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Abstract: The main advantage of designing sound packages with periodic arrangements is that 

they can provide a combination of absorption effects, resonance effects and wave interferences 

effects. This offers different applications in transportation (aeronautics, space, automotive, 

railway), energy and civil engineering sectors, where both weight and space, as well as 

vibroacoustic quality of performance and comfort, still remain as critical issues. The application 

of shift cell technique is presented and discussed for periodic porous media described with 

equivalent fluid models: it consists in a reformulation of classical Floquet-Bloch (F-B) 

conditions, whose major advantage stands in allowing the introduction of any frequency 

dependence of porous material behavior, through the resolution a quadratic eigenvalue problem, 

providing an efficient way to compute the dispersion curves of a porous material modelled as 

an equivalent fluid. The central part of this work shows the results, in terms of absorption 

coefficient and transmission loss curves, obtained through a numerical test campaign involving 

different melamine and polyurethane foams. The 48 test cases involve a cubic unit cell of porous 

material with a cylindrical inclusion. Furthermore, some absorption coefficient and 

transmission loss comparisons are shown, between a homogeneous unit cell and a unit cell with 

a perfectly rigid inclusion; the comparisons are carried out at fixed dimensions, then at fixed 

mass and then at fixed performance in the periodicity peak range. The results clearly point out 

the advantage of designing foam layer with periodic inclusion patterns in order to improve the 

performances in a specific range of frequencies, allowing a save both in terms of thickness and, 

most of all, mass, respect to a classical homogeneous foam layer. 

1 INTRODUCTION 

The inclusion of vibroacoustic treatments at early stage of product development, through the 

use of porous media with periodic inclusions, is a powerful strategy for the achievement of 

lightweight sound packages and represents a convenient solution for manufacturing aspects. 

Indeed, although porous materials are commonly used for vibroacoustic applications, they 

suffer from a lack of absorption at low frequencies compared to their efficiency at higher ones; 

this difficulty is usually overcome by multi-layering [1]. However, while reducing the 
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impedance mismatch at the air-material interface, the efficiency of such devices relies on the 

allowable thickness [2]. 

A more efficient way to enhance the low frequency performances of sound packages consists 

in embedding periodic inclusions in a porous layer [3] in order to create wave interferences or 

resonance effects that may play a positive role in the dynamics of the system. 

The classical approach, known as Floquet-Bloch (F-B) theory, provides a strategy to analyze 

the behavior of systems with a periodic structure. 

In layered systems, due to the heterogeneity of the relevant elastic properties or to particular 

geometric features, or to both, only certain wave modes can physically propagate inside the 

structure. Each of these modes can be identified by a determined (generally nonlinear) function 

relating the time frequency and the spatial frequency (or wave number). These relationships are 

called dispersion curves and they summarize all the dynamic behavior of the system [4]. 

Therefore, dispersion curves offer a better perspective to explain the wave field behavior inside 

bodies. 

For instance, the Helmholtz equation is a known example of equation describing the spatial 

behavior: there, the physical periodic structure of the studied object translates into spatial 

periodicity of its coefficients. Therefore, the F-B theory can be applied to obtain the dispersive 

properties of different mechanical periodic systems, reducing the problem to the calculations 

performed in the so-called unit cell under to certain specific boundary conditions derived from 

the F-B theory itself [5]. 

In order to develop efficient numerical techniques to handle the problem, the shift cell 

operator technique is presented. It allows the description of the propagation of all existing 

waves from the description of the unit cell through the resolution of a quadratic eigenvalue 

problem, in which the phase shift of the boundary conditions related to wave propagation is 

integrated into the partial derivative operator; consequently, the periodicity is included in the 

overall behavior of the structure, while continuity conditions are imposed at the edges of the 

unit cell. This is done through a 𝑘(𝜔) (wave number as a function of the angular frequency) 

method, which allows computing dispersion curves for frequency-dependent problems; instead 

of using the classical 𝜔(𝑘) (angular frequency as a function of wave number) that leads to non-

linear eigenvalue problems. 

Similar techniques, which use a modified F-B approach in order to handle a 𝑘(𝜔) problem, 

can be found in literature ([6]–[8]). The main reason why the shift cell method differs from 

them is that it consists in a reformulation of classical F-B conditions, in which the phase shift 

of the boundary conditions related to wave propagation is integrated into the partial derivative 

operator; consequently, the periodicity is included in the overall behavior of the structure, while 

continuity conditions are imposed at the edges of the unit cell. This technique has been 

successfully applied for describing the mechanical behavior of periodic structures embedding 

visco-elastic materials ([9], [10]) or piezoelectric materials [11]. Here it is proposed an 

extension to equivalent fluid models: this makes possible to overcome the limits of existing 

approaches by a more specific design of the system, through a process of optimization and 

testing of different inclusions, in order to obtain a device whose frequency efficiency 

outperforms existing designs. 

The behavior of the porous materials is described by Johnson-Champoux-Allard (JCA) 

model ([12], [13]) in the following sections, but one can identically use any other equivalent 

fluid model ([14]–[16]). 
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2 SHIFT CELL OPERATOR TECHNIQUE 

In this paper, a periodic arrangement of porous materials is considered. For a more detailed 

discussion, one can refer to [17]. The behavior of each material is described by an equivalent 

fluid model in the frequency domain, i.e.: 

 𝜌
𝜔2

𝐾
𝑝 + ∆𝑝 = 0, (1) 

where 𝑝 = 𝑝(𝒙, 𝜔) is the acoustic pressure, 𝒙 = (𝑥, 𝑦, 𝑧) is the coordinate vector, 𝜔 is the 

angular frequency, 𝜌 = 𝜌(𝒙, 𝜔) is the equivalent fluid density and 𝐾 = 𝐾(𝒙, 𝜔) is the bulk 

modulus [18]. The periodicity is described by 𝜌(𝒙 + 𝒓𝒏) = 𝜌(𝒙) and 𝐾(𝒙 + 𝒓𝒏) =
𝐾(𝒙), ∀𝒙 ∈ 𝛺, where 𝒏 is a vector of integers normal to the face considered, 𝒓 = (𝒓𝟏, 𝒓𝟐, 𝒓𝟑) 

is a matrix containing the three vectors defining the cell periodicity directions and lengths, and 

𝛺 is the domain of interest. 

For the purpose of the shift cell technique development, considering Eq. 1 and applying the 

Bloch theorem such as 𝑝(𝒙, 𝜔) = 𝑝(𝒙)𝑒𝑗𝒌𝒙, where 𝒌, for a 3D application, is 

 𝒌 = 𝑘 (
𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙
𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙

𝑠𝑖𝑛𝜃

) (2) 

one can obtain 

 𝝆
𝝎𝟐

𝑲
𝒑 + (𝜵 + 𝒋𝒌)𝑻(𝜵 + 𝒋𝒌)𝒑 = 𝟎. (3) 

𝑝(𝑥) being periodic, the Dirichlet boundary conditions imply 𝑝(𝐿) = 𝑝(0). 

 

Figure 1: Reciprocal lattice vector in a 3D unitary cell. 

2.1. Weak formulation 

The aim of this section is the development of the weak formulation of the problem, in order 

to obtain a matrix equation that fully describes what happens inside a periodic unit cell of 

equivalent fluid. A weak formulation of Eq. (3) consists in finding 𝑝 such that ∀𝑝, which obeys 

to the periodic boundary conditions, one has: 

 𝝎𝟐 ∫
𝟏

𝑲
𝒑̃𝒑

Ω
𝒅Ω + ∫

𝟏

𝝆
𝒑̃𝜵𝑻𝜵𝒑

Ω
𝒅Ω + 𝒋𝒌 ∫

𝟏

𝝆
𝒑̃𝜵𝑻𝒑

Ω
𝒅Ω + 

 +𝒋𝒌𝑻 ∫
𝟏

𝝆
𝒑̃𝜵𝒑

Ω
𝒅Ω − 𝒌𝑻𝒌 ∫

𝟏

𝝆
𝒑̃𝒑

Ω
𝒅Ω = 𝟎. (4) 

After several passages, considering that 𝝋 is the eigenvector, the equation can be written in 

its matrix form 

 (𝑲 + 𝒋𝒌𝑳 + 𝒌𝟐𝑯 − 𝝎𝟐𝑴)𝝋 = 𝟎 (5) 
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with the following matrices: 

 𝑲 ∝ ∫
1

𝜌
∇𝑝∇𝑝

𝛺
𝑑𝛺; 

 𝑳 ∝ ∫
1

𝜌
(∇𝑝𝑝 − 𝑝∇𝑝)

𝛺
𝑑𝛺; 

 𝑯 ∝ ∫
1

𝜌
𝑝𝑝

𝛺
𝑑𝛺; 

 𝑴 ∝ ∫
1

𝐾
𝑝𝑝

𝛺
𝑑𝛺. 

Here, 𝑴 and 𝑲 are respectively the standard symmetric definite mass and symmetric semi-

definite stiffness matrices, 𝑳 is a skew-symmetric matrix and 𝑯 is a symmetric semi-definite 

positive matrix. In this formulation, all matrices are frequency dependent. 

3 NON-RIGID INCLUSIONS NUMERICAL TEST CAMPAIGN 

Herein, all results are related to a 3D unit cell constituted by a cube with side equal to 2 cm 

(homogeneous case) and with a 0.5 cm radius cylindrical inclusion (cases with inclusion). 

The analyses are carried out in the frequency range 0–17000 Hz. It is well known that the 

parameters of the equivalent fluid models can have a strong impact on the performances of the 

acoustic device [19], hence they should be determined in a confident way. 

In the current case, the characteristics of the materials called “Melamine” and “Black PU” 

are experimentally determined, while those of the materials called “P1” and “M10” are taken 

from the work performed by Doutres et al. [20] and those related to “Melamine 173” and “P60” 

from a paper by Deckers et al. [21]. Except for the “Melamine” and “Melamine 173” materials, 

all the others are polyurethane foams. While dispersion curves are computed for an infinite 

repetition of unit cells, absorption coefficient and transmission loss are calculated for a finite 

repetition of five unit cells, using the same domain and boundary conditions of the infinite 

periodic system. This, in a first approximation, allows comparing the dispersion relations and 

the acoustical characteristics of the equivalent finite medium. Indeed, it has been noted that a 

further increasing in the number of repeated cells would lead to a change in the mean value of 

absorption coefficient and transmission loss respectively below 2% and 20% compared to the 

usage of a repetition of five unit cells. 

The general definition of the sound absorption coefficient is the fraction of incident energy 

propagating into a sample material versus the energy propagating out. A part of the incident 

energy will be absorbed into the sample material, or rather dissipated inside it. The absorption 

coefficient 𝛼 can be computed starting from the reflection coefficient 𝑅 as 

 𝛼 = 1 − |𝑅|2, (16) 
where 𝑅 depends on the surface impedance 𝑍𝑠. The surface impedance of the material is 

often presented in real and imaginary terms respectively; the real part describes the energy 

losses whereas the imaginary part describes the phase changes caused by the material [22]: 

 𝑍𝑠 =
𝑝(𝐿)

𝑉(𝐿)
= 𝑍0

1+𝑅

1−𝑅
. (6) 

This technique is only valid for plane waves impinging upon homogeneous media, and just 

at low frequencies for non-homogeneous ones. In a more general way, that is always correct, 

the absorption coefficient can be computed as [23] 
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 𝛼 =
𝛱𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑

𝛱𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡
 (7) 

where 

 𝛱𝑑𝑖𝑠𝑠𝑖𝑝𝑎𝑡𝑒𝑑 = 𝛱𝑡ℎ𝑒𝑟𝑚𝑎𝑙 + 𝛱𝑣𝑖𝑠𝑐𝑜𝑢𝑠 (8) 

The terms can be expressed as [23] 

 𝛱𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 =
𝑆|𝑝𝑖𝑛𝑐|2

2𝜌0𝑐0
, (9) 

  𝛱𝑡ℎ𝑒𝑟𝑚𝑎𝑙 =
1

2
ℑ (−𝜔 ∫

𝜙2

𝐾
𝑝𝑝∗𝑑𝛺

𝛺𝑝
), (10) 

  𝛱𝑣𝑖𝑠𝑐𝑜𝑢𝑠 =
1

2
ℑ (∫

𝜙2

𝜔𝜌̃22
𝛻𝑝. 𝛻𝑝∗𝑑𝛺

𝛺𝑝
), (11) 

where 

 𝑆 = surface interested by incident pressure; 

 𝑝𝑖𝑛𝑐 = amplitude of the excitation mode (incident pressure); 

 𝜌0 = density of the interstitial fluid (air); 

 𝑐0 = sound speed in the interstitial fluid (air); 

 𝛺 = poro-elastic volume; 

 𝑝∗ = 𝑐𝑜𝑛𝑗(𝑝); 

 𝛻 𝑜𝑝𝑒𝑟𝑎𝑡𝑜𝑟 = gradient. 

The transmission loss is numerically computed as 

 𝑇𝐿 = 10 𝑙𝑜𝑔10
𝛱𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡

𝛱𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑
 (12) 

where 𝛱𝑖𝑛𝑐𝑖𝑑𝑒𝑛𝑡 and 𝛱𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 represent the incident and transmitted power, respectively.  

 

Table 1: Non-acoustic parameters of the foams used for the numerical test campaign. 

 Porosity Tortuosity 
Resistivity 

[Pa*s/m^2] 

Viscous 

characteristic 

length [mm] 

Thermal 

characteristic 

length [mm] 

Melamine 0.99 1.02 8430 0.138 0.154 

P1 0.956 1.06 3490 0.187 0.250 

Black PU 0.96 1.075 5815 0.102 0.269 

M10 0.982 1.25 3670 0.240 0.310 

Mel. 173 0.98 1.01 9500 0.166 0.249 

P60 0.98 1.17 3750 0.110 0.742 

 

 

These values are obtained using an implementation of the plane wave forced response of the 

periodic cell accounting for fluid loading [24]. For a plane wave configuration, the value 

computed through Eq. (12) for homogeneous flat configurations is equivalent to the one 

obtained  with the Transfer Matrix Method [1]: 

 𝑇𝐿 = 10 𝑙𝑜𝑔 (
1

4
|𝑇11 +

𝑇12

𝜌0𝑐0
+ 𝜌0𝑐0𝑇21 + 𝑇22|

2

), (13) 
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 with [
𝑇11 𝑇12

𝑇21 𝑇22
] = [

𝑐𝑜𝑠(𝑘𝑑) 𝑗 𝑠𝑖𝑛(𝑘𝑑) 𝑍0
𝑗 𝑠𝑖𝑛(𝑘𝑑)

𝑍0
𝑐𝑜𝑠(𝑘𝑑)

]. (14) 

3.1. Results 

The JCA-modeled 3D unit cell that is described in the previous sections can be tested with 

some perfectly rigid and non-rigid inclusions. In particular, 48 setups are discussed here (Table 

2), whose fundamental parameters are reported in Table 1. 

 

Table 2: Combinations of foams and inclusions used for the numerical test campaign. 

Configuration Foam Inclusion Configuration Foam Inclusion 

1 

Melamine 

none 25 

M10 

none 

2 rigid 26 rigid 

3 air 27 air 

4 PU 1 28 PU 1 

5 PU black 29 Melamine 

6 M10 30 PU black 

7 Mel. 173 31 Mel. 173 

8 PU 60 32 PU 60 

9 

P1 

none 33 

Melamine 

173 

none 

10 rigid 34 rigid 

11 air 35 air 

12 Melamine 36 PU 1 

13 PU black 37 Melamine 

14 M10 38 PU black 

15 Mel. 173 39 M10 

16 PU 60 40 PU 60 

17 

PU black 

none 41 

P60 

none 

18 rigid 42 rigid 

19 air 43 air 

20 PU 1 44 PU 1 

21 Melamine 45 Melamine 

22 M10 46 PU black 

23 Mel. 173 47 M10 

24 PU 60 48 Mel. 173 
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Figure 2: Comparison between absorption coefficient (on the left) and TL (on the right) curves for cases 1-8. 

 

Figure 3: Comparison between absorption coefficient (on the left) and TL (on the right) curves for cases 9-16. 

 

Figure 4: Comparison between absorption coefficient (on the left) and TL (on the right) curves for cases 17-24. 
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Figure 5: Comparison between absorption coefficient (on the left) and TL (on the right) curves for cases 25-32. 

 

Figure 6: Comparison between absorption coefficient (on the left) and TL (on the right) curves for cases 33-40. 

 

Figure 7: Comparison between absorption coefficient (on the left) and TL (on the right) curves for cases 41-48. 
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In Figures 2-7, some comparative absorption coefficient and transmission loss plots are 

shown for each of the 48 cases of study: in particular, each of the six foams is tested using eight 

different inclusions, according to the combinations reported in Table 2. 

It can be noticed that, for what concerns the transmission loss, the effect of the inclusion is 

not particularly advantageous in these situations: in the case of the air, indeed, there is a drop 

of performances at all frequencies while, in the case of a foam inclusion, only a slight change 

of the values can be seen, as well as a very small effect of the periodicity when this is equal to 

half of the wavelength (around 7000 Hz). 

Anyway, some different cases, that may be more interesting from the practical point of view, 

can be studied by modelling the foam unit cell through the use of the Biot model [25], instead 

that as an equivalent fluid; doing so, indeed, allows to take into account the elasticity of the 

skeleton and the entire problem formulation depends not anymore only on the pressure, but on 

the skeleton displacements too: this means that it should possible to properly write the coupling 

conditions between the foam and an eventual (non-perfectly rigid) solid inclusion. 

4 COMPARISON OF ACOUSTIC PERFORMANCES BETWEEN A 

HOMOGENEOUS UNIT CELL AND AN UNIT CELL WITH INCLUSION WITH 

FIXED MASS 

In the previous sections, all the comparisons between homogeneous cases and cases with 

inclusions are made considering unit cells with the same dimensions; in other words, it means 

that the performances of a layer with periodic inclusions are estimated assuming that is has the 

same thickness of the related homogeneous one. 

One may want also to compare absorption coefficient and transmission loss plots for the case 

in which the unit cell with inclusion has the same mass (and therefore different dimensions) 

respect to the homogeneous one. For example, considering an unit cell made of Melamine and 

with a perfectly rigid inclusion (Configuration 2 of Table 2), when comparing it to the 

homogeneous case with fixed dimensions, it obviously has a slower mass (75.56% of the 

homogeneous unit cell value); therefore, in order to perform a comparison with fixed mass 

respect to the homogeneous case, one should increase each dimension of the unit cell with 

inclusion of a certain quantity that, for the specific case, is equal to the 7.56%. 

At this point, making some considerations based on the results shown in Figures 8 and 9, 

one may notice that the curve with fixed mass, respect to the one with fixed dimensions, has a 

performance peak caused by periodicity effect that is shifted at lower frequencies (this is due 

to the different dimensions between the two cases with inclusion) and also of different 

amplitude (due to the different mass of the compared unit cells). 

Furthermore, in order to obtain the same transmission loss performances in the periodicity 

peak range (between 6000 and 8000 Hz, for the specific cases considered) by the use of a simple 

homogeneous layer made of the same foam, one should use a thickness that is around twice the 

one required for the cases with inclusion, therefore leading to an increment of the mass of about 

100%. This clearly point out the advantage of designing foam layer with periodic inclusion 

patterns in order to improve the performances in a specific range of frequencies, allowing a 

save both in terms of thickness and, most of all, mass, respect to a classical homogeneous foam 

layer. 
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Figure 8: Comparison of absorption coefficient curves between the homogeneous case, the case with inclusion 

with fixed dimensions and the case with inclusion with fixed mass. 

 

Figure 9: Comparison of transmission loss curves between the homogeneous case, the case with inclusion with 

fixed dimensions, the case with inclusion with fixed mass and the homogeneous case with fixed performance in 

the 6000-8000 Hz frequency range. 
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5 CONCLUSIONS 

The shift cell technique has been presented, providing details on its numerical formulation. 

Numerical results have been shown, in terms of absorption coefficient and transmission loss 

curves obtained through a test campaign involving 48 different JCA-modelled melamine and 

polyurethane foam unit cell configurations. 

Furthermore, it has been shown the comparison between absorption coefficient and 

transmission loss plots for the case in which the unit cell with inclusion has the same mass (and 

therefore different dimensions) respect to the homogeneous one. 

Further developments of the work will include the implementation of the shift cell technique 

using Biot model, for both 2D and 3D geometries, as well as the design and experimental tests 

of a specific unit cell configuration, chosen accordingly to an optimization process that will 

involve geometry, foam and inclusion material. 
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