponding phase plane in figure 6b we report
the heteroclinic trajectory emanating from and sinking
into the saddle points at µ = −π/2 and µ = 2π−π/2. In
figure 7 we show the field evolution along the array using
as initial condition the field profiles obtained from Eqs. 3
and corresponding to the separatrix enlightened in figure
6b. Once again we can observe that propagation of this
solution into the array reveals only an almost invisible
small amount of radiation thus proving the validity of
our analytical approach.
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FIG. 6: s = 2, d = 2.1, P = 1.0, v = 0. a) Bifurcation
diagram of the Hamiltonian system: continuous lines for sta-
ble centers, dashed lines for unstable saddle points. b) Phase
plane analysis (Q = 1.7): the crosses correspond to the un-
stable points; the dots show the stable centers. The thicker
line is the heteroclinic separatrix corresponding to solitons on
a non zero background.

FIG. 7: Field evolution along the array for s = 2, d = 2.1,
Q = 1.7, P = 1 and v = 0. The initial condition corresponds
to the separatrix enlightened in figure 6b.

CONCLUSIONS

In this work we have obtained dark and antidark soli-
ton solutions in a binary waveguide array with alternat-
ing positive and negative linear couplings between adja-
cent waveguides and in the presence of focusing and/or
defocusing Kerr nonlinearity. These solutions do exist
also in a linear–nonlinear interlaced array and they even
survive in focusing–defocusing interlaced arrays. We
have also numerically verified the soundness of our ap-
proach by a detailed comparison with exact results ob-
tained by numerically solving the discrete system; re-
markably our results, obtained in the framework of a
continuum approximation, retain their validity also for
very strong degrees of localization.
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