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ABSTRACT 

The design based on periodic elements can be a powerful strategy for the achievement of 

lightweight sound packages and can represent a useful solution for manufacturing aspects.  The 

inclusion of vibroacoustic design rules, at early stage of the product development, is a feasible 

and interesting research target; in fact, the use of porous media with periodic inclusions can 

improve the dynamic filtering effects thus offering several possibilities of applications in the 

engineering fields where both weight and space, as well as vibroacoustic integrity and comfort, 

still represent critical issues. Indeed, although porous materials are commonly used for 

vibroacoustic applications, they suffer from a lack of absorption at low frequencies. This 

difficulty is usually overcome by a multi-layering approach. However, while reducing the 

impedance mismatch at the air-material interface, the efficiency of such devices relies on the 

allowable thickness. A more efficient way to enhance the low frequency performances of sound 

packages consists in embedding periodic inclusions in a porous layer. If the radius of these 

periodic inclusions is comparable with the acoustic wavelength, then an increase of the 

acoustical performances can be observed since the excitation of additional acoustic modes 

helps in dissipating more acoustic energy. Therefore, even if this procedure still relies on the 

dimension of the inclusions, it can provide an acoustical performance improvement, which is 

way more efficient than just increasing the thickness. This paper starts with the description of 

the shift cell technique, which allows the description of the propagation of all existing waves 
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from the description of the unit cell. The shift cell technique provides a reformulation of 

Floquet-Bloch periodic conditions and its major advantage is that it allows the implementation 

of any frequency dependence and damping in the problem: this is a new advantage when 

computing the dispersion curves of a porous material modelled as an equivalent fluid. The 

second part of this work shows the improvements of acoustic properties (in terms of 

transmission loss) that are obtained due to the periodic nature of the system and some 

qualitative considerations. The test case herein presented involves a square unit cell of porous 

material with a circular inclusion, for which the results are quite encouraging and promising. 

LIST OF SYMBOLS 

• 𝜔 = angular frequency; 

• 𝑥, 𝑦, 𝑧 = space variables; 

• 𝑗 = imaginary unit; 

• 𝑝0 = amplitude of the excitation mode (incident pressure); 

• 𝜌0 = density of the interstitial fluid (air); 

• 𝑐0 = sound speed in the interstitial fluid (air); 

• 𝑍0 = characteristic impedance of the interstitial fluid (air); 

• 𝑘0 = wave number in the interstitial fluid (air); 

• 𝜌 = density of the material; 

• 𝑍𝑐 = characteristic impedance of the material; 

• 𝑘 = wave number in the material; 

• 𝑝 = pressure; 

• 𝐾 = bulk modulus; 

• 𝜃, 𝜙 = angles of incidence; 

• 𝑝∗ = 𝑐𝑜𝑛𝑗(𝑝); 

• 𝛺 = poro-elastic volume; 

• 𝛤 = domain boundary; 

• 𝐼 = flow of energy; 

• 𝐸 = total energy; 

• 𝐸𝑘 = kinetic energy; 

• 𝑚 = mass; 

• 𝐶𝑝 = particle velocity; 

• 𝐶𝑔 = group velocity; 

• 𝑠 = side length; 

• 𝛱𝑑𝑖𝑠𝑠 = total dissipated power; 

• 𝛱𝑡ℎ𝑒𝑟𝑚 = thermal dissipated power; 

• 𝛱𝑣𝑖𝑠𝑐 = viscous dissipated power; 

• 𝛱𝑖𝑛𝑐 = incident power; 

• 𝛱𝑖𝑛𝑝𝑢𝑡 = input power; 

• 𝛱𝑡𝑟𝑎𝑛𝑠 = transmitted power; 

• 𝑆 = surface interested by incident pressure; 

• 𝑑 = thickness; 

• 𝜏∞ = transmission coefficient; 

• 𝑇𝐿 = transmission loss. 
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1. INTRODUCTION 

The design based on the inclusion of vibroacoustic design rules at early stage of products 

development, through the use of porous media with periodic inclusions which exhibit proper 

dynamic filtering effects, is a powerful strategy for the achievement of lightweight sound 

packages and represents a convenient solution for manufacturing aspects. 

The main advantage of designing sound packages with periodic arrangements is that they can 

provide a combination of absorption effects, resonance effects and wave interferences effects. 

This offers different applications in transportation (aeronautics, space, automotive, railway), 

energy and civil engineering sectors, where both weight and space, as well as vibroacoustic 

integrity and comfort, still remain as critical issues. 

Indeed, although porous materials are commonly used for vibroacoustic applications, they 

suffer from a lack of absorption at low frequencies compared to their efficiency at higher ones. 

This difficulty is usually overcome by multi-layering. However, while reducing the impedance 

mismatch at the air-material interface, the efficiency of such devices relies on the allowable 

thickness. Instead, a more efficient way to enhance the low frequency performances of sound 

packages consists in embedding periodic inclusions in a porous layer. If the radius of these 

periodic inclusions is comparable with the acoustic wavelength, then an increase of the 

acoustical performances can be observed. 

In order to develop efficient numerical techniques in order to handle the problem, the shift cell 

operator technique here is presented, providing details on its implementation [1]. Essentially, 

the shift cell technique consists of a reformulation of the Floquet-Bloch partial differential 

problem, in which the phase shift of the boundary conditions related to wave propagation is 

integrated into the derivation operator. Consequently, the periodicity is included in the overall 

behaviour of the structure while the continuity conditions are imposed at the edges of the unit 

cell. Its major advantage is that it allows to implement any frequency dependence and damping 

in the problem; this is essential, if one needs to compute the dispersion curves of a porous 

material modelled as an equivalent fluid. In detail, it allows the description of the propagation 

of all existing waves from the description of the unit cell through the resolution of a quadratic 

eigenvalue problem. This is done through the 𝑘(𝜔) method, that allows to compute dispersion 

curves for frequency-dependent problems, instead of using the 𝜔(𝑘) one that leads to non-linear 

eigenvalue problems. 

Until now, this type of model has never been implemented to handle porous material models 

with periodic inclusions [2], [3]. This will render possible to overcome the limits of existing 

approaches, by a more specific design of the system through a process of optimization and 

testing of different inclusions, in order to obtain a device whose frequency efficiency 

outperforms existing designs. 

Dispersion curves (calculated with the shift cell technique) and acoustical characteristics 

(computed using Floquet-Bloch periodic conditions) for different numerical test cases are 

shown. In particular, they are obtained for a 3D melamine unit cell, with and without inclusion. 

The behaviour of this porous material is described by JCA model in the following pages, but 

one can identically use any other equivalent fluid model. 

2. FLOQUET-BLOCH THEORY 

Floquet-Bloch (hereafter F-B) theory provides a strategy to analyse the behaviour of systems 

with a periodic structure. Floquet’s seminal paper deals with the solution of 1D partial 

differential equations with periodic coefficients; in solid state physics, Bloch generalizes 

Floquet’s results to 3D systems and obtains the description of the wave function associated with 

an electron traveling across a periodic crystal lattice. This wave function is a solution of the 
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Schrödinger equation with a periodic potential and Bloch showed that it is the product of a 

simple plane wave multiplied by a periodic function with the same periodicity of the lattice. 

In the literature dealing with wave propagation problems in mechanical systems the theory is 

referred to as Floquet-Bloch theory or, simply, Floquet theory [4]. In layered systems, due to 

the heterogeneity of the relevant elastic properties, to particular geometric features, or to both, 

only certain wave modes can physically propagate inside the structure. Each of these modes 

can be identified by a determined (generally nonlinear) function relating the time frequency and 

the spatial frequency (or wave number). These relationships are called dispersion curves and 

they summarize all the oscillatory behaviour of the system. Dispersion curves provide 

estimations of the elastic and geometrical parameters from experiments or numerical models 

and offer a better perspective to explain the wave field behaviour inside bodies. 

3. SHIFT CELL OPERATOR TECHNIQUE 

Considering a porous layer as an equivalent fluid [5], the starting equation for developing the 

associated shift cell formulation is 

 (∇ + 𝑗𝒌)𝑇 (
1

𝜌
(∇ + 𝑗𝒌)𝒑) = −

𝜔2

𝐾
𝒑, (1) 

with 𝜌 = 𝜌(𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝜔) and 𝐾 = 𝐾(𝑚𝑎𝑡𝑒𝑟𝑖𝑎𝑙, 𝜔). 

By further developing the latter equation and considering 𝒑 = 𝑝𝑒𝑗𝒌𝒙 where 𝒌, for a 3D 

application (Figure 1), is 

 𝒌 = 𝑘𝝓, 𝝓 = (
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙

𝑠𝑖𝑛𝜃

), (2) 

 

Figure 1: Reciprocal lattice vector in a 3D unitary cell [3]. 

one can obtain 

 ∇𝑇 ∇(𝑝𝑒𝑗𝒌𝒙)

𝜌
+ 𝑗𝒌𝑇 (2

∇(𝑝𝑒𝑗𝒌𝒙)

𝜌
+ 𝑝𝑒𝑗𝒌𝒙∇

1

𝜌
) − 𝒌𝑇𝒌

𝑝𝑒𝑗𝒌𝒙

𝜌
+

𝜔2

𝐾
𝑝𝑒𝑗𝒌𝒙 = 0. (3) 

3.1. Weak formulation 

The weak formulation is calculated from the following equation, where 𝑝 is a weighting test 

function: 

 ∫ 𝑝𝑒−𝑗𝒌𝑇𝒙 (∇𝑇 ∇(𝑝𝑒𝑗𝒌𝒙)

𝜌
+ 𝑗𝒌𝑇 (2

∇(𝑝𝑒𝑗𝒌𝒙)

𝜌
+ 𝑝𝑒𝑗𝒌𝒙∇

1

𝜌
) − 𝒌𝑇𝒌

𝑝𝑒𝑗𝒌𝒙

𝜌
+

𝜔2

𝐾
𝑝𝑒𝑗𝒌𝒙 )

𝛺
𝑑𝛺 = 0(4) 

 ∫ (
1

𝜌
∇𝑇𝑝̃∇𝑝 − 𝑗𝒌𝑇 2

𝜌
(𝑝̃∇𝑝 − ∇𝑝̃𝑝) + 𝒌𝑇𝒌

4

𝜌
𝑝𝑝 − 𝜔2 1

𝐾
𝑝𝑝) 𝑑𝛺

𝛺
= 0 (5) 

Considering that 𝝋 is the eigenvector, the equation can be written in its matrix form 

 (𝑲 + 𝑗𝑘𝑳 + 𝑘2𝑯 − 𝜔2𝑴)𝝋 = 0 (6) 

with the following matrices: 

• 𝑲 → ∫
1

𝜌
∇𝑝̃∇𝑝

𝛺
𝑑𝛺; 

• 𝑳 → ∫
2

𝜌
(∇𝑝̃𝑝 − 𝑝∇𝑝)

𝛺
𝑑𝛺; 
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• 𝑯 → ∫
4

𝜌
𝑝𝑝

𝛺
𝑑𝛺; 

• 𝑴 → ∫
1

𝐾
𝑝𝑝

𝛺
𝑑𝛺. 

3.2. Right and left eigenvalue problems 

The latter formulation leads to the following right eigenvalue problem: 

 [(𝑲 − 𝜔2𝑴) + 𝜆𝑖𝑳 − 𝜆𝑖
2𝑯]𝝋𝑖

𝑟 = 0 (7) 

where 𝜆𝑖 = 𝑗𝑘𝑖 is the i-th eigenvalue, 𝜑𝑖
𝑟 denotes the right eigenvector associated to 𝜆𝑖, 𝑴 and 

𝑲 are respectively the standard symmetric definite mass and symmetric semi-definite stiffness 

matrices, 𝑳 is a skew-symmetric matrix and 𝑯 is a symmetric semi-definite positive matrix. In 

this formulation, all matrices are frequency dependent. 

For frequency-dependent systems, the estimation of the group velocity is not trivial. The 

equation (7) can be rewritten as 

 𝑨1(𝜔)𝝍𝑖
𝑟 = 𝜆𝑖𝑨2(𝜔)𝝍𝑖

𝑟 (8) 

with 

• 𝑨1(𝜔) = (
0 𝑰𝒅

𝑲 − 𝜔2𝑴 𝑳
); 

• 𝑨2(𝜔) = (
𝑰𝒅 0
0 𝑯

); 

• 𝝍𝑖
𝑟 = (

𝝋𝑖
𝑟

𝜆𝑖𝝋𝑖
𝑟). 

where 𝑰𝒅 is the identity matrix. 

Conversely, a left-eigenvector for the same eigenvalue satisfies 

 𝝍𝑖
𝑙𝑇

𝑨1(𝜔) = 𝜆𝑖𝝍𝑖
𝑙𝑇

𝑨2(𝜔), with 𝝍𝑖
𝑙 = (

𝑨
𝑩

). (9) 

 {
𝑩 = 𝝋−𝑖

𝑟 = 𝝋𝑖
𝑙

𝑨𝑇 = 𝜆𝑖𝝋−𝑖
𝑟 𝑇

𝑯 − 𝝋−𝑖
𝑟 𝑇

𝑳 = 𝜆𝑖𝝋𝑖
𝑙𝑇

𝑯 − 𝝋𝑖
𝑙𝑇

𝑳
 (10) 

In the resolution of the right eigenvalue problem, the 𝑖-th mode (𝑖 𝜖 𝑁+) is defined by its 𝜆𝑖 ≥
0 and its eigenvector 𝝋𝑖

𝑟. For each mode 𝑖, a mode −𝑖 is associated with 𝜆−𝑖 ≤ 0 such that 

𝜆−𝑖 = −𝜆𝑖 and 𝝋−𝑖
𝑟 = 𝝋𝑖

𝑙. by solving the right eigenvalue problem, the left solution is found 

too. 

The starting equation is now differentiated and multiplied by the left eigenvector such that 

 
𝜕𝑨1(𝜔)

𝜕𝜔
𝝍𝑖

𝑟 + 𝑨1(𝜔)
𝜕𝝍𝑖

𝑟

𝜕𝜔
=

𝜕𝜆𝑖

𝜕𝜔
𝑨2(𝜔)𝝍𝑖

𝑟 + 𝜆𝑖
𝜕𝑨2(𝜔)

𝜕𝜔
𝝍𝑖

𝑟 + 𝜆𝑖𝑨2(𝜔)
𝜕𝝍𝑖

𝑟

𝜕𝜔
 (11) 

 𝝍𝑖
𝑙𝑇 𝜕𝑨1(𝜔)

𝜕𝜔
𝝍𝑖

𝑟 + 𝝍𝑖
𝑙𝑇

𝑨1(𝜔)
𝜕𝝍𝑖

𝑟

𝜕𝜔
= 

 = 𝝍𝑖
𝑙𝑇

(
𝜕𝜆𝑖

𝜕𝜔
𝑨2(𝜔) + 𝜆𝑖

𝜕𝑨2(𝜔)

𝜕𝜔
) 𝝍𝑖

𝑟 + 𝝍𝑖
𝑙𝑇

𝜆𝑖𝑨2(𝜔)
𝜕𝝍𝑖

𝑟

𝜕𝜔
 (12) 

Considering that 

 𝝍𝑖
𝑙𝑇

𝑨1(𝜔) = 𝜆𝑖𝝍𝑖
𝑙𝑇

𝑨2(𝜔) (13) 

one obtains 

 
𝜕𝜆𝑖

𝜕𝜔
=

𝝍𝑖
𝑙𝑇

[
𝜕𝑨1(𝜔)

𝜕𝜔
−𝜆𝑖

𝜕𝑨2(𝜔)

𝜕𝜔
]𝝍𝑖

𝑟

𝝍𝑖
𝑙𝑇

𝑨2(𝜔)𝝍𝑖
𝑟

 (14) 

which gives the expression of the group slowness using 𝜆𝑖 = 𝑗𝑘𝑖: 

 
𝜕𝑘𝑖

𝜕𝜔
= −𝑗

𝝋𝑖
𝑙𝑇

[−2𝜔𝑴+
𝜕𝑲

𝜕𝜔
+𝜆𝑖

𝜕𝑳

𝜕𝜔
−𝜆𝑖

2𝜕𝑯

𝜕𝜔
]𝝋𝑖

𝑟

𝝋𝑖
𝑙𝑇

[−𝑳+2𝜆𝑖𝑯]𝝋𝑖
𝑟

 (15) 

The group velocity is the inverse of the group slowness: 

 𝐶𝑔 =
𝜕𝜔

𝜕𝑘𝑖
=

𝑗𝝋𝑖
𝑙𝑇

[−𝑳+2𝜆𝑖𝑯]𝝋𝑖
𝑟

𝝋𝑖
𝑙𝑇

[−2𝜔𝑴+
𝜕𝑲

𝜕𝜔
+𝜆𝑖

𝜕𝑳

𝜕𝜔
−𝜆𝑖

2𝜕𝑯

𝜕𝜔
]𝝋𝑖

𝑟
 (16) 
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3.3. Classifying criteria to distinguish propagative and evanescent waves 

Applying the shift cell operator technique to a sample modelled by an equivalent fluid, all the 

wave numbers are complex; consequently, there are not purely propagative solutions anymore. 

All waves are evanescent, with an evanescence rate that may be used to classify the branches 

in two categories: those that will be rapidly damped and those that will be slowly damped in 

space, with the latter that could be classified as propagative ones. 

The distinction between the two is difficult and thus some classifying criteria are required: 

• the ratio between the real and the imaginary parts of every wavenumber → 𝐶1 =
𝑟𝑒𝑎𝑙(𝑘)/𝑖𝑚𝑎𝑔(𝑘); 

• the ratio between the real and the imaginary parts of the energy transport speed 𝑣 =  𝐼/𝐸, 

where 𝐸 is approximated by 𝐸 =  2𝐸𝑘 → 𝐶2 = 𝑟𝑒𝑎𝑙(𝑣)/𝑖𝑚𝑎𝑔(𝑣); 

• the ratio between the real part and the imaginary parts of the group velocity → 𝐶3 =
𝑟𝑒𝑎𝑙(𝐶𝑔)/𝑖𝑚𝑎𝑔(𝐶𝑔). 

Note that 𝐸𝑘 =
1

2
𝑚𝐶𝑝

2
. Only the waves corresponding to 𝐶1  >  𝜏1, 𝐶2  >  𝜏2 and 𝐶3  >  𝜏3 are 

considered propagative. In practice, for the purpose of the following analysis, the thresholds 𝜏 

are chosen such as 𝜏1 = 𝜏2 = 𝜏3 = 1. This is an arbitrary choice and these values are not meant 

to be considered as universal: for each different case, one may need to tune them [3]. 

3.4. Validation of the method 

The validation analysis is carried out in the frequency range 0 – 17000 [Hz]; this range of 

frequencies assures that the wavelength is much larger than the pore size, which is a necessary 

condition in order to use equivalent fluid models. The 2D and 3D unitary cells are respectively 

constituted by a 2 [cm] square with a 0.5 [cm] radius circular hole and by a 2 [cm] cube with a 

0.5 [cm] radius cylindrical hole. For similar cases, some results are available in literature in 

terms of absorption coefficient [6]. 

In order to validate the implementation, a first calculation is made to compare shift cell results 

with those obtained using Floquet-Bloch periodic conditions, using (non-dissipative) air as 

material. Both methods are used to obtain the dispersion diagram along the direction that 

corresponds to 𝜙 =  0° and 𝜃 =  0° (for the 3D case) in the first Brillouin zone. Stepped (red) 

lines in Figure 2 correspond to the results obtained with the Floquet-Bloch method, while (blue) 

points correspond to the results obtained with the shift cell operator method. The comparison 

shows a perfect agreement between the results of the two methods. 

 

 

 

Figure 2: Comparison between dispersion curves obtained with Floquet-Bloch and shift cell 

techniques on a 2D (on the left) and a 3D (on the right) air unit cell. 
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3.5. Meaning and behaviour of band gaps for inclusions of increasing size 

The imaginary part of dispersion curves is linked to dissipation, while the real part represents 

the propagative behaviour. 

Figure 3 shows what happens to the band gap size, in the previously defined 2D unit cell, when 

the size of the inclusion (that has perfectly rigid walls) changes. The radius of the inclusion for 

the three analysed cases are respectively equal to 
𝑠

32
, 

𝑠

4
 and 

𝑠

2.1
, where 𝑠 is the side length. After this, 

instead of using the adiabatic value (142 [kPa]) for the bulk modulus of air, one can artificially 

add a frequency-constant imaginary part to it (for example: 142+𝑗12 [kPa]); doing so, one can 

simulate a band gap behaviour similar to that obtained when using equivalent fluids, as shown 

later. Indeed, a complex bulk modulus prevents the presence of proper band gaps in dispersion 

curves; one can clearly see that the gap is opening but, because of the damping, 𝑘𝑥 is no longer 

purely imaginary. So, the real part of 𝑘𝑥 does not disappear anymore, but remains low 

(compared to imaginary one), which means that the wave will be strongly spatially attenuated, 

and this is exactly the expected behaviour for band gaps in dissipative media. 

    

 

 

Figure 3: Dispersion curves for an air 2D cell, with increasing inclusion size (from left to 

right) and with normal (second raw) and modified (third raw) bulk modulus. 

4. DISPERSION CURVES 

For each dispersion curve plot, three eigenvectors are reported in terms of acoustic pressure 

field (Figures 4 and 5). Only the real parts are shown, the imaginary parts being null. They are 

all extracted at the frequency of 8500 [Hz] (half of the range) and along the direction that 

corresponds to 𝜃 = 𝜙 =  0° in the first Brillouin zone. Their branches are ordered as: at 

increasing frequencies, 1st is represented by the first real part that reaches the unitary value, 

2nd is the second and so on. 

The fundamental acoustic parameters of the tested porous material have been experimentally 

determined in GAUS laboratory at University of Sherbrooke (Canada) and are: porosity = 0.99, 

tortuosity = 1.02, resistivity = 8430 [
𝑃𝑎∗𝑠

𝑚2
], viscous characteristic length = 0.138 [𝑚𝑚], 

thermal characteristic length = 0.154 [𝑚𝑚], density = 5.73 [
𝑘𝑔

𝑚3]. 
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Figure 4: Dispersion curves for a homogeneous melamine unit cell and, from top left to 

bottom, real parts of the 1st, 2nd and 3rd branch eigenvectors. 
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Figure 5: Dispersion curves for a melamine unit cell with inclusion and, from top left to 

bottom, real parts of the 1st, 2nd and 3rd branch eigenvectors. 
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One may notice that there are some discontinuous curves: this is probably due to the fact that, 

as said, all waves are evanescent with different rates: a non-perfect tuning of the sorting criteria 

could lead to lines that disappears and reappears on the plots. 

5. TRANSMISSION LOSS 

While dispersion curves are computed for an infinite repetition of unit cells, transmission loss 

is calculated for a finite repetition of 5 unit cells, using the same domain and boundary 

conditions of the infinite periodic system. This, in a first approximation, allows to compare the 

dispersion relations and the acoustical characteristics of the equivalent finite medium. Indeed, 

a further increasing in the number of repeated cells would lead to a change in the mean value 

of absorption coefficient and transmission loss respectively below 2% and 20% respect to the 

usage of a repetition of 5 unit cells. 

The transmission loss is numerically computed as 

 𝑇𝐿 = 10 log10
𝛱𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡

𝛱𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
 (17) 

where 𝛱𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 and 𝛱𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 represent the incident and transmitted power, respectively.  

For our plane wave configuration, the latter is compared, for homogeneous flat configurations,  

with the Transfer matrix method [7]: 

 𝑇𝐿 = 10 log (
1

4
|𝑇11 +

𝑇12

𝜌0𝑐0
+ 𝜌0𝑐0𝑇21 + 𝑇22|

2

), (18) 

 with [
𝑇11 𝑇12

𝑇21 𝑇22
] = [

cos(𝑘𝑑) 𝑗 sin(𝑘𝑑) 𝑍0
𝑗 sin(𝑘𝑑)

𝑍0
cos(𝑘𝑑)

] (19) 

For the inhomogeneous configuration, the validation is obtained using an implementation of 

the plane wave forced response of the periodic cell accounting for fluid loading [8]. 

 

Figure 6: Transmission loss computed for a 3D repetition of 5 melamine unit cells. 

Concerning the case with the inclusion, one can notice that an improvement of transmission 

loss properties, respect to the homogeneous case, is shown at all frequencies, in particular in 

correspondence of a peak at a frequency around 7 [kHz], in which it is equal to about 15 [dB], 

and at high frequencies. Note that, for the sake of comparison with the related dispersion curves, 

only their 1st branch is meaningful due to the fact that the correspondent mode is the only one 
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that is actually excited during these transmission loss simulations. Indeed, the improvement 

peak exactly corresponds to the frequency range of the 1st branch of dispersion curves in which 

the wave is strongly spatially attenuated. 

This is definitely encouraging, for the purpose of deriving the equivalent acoustic properties of 

the unit cell from its dispersion characteristics. 

6. CONCLUSIONS 

The shift cell technique has been presented, providing details on its numerical formulation. It 

has been necessary to introduce some classifying criteria and, consequently, the derivation of 

the group velocity expression. A validation, made by a comparison with Floquet-Bloch periodic 

conditions, has been shown before explaining the meaning and behaviour of band gaps in 

dispersion curves. Dispersion curves and transmission loss plots have then been computed for 

a JCA-modelled melamine unit cell. Further developments of the work will include the 

estimation of the computational efficiency between the shift cell and the Floquet-Bloch 

approaches, the study of a case for actual low-frequency performance improvement and the 

implementation of the shift cell technique using Biot model, for both 2D and 3D geometries. 
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