
HAL Id: hal-02394259
https://hal.science/hal-02394259v1

Submitted on 5 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

One for All and All for One: Scalable Consensus in a
Hybrid Communication Model

Michel Raynal, Jiannong Cao

To cite this version:
Michel Raynal, Jiannong Cao. One for All and All for One: Scalable Consensus in a Hybrid Commu-
nication Model. ICDCS’19 - 39th IEEE International Conference on Distributed Computing Systems,
Jul 2019, Dallas, United States. pp.464-471, �10.1109/ICDCS.2019.00053�. �hal-02394259�

https://hal.science/hal-02394259v1
https://hal.archives-ouvertes.fr

One for All and All for One:

Scalable Consensus in a Hybrid Communication Model

Michel Raynal⋆,†, Jiannong Cao†

⋆Univ Rennes IRISA, 35042 Rennes, France
†Department of Computing, Polytechnic University, Hong Kong

Abstract—This paper addresses consensus in an asyn-
chronous model where the processes are partitioned into clus-
ters. Inside each cluster, processes can communicate through
a shared memory, which favors efficiency. Moreover, any
pair of processes can also communicate through a message-
passing communication system, which favors scalability. In
such a “hybrid communication” context, the paper presents two
simple binary consensus algorithms (one based on local coins,
the other one based on a common coin). These algorithms
are straightforward extensions of existing message-passing
randomized round-based consensus algorithms. At each round,
the processes of each cluster first agree on the same value
(using an underlying shared memory consensus algorithm),
and then use a message-passing algorithm to converge on the
same decided value. The algorithms are such that, if all except
one processes of a cluster crash, the surviving process acts as
if all the processes of its cluster were alive (hence the motto
“one for all and all for one”). As a consequence, the hybrid
communication model allows us to obtain simple, efficient, and
scalable fault-tolerant consensus algorithms. As an important
side effect, according to the size of each cluster, consensus can
be obtained even if a majority of processes crash.

Keywords: Asynchronous system, Atomic register, Cluster,
Binary consensus, Common coin, Compare and swap, Local
coin, Hybrid communication, Message-passing, Modularity,
Process crash failure, Scalability.

I. INTRODUCTION

Consensus in asynchronous systems: Consensus is one

of the most fundamental problems of fault-tolerant asyn-

chronous distributed computing. Assuming each process

proposes a value, it consists in designing an algorithm

such that all the processes that do not crash decide a

value (termination), no two processes decide different values

(agreement), and the decided value is a proposed value

(validity).

Albeit its statement is very simple, it is impossible to solve

consensus in the presence of asynchrony and even a single

process crash, be the underlying communication medium

message-passing [9], or read/write shared memory [18].

This means that the underlying systems must be enriched

(from a computability point of view) for consensus to be

solved. In crash-prone shared memory systems, it has been

shown that enriching the read/write system with synchro-

nization operations such as compare&swap(), fetch&add(),
or LL/SC allows consensus to be solved for any number of

processes, despite asynchrony and the crash of all except

one process. More generally, the synchronization operations

that allow consensus to be solved can be ranked according

to their “consensus number”, that is the maximal number of

processes for which they can solve consensus despite any

number of crashes (the previous operations have an infinite

consensus number). This constitutes the famous consensus

hierarchy introduced by M. Herlihy [14]. Consensus algo-

rithms for enriched shared memory systems are described in

several textbooks (e.g., [3], [21], [23]).

In crash-prone asynchronous message-passing systems

the situation is different. No new operation can be

provided by the network, which would allow consensus

to be solved. Hence, the computability enrichment of an

asynchronous crash-prone message-passing system must be

provided another way. One consists in adding synchrony

assumptions [7], [8]. Another one consists in providing

processes with information on failures, this is the failure

detector-based approach [6]. Another one consists in

restricting the set of input vectors that can be proposed by

the processes, this is the condition-based approach [19].

One of the very first approaches that was proposed (the one

considered in this paper) consists in enriching the system

with the power of randomization [4], [20]. In this case,

the processes are allowed to draw random number in order

to circumvent the non-determinism generated by the net

effect of asynchrony and process crashes. These consensus

algorithms are no longer deterministic. They are Las Vegas

algorithms which ensure that the processes that do not

crash decide with probability 1. Consensus algorithms

with such computability enrichments are described in

several textbooks (e.g., [3], [5], [22]). They all assume

that a majority of processes do not crash, which is a

necessary requirement for solving consensus in crash-prone

asynchronous message-passing systems.

Content of the paper: This article considers an asyn-

chronous crash-prone system in which the processes com-

municate through both shared memory and messages. More

precisely, the processes are partitioned into clusters and

each cluster provides its processes with a shared memory.

Moreover, a communication system allows any process to

send message to any process. Hence, processes in different

clusters can communicate only by message-passing. This

hybrid communication model was introduced in [16].

As advocated in [1], communication based on both shared

memory and message-passing can be leveraged to design

distributed algorithms that are both efficient and scalable.

More precisely, on the one side, shared memory consensus

algorithms can be efficient and tolerate any number of

failures, but they do not scale due to memory hardware

constraints. Differently, on the other side, message-passing

consensus algorithms scale, but are less efficient due to mes-

sage asynchrony, and work only if a majority of processes

do not crash. This suggests a possible tradeoff between

scalability and fault-tolerance.

Considering the previous two-dimension communication

model, this article presents two simple randomized

consensus algorithms (one based on local coins, the other

one based on a common coin). These algorithms are simple

compositions of existing round-based consensus algorithms

(one is Ben-Or’s randomized consensus algorithm [4], the

other one is a simple adaptation of a Byzantine randomized

consensus algorithm introduced in [10]). At every round,

inside each cluster the processes first agree on the same

value (using an efficient underlying shared memory

consensus algorithm), and then use a cluster-independent

message-passing algorithm involving all processes to try

to converge on the same decided value. The algorithms

are such that, if processes of a cluster crash, the surviving

processes of this cluster act as if all the processes of

this cluster were alive. The fact this is true even if a

single process of a cluster does not crash, explains the

motto “One for All and All for One”1). It follows that,

when considering the number and the size of the clusters

of the hybrid communication model, consensus can be

obtained even if a majority of processes crash. As a simple

example, let us consider the case where there is a cluster

including a majority of processes. In the failure patterns

where any number of processes crash, except one process

belonging to the majority cluster, consensus can be solved.

Let us additionally notice that, on a distributed software

engineering point of view, the hybrid communication model

favors a modular decomposition of distributed algorithms.

Related work: A two-dimension communication

model, different from the previous cluster-based hybrid

communication model, has recently been investigated in [1].

According to its authors, their model (called m&m model)

is motivated by emerging technologies such Remote Direct

1This motto is the translation of the Latin expression Unus pro omnibus,

omnes pro uno, which has been made famous in A. Dumas’s novel “The
Three Musketeers” (1844).

Memory Access (RDMA) or disagregated memory [17].

The shared memories are defined from a communication

graph, such that each process share a memory with all its

neighbors. Hence, this amounts to have a shared memory

per process, which can be accessed directly by this process

and remotely by all its neighbors (only). It is easy to see

that this two-dimension communication model is different

from our hybrid model.

Roadmap: The article is composed of five sections.

Section II introduces the hybrid communication-based com-

puting model and a few coin-related definitions. Then two

randomized consensus algorithms suited for this model are

described. In the first one (Section III) each process uses a

local coin, while the second one (Section IV) considers the

processes share a common coin. As already said, these algo-

rithms are straightforward extensions of existing randomized

round-based consensus algorithms (the first one extends the

consensus algorithm introduced in [4], while the second

one extends a simplified version of a Byzantine consensus

introduced in [10]). Section V concludes the paper.

II. DISTRIBUTED COMPUTING MODEL AND

DEFINITIONS

A. Process and Communication Model

Process model: The system is made up of a set Π of n
processes denoted p1, ..., pn. In the notation “pi”, the integer

i is called the index of pi. Each process is sequential (which

means it executes one step at a time), and asynchronous

(which means it progresses at its own speed, which can

vary with time and remains always unknown to the other

processes).

A process can crash. A crash is a premature halt (after it

crashed, if ever it does, a process executes no more steps).

Clusters: The n processes are partitioned into m, 1 ≤
m ≤ n, non-empty subsets P [1], . . . , P [m] called clusters

(i.e., ∪1≤x≤mP [x] = Π and ∀x, y : (x 6= y) ⇒ (P [x] ∩
P [y] = ∅)).

A process knows the number m of clusters, and the set

of processes composing each cluster. When invoked by a

process, the function cluster(i) returns the set of processes

composing the cluster to which pi belongs.

A shared memory MEM x, made up of atomic registers,

is associated with each cluster P [x]. Hence, the processes

of P [x], and only them, can communicate through MEM x.

Two examples of cluster-based decomposition are described

in Fig. 1. These figures show two different cluster-based

decompositions of n = 7 processes into in m = 3 clusters.

Memory operations: In addition to the basic read

and write operations, the shared memory MEM x of each

cluster P [x] is enriched with a synchronization operation

whose consensus number is +∞, e.g., compare&swap().
It follows that consensus can be solved by a deterministic

p2 p3 p4 p5 p6 p7p1 p1 p2 p3 p4 p5 p6 p7

P [3]P [2]P [1] P [2] P [3]P [1]

MEM 1 MEM 3MEM 2 MEM 3MEM 2MEM 1

︸︷︷︸︸︷︷︸ ︸︷︷︸︸︷︷︸︸︷︷︸︸︷︷︸

Figure 1. Two examples of cluster-based decomposition

algorithm within each cluster [3], [14], [15], [21], [23].

It is consequently assumed that each cluster provides its

processes with cluster-limited consensus objects.

Message-passing communication: Processes can send

and receive messages through channels. It is assumed that

any pair of processes is connected by a bidirectional channel.

Channels are reliable but asynchronous. Reliable means that

messages are neither corrupted, nor duplicated, nor lost.

Asynchronous means that, albeit finite, the transit duration

of a message is arbitrary.

The sending and the reception of a message are atomic

steps. The processes can also use a broadcast macro-

operation, denoted broadcast (msg) where msg is a

message, which is a shortcut for “for each j ∈ {1, ...n}
do send (msg) to pj end for”. Let us observe that this

macro-operation is not reliable, namely, if the sender

crashes while executing it, an arbitrary subset of processes

(possibly empty) receive the message.

Extreme configurations: If m = 1 there is a single

cluster, and the model boils down to the classical shared

memory model. The message-passing facility becomes then

useless.

If m = n there is a cluster per process, and consequently

the cluster shared memory dimension disappears. The model

is then the classical message-passing model.

B. Local and Common Coins

Local coin: A local coin (LC) provides a process pi
with a function, denoted local coin(), which returns the

value 0 or 1, with probability 0.5.

The important points are here that no value is returned

with probability 0 and the fact that the local coins of any

two distinct processes are independent.

Common coin: A common coin (CC) is global

function, denoted common coin(), that delivers the same

sequence of random bits b1, b2, ..., br, etc., to each process

pi, each bit br having the value 0 or 1 with probability 0.5.

This means that the rth invocation of common coin() by a

process pi and the rth invocation of common coin() by a

process pj return them the very same bit. The construction

of a distributed common coin is addressed in several

textbooks (e.g., [3], [5], [22]).

III. AN ALGORITHM BASED ON LOCAL COINS

This section presents a round-based algorithm which im-

plements binary consensus in the previous hybrid communi-

cation model. This algorithm can be seen as the composition

of a message communication pattern (inspired from [1]),

and a randomized message-passing consensus algorithm

introduced by Ben-Or [4].

A. Communication Pattern

This pattern, called msg exchange (), is an all-to-all

communication pattern. It is defined by Algorithm 1, where r
a round number, ph a phase number (a round is composed of

two phases), and est a value in {0, 1,⊥}. 0 (resp. 1) means

the invoking process supports 0 (resp. 1), while ⊥ means

it supports no value. The aim of this pattern is to provide

the processes with a “weak” agreement on the value each

of them selects just after it exits the pattern.

operation msg exchange (r, ph, est) is
(1) if (ph = 1) then (a, b) = (0, 1) else (a, b) = (0 or 1,⊥) end if;
(2) supportersi[a]← ∅; supportersi[b]← ∅;
(3) broadcast (r, ph, est);
(4) repeat wait(messages carrying (r, ph,−));
(5) let pjbe the sender of the msg and v the value it carries;
(6) supportersi[v]← supportersi[v] ∪ cluster(j)
(7) until |supportersi[a] ∪ |supportersi[b]| > n/2 end repeat;
(8) return().

Algorithm 1: Communication pattern

When a process pi invokes msg exchange (r, ph, est),
it first initializes the two process sets supportersi[a] and

supportersi[b] to ∅, where a and b depends on the phase

ph of the current round r executed by pi (lines 1-2). If

ph = 1 (first phase of round r), a is 0 while b is 1. If

ph = 2 (second phase of round r), a is either 0 or 1, while

b is ⊥. In this case, the value of a is dynamically defined,

according to the values carried by the messages received

by pi. Then, pi broadcasts a message carrying the triple

(r, ph, est) (line3), and waits until it has received messages

carrying triples (r, ph,−) from “enough” processes (lines 4-

7).

The aim of supportersi[v] is to contain the indexes of

all the processes that support the value v. Those are the

following processes (lines 5-6): if pi receives a message

(r, ph, v) from a process pj ∈ P [x], it is like if it received

the very same message (r, ph, v) from all the processes

in the cluster P [x], despite the fact that some of them

possibly crashed before sending such a message. This is

due to the fact that, as we will see in the next section, the

non-crashed processes of a cluster P [x] cannot broadcast

different messages such as (r, ph, v1) and (r, ph, v2), where

v1 6= v2. Hence, “One for All and All for One” inside each

cluster.

Finally, when pi has received messages carrying (r, ph,−)
from a set of processes pi1 , · · · , pik such that cluster(i1) ∪
· · · ∪ cluster(ik) contains a majority of processes (line 7), it

returns from the communication pattern (line 8).

B. Local Coin-Based Scalable Consensus Algorithm

This section presents Algorithm 2, which is a scalable

local coin-based consensus algorithm suited to the hybrid

communication model.

Variables shared inside a cluster: The shared memory

MEM x of a cluster P [x] is composed of two arrays of

consensus objects, denoted CONSx[r, 1] and CONSx[r, 2],
where r ≥ 1 is a round number.

As previously said, a round is made up of two phases.

CONSx[r, 1] is used by the processes of the cluster P [x]
to agree (at the cluster level) on a common estimate of

the decision. CONSx[r, 2] is used by the processes of

P [x] to agree on the same proposal (a proposed value

or the default value ⊥) used in the second phase of round r.

Local variables: Each process pi manages four local

variables.

• ri: current round number executed by pi.
• est1i: current estimate of the decision value at the

beginning of the round.

• est2i: value championed by pi to decide or default

value ⊥.

• reci set of (at most two) values received by pi during

the second phase of a round (moreover, if reci contains

two values, one of them is 0 or 1, while the other is

⊥).

Process behavior: initialization: When a process

pi invokes the consensus operation propose(vi), where

vi ∈ {0, 1} is the value it proposes, it first initializes est1i
to vi, and enters the sequence of asynchronous rounds.

Process behavior: phase 1 of round r: A process pi
invokes first the consensus object associated with the first

phase of the current round r, namely CONSx[r, 1] (line 4).

It follows that no two processes of a same cluster P [x] can

decide different values from CONSx[r, 1]. Then, as the non-

crashed processes of its cluster, pi invokes the consensus

pattern msg exchange (r, 1, est1), where est1 is the value

decided by CONSx[r, 1]. When it exits the communication

pattern, pi appears as if it received messages from a majority

of processes (let us recall that, due to the consensus object

CONSy[r, 1], if it received a message carrying (r, 1, est)
from a process pj ∈ P [y], pi considers it received the

same message from all the processes in P [y]). If pi sees

a value v ∈ {0, 1} supported by a majority of processes

(i.e., |supportersi[v]| > n/2), it adopts it in est2i (line 7).

If there is no such v, it adopts ⊥, whose meaning is “pi has

not enough information to champion a value”. At the end of

phase 1 of round r we have the following weak agreement:

WA1
def
=

(
(est2i 6= ⊥) ∧ (est2j 6= ⊥)

)
⇒ (est2i = est2j = v).

This agreement follows from a simple observation. If esti =
v and estj = v′, each of v and v′ is supported by a majority

of processes. As all the processes of a cluster support the

same value, and any two majority intersect, we necessarily

have v = v′.
Process behavior: phase 2 of round r: The first part

of this phase is the same as in phase 1. Namely, in-

side each cluster, the processes agree on the same est2
value (line 8), and then invoke the communication pattern

msg exchange (r, 2, est2i) (line 9). Due to WA1, we can

have at a process pi only reci = {v}, reci = {v,⊥}, or

reci = {⊥}. Let us notice that, if reci = {v}, pi is such

that |supportedi[v]| > n/2. And similarly for reci = {⊥}.

Due to the intersection property of any two majorities, we

have the following weak agreement at any round r:

WA2
def
=

(
(reci = {v}) ∧ (recj = {⊥})

)
are mutually exclusive.

Then, there are three cases. If pi sees a single value v, it

decides it. To prevents possible deadlocks (due to the fact

that no messages are sent from a cluster whose processes

have decided or crashed), before deciding a value, a process

is directed to broadcast the value it is about to decide

(lines 12 and 17). If pi sees a value v and ⊥, it adopts

v as its new estimate est1i (this is to ensure it will not

decide another value in a future round, line 13). Finally,

if it sees only ⊥, no value was decided, and both values

0 and 1 were proposed. In this case, in order to break the

non-determinism, pi invokes local coin() and assigns the

returned value to est1i.

Algorithm 2 as an extension of Ben-Or’s algorithm:

If each cluster contains a single process, the system is a

pure message-passing system. Consequently, the consensus

objects used in each cluster (lines 4 and 8) are useless and

operation propose (vi) is % pi ∈ P [x] and vi ∈ {0, 1} %
(1) est1i ← vi; ri ← 0;
(2) loop forever

(3) ri ← ri + 1;

% Phase 1: Try to champion a value %

(4) est1i ← CONSx[ri, 1].propose(est1i); % First, locally agree on est1 inside each cluster %
(5) msg exchange (ri, 1, est1i); % and then exchange across all clusters %
(6) if (∃ v : |supportersi[v]| > n/2) % v is supported by > n/2 processes %
(7) then est2i ← v else est2i ← ⊥ end if; % pi champions v or no value %

% Here, at any round ri:
(

(est2i 6= ⊥) ∧ (est2j 6= ⊥)
)

⇒ (est2i = est2j = v) %

% Phase 2: try to decide a value from the est2 values %

(8) est2i ← CONSx[ri, 2].propose(est2i); % Locally agree on est2 inside each cluster %
(9) msg exchange (ri, 2, est2i); % and then exchange across all clusters %
(10) let reci = {est2 | PHASE2 (ri, est2) has been received};
(11) % Here, at any round ri,

(

(reci = {v}) ∧ (recj = {⊥})
)

are mutually exclusive %

(12) case (reci = {v}) then broadcast DECIDE(v); return(v)
(13) (reci = {v,⊥}) then est1i ← v
(14) (reci = {⊥}) then est1i ← local coin()
(15) end case
(16) end loop.

(17) when DECIDE(v) is received do broadcast DECIDE(v); return(v).

Algorithm 2: Local coin-based binary consensus for process pi ∈ P [x]

can be suppressed. Moreover, the communication pattern

can then be simplified by replacing the sets supportersi[a]
and supportersi[b] by a simple counting of each value

received during a phase. The algorithm then boils down

to Ben-Or’s algorithm [4]. In this sense Algorithm 2

is an extension of Ben-Or’s algorithm to the hybrid

communication model.

Main scalability and fault-tolerance property: The

main property of Algorithm 2 with respect to failures is a

consequence of the “One for All and All for One” principle,

which translates as follows:

In all the executions in which there is a set of k distinct clusters

P [x1], ..., P [xk], such that

• |P [x1]|+ |P [x2]|+ · · ·+ |[P [xk]| > n/2, and

• in each of these clusters at least one process does not crash,

Algorithm 2 solves consensus.

If there is no such set on clusters, the algorithm may not

terminate. However, the algorithm is indulgent (whatever

the failure pattern, it never terminates with an incorrect

result [11], [12], [13]).

As already indicated in the Introduction, it follows that,

if there is a cluster P [x] such that |P [x]| > n/2 and one of

its processes does not crash, Algorithm 2 solves consensus

despite any failure patterns that occur in the other clusters.

On the proof: The proof of Algorithm 2 is left to the

reader. It is obtained from the following observations.

• Due to the consensus objects used inside each cluster,

at the same phase ph of the same round r, the processes

of a cluster P [x] send the same messages to the other

processes, and, for any cluster P [y], receive the same

messages from the processes of P [y].
• Given a cluster P [x], As long as a process pi ∈ P [x]

does not crash, all other processes receive messages,

directly or indirectly thanks to the communication

pattern (line 6 of Algorithm 1), from all the processes

of P [x] as if none of them crashed (“One for All and

All for One” inside each cluster).

• The proof of Ben-Or’s message-passing randomized

binary consensus can be found in [2], [3], [4], [22].

Adding the two previous observations to this proof,

proves that algorithm Algorithm 2 satisfies the validity,

agreement, and termination properties defining consen-

sus in the presence of crash failures.

C. Remark on Consensus in the m&m Comm. Model

The m&m communication model: In the uniform ver-

sion of the m&m (messages and shared memories) model

presented in [1], the memories shared by processes are

defined by a graph G, whose vertices are the processes and

two processes are neighbors if they share registers. Roughly

speaking, there are n shared memories, each one associated

with a process and its neighbors. As an example, if a process

p has two neighbors q and r, there is a “p-centered” memory

shared by p, q, and r, and if q has three neighbors p, s, and

t, there is another‘q-centered” memory shared by q, p, s and

t. (From a hardware point of view, the memory shared by

p, q, and r is accessed directly by p and remotely by its

two neighbors q, and r. Similarly, the memory shared by

q, p, s, and t is accessed directly by q and remotely by its

three neighbors p, s, and t.) More information on the m&m

communication model is given in appendix.

operation propose (vi) is % pi ∈ P [x] and vi ∈ {0, 1} %
(1) esti ← vi; ri ← 0;
(2) loop forever

(3) ri ← ri + 1;
(4) esti ← CONSx[ri].propose(est1i); % First, locally agree on est inside each cluster %
(5) msg exchange (ri, esti); % then exchange among all clusters %
(6) si ← common coin(); % and invoke the common coin %
(7) if (during ri the same estimate v is supported by > n/2 processes)
(8) then esti ← v;
(9) if (si = v) then broadcast DECIDE (v); return (v) end if
(10) else esti ← si
(11) end if
(12) end loop.

(13) when DECIDE(v) is received do broadcast DECIDE(v); return(v).

Algorithm 3: Common coin-based binary consensus for process pi ∈ P [x]

Impact of the communication models on consensus al-

gorithms: While both Algorithm 2 and the m&m consensus

algorithm presented in [1] share message communication

patterns, they are different and provide us with different

properties. More precisely, due to its underlying shared

memory model, the m&m consensus algorithm cannot en-

sure the “One for All and All for One” property, and conse-

quently cannot benefit from its agreement power. Moreover,

the number of underlying shared memory consensus objects

accessed in each phase of a round is n in the m&m model,

while (thanks to the cluster-based partitioning, namely a

process accesses exactly one shared memory), this number

is m (the number of clusters) in Algorithm 2. Finally, in

the m&m model, a process pi invokes αi + 1 consensus

objects (where αi is the number of its neighbors in the graph

G) at each phase of a round. Differently, a process invokes

a single consensus object in each phase of a round in the

hybrid communication model.

IV. AN ALGORITHM BASED ON A COMMON COIN

This section presents a consensus algorithm for the

hybrid communication model, which is based on a common

coin. This algorithm is a simple extension of a version

of a pure message-passing consensus algorithm described

in [22] (which is itself a simplified adaptation to crash

failures of of a Byzantine consensus algorithm [10]).

Presentation of the algorithm: As Algorithm 2, Al-

gorithm 3 consists in a sequence of asynchronous rounds,

each made up of a single phase. Hence, there is no notion

of a phase, and consequently the communication pattern

(captured by Algorithm 1) simplifies, namely its first line

becomes (a, b) = (0, 1). Moreover, the shared memory of a

cluster P [x] is now made up of a single array of consensus

objects CONSx[r], where r ≥ 1 is a round number.

Lines 1-5 are the same in both algorithms. Hence, after

line 4, the processes in the same cluster have the same

estimate value est. Moreover, after line 5, a process pi is

such that, for any cluster P [y], supportersi[0] contains all

the processes pj ∈ P [y] such that pi receives the value 0
from a process pk ∈ [y], ans similarly for supportersi[1].

Then, at line 6, a process pi invokes the common coin

and stores its value in si. Let us remind that, during the

current round all the processes obtain the same bit br.

If no value is supported by a majority of processes (i.e.,

|supportersi[0]| ≤ n/2 and |supportersi[1]| ≤ n/2), pi
considers si = br as its new estimate (line 10), where br is

the value obtained from the common coin by all processes

at round r. Let us observe that, in this case, both values

were present in the est variables at the beginning of the

round. Differently, if there is value v supported by a majority

of processes (i.e., |supportersi[v]| > n/2), pi adopts it as

its new estimate (line 8). In this case, it also decides v if

v = si. As in Algorithm 2, the messages DECIDE() are used

to prevent possible deadlocks.

The reader can check that, due to lines 4-5, the

termination-related property “Main scalability and

modularity property”, stated in Section III-B, is satisfied by

this algorithm.

On the proof of the algorithm: Let us observe that, as in

Algorithm 2, the combination of the consensus objects used

at each round inside each cluster with the message exchange

pattern ensures that, given any cluster P [y] in which at least

one process has not crashed, every process receives the same

messages directly or indirectly from the processes of P [y]
(“One for All and All for One” inside each cluster). With

this observation, the proof of Algorithm 3 is the same as the

one of a message-passing algorithm described in [22], from

which it inherited its structure.

The consensus termination property is obtained in two

stages. In the first stage, the non-crashed processes adopt

the same value v an estimate. During the second stage the

random bit must have the same value as v. The expected

number of rounds for this to happen during the second stage

is 2.

V. CONCLUSION

This paper was on the scalability of consensus algorithms

in asynchronous systems where processes are partitioned

into clusters and can communicate via a hybrid communi-

cation system. Namely, processes communicate via a shared

memory inside each cluster, and via a message-passing

system which allows any process to send message to any

process.

The scalability is obtained with consensus objects used

inside each cluster, and a simple communication pattern,

which satisfies the following property: If a process pi
receives a message m from a process belonging to a partition

P [x], it is as if pi received the very same message m from all

the processes of the partition P [x] (be them alive or crashed).

Hence the motto “All for One and One for All”. Scalability

results from the fact that agreement inside a cluster can be

done efficiently, but does not scale (due to hardware con-

straints). Differently, agreement through a message-passing

system scales, but -due to message asynchrony– cannot be

done efficiently.

According to the composition of the clusters, this hybrid

communication model allows to circumvent the “majority

of correct processes” assumption, which is a necessary

requirement for consensus to be solved in non-hybrid crash-

prone asynchronous message-passing systems. As a simple

example (cited in the Introduction), let us consider the case

where there is a cluster including a majority of processes (for

example the cluster P [2] = {p2, p3, p4, p5} in the system

depicted at the right of Figure 1). In the failure patterns

where any number of processes crash, except one process

belonging to the majority cluster, consensus can be solved.

To illustrate these ideas, two scalable consensus algo-

rithms have been presented. Both use randomization to

circumvent consensus impossibility in the presence of asyn-

chrony and process crashes. These algorithms are simple

extensions of existing algorithms. One is based on local

coins, while the other is based on a common coin. More

generally, it would be interesting to investigate the scalabil-

ity benefits of the hybrid communication model for other

distributed computing problems.

Last but not least, from a software engineering point of

view, the hybrid communication model favors a modular

decomposition/composition of distributed algorithms.

ACKNOWLEDGMENTS

The authors want to thank the referees for their construc-

tive comments. This work has been partially supported by

the French ANR project DESCARTES devoted to layered

and modular structures in distributed computing.

REFERENCES

[1] Aguilera M.K., Ben-David N., Calciu I., Guerraoui R., Pe-
trank E., and Toueg S., Passing messages while sharing
memory. Proc. 37th ACM Int’l Symposium on Principles of

Distributed Computing (PODC’18), ACM Press, pp. 51-60
(2018)

[2] Aguilera M.K. and Toueg S., The correctness proof of Ben-
Or’s randomized consensus algorithm. Distributed Comput-
ing, 25(5):371-381 (2012)

[3] Attiya H. and Welch J., Distributed computing: fundamen-
tals, simulations and advanced topics, (2d Edition), Wiley-
Interscience, 414 pages (2004)

[4] Ben-Or M., Another advantage of free choice: completely
asynchronous agreement protocols. Proc. 2nd ACM Sympo-
sium on Principles of Distributed Computing (PODC’83),
ACM Press, pp. 27-30 (1983)

[5] Cachin Ch., Guerraoui R., and Rodrigues L., Reliable and
secure distributed programming, Springer, 367 pages, ISBN
978-3-642-15259-7 (2011)

[6] Chandra T.D. and Toueg S., Unreliable failure detectors for
reliable distributed systems. Journal of the ACM, 43(2):225-
267 (1996)

[7] Dolev D., Dwork C., and Stockmeyer L., On the minimal
synchronism needed for distributed consensus. Journal of the
ACM, 34(1):77-97 (1987)

[8] Dwork C., Lynch N. and Stockmeyer L., Consensus in the
presence of partial synchrony. Journal of the ACM, 35(2),
288-323 (1988)

[9] Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility
of distributed consensus with one faulty process. Journal of
the ACM, 32(2):374-382 (1985)

[10] Friedman R., A. Mostéfaoui A., and Raynal M., Simple and
efficient oracle-based consensus protocols for asynchronous
Byzantine systems. IEEE Transactions on Dependable and
Secure Computing, 2(1):46-56 (2005)

[11] Guerraoui R., Indulgent algorithms. Proc. 19th Annual
ACM Symposium on Principles of Distributed Computing
(PODC’00), ACM Press, pp. 289-297 (2000)

[12] Guerraoui R. and Lynch N., A general characterization of
indulgence. ACM Transactions on Autonomous and Adaptive
Systems, 3(4), article 20, 19 pages (2008)

[13] Guerraoui R. and Raynal M., The information structure
of indulgent consensus. IEEE Transactions on Computers,
53(4):453-466 (2004)

[14] Herlihy M.P., Wait-free synchronization. ACM Transactions
on Programming Languages and Systems, 13(1):124-149
(1991)

[15] Herlihy M. and Shavit N., The art of multiprocessor pro-
gramming. Morgan Kaufmann, 508 pages, ISBN 978-0-12-
370591-4 (2008)

[16] Imbs D. and Raynal M., The weakest failure detector to
implement a register in asynchronous systems with hybrid
communication. Theoretical Computer Science, 512:130-142
(2013)

[17] Lim K., Chang J., Mudge T., Ranganathan R., Reinhardt S.K.,
and Wenisch T.F., Disaggregated memory for expansion and
sharing in blade servers. Proc. 36th International Symposium
on Computer Architecture (ISCA’09), ACM Digital Library,
pp. 267-278 (2009)

[18] Loui M. and Abu-Amara H., Memory requirements for agree-
ment among unreliable asynchronous processes. Advances in
Computing Research, 4:163-183, JAI Press (1987)

[19] Mostéfaoui A., Rajsbaum S. and Raynal M., Conditions on
input vectors for consensus solvability in asynchronous dis-
tributed systems. Journal of the ACM, 50(6):922-954 (2003)

[20] Rabin M., Randomized Byzantine generals. Proc. 24th IEEE
Symposium on Foundations of Computer Science (FOCS’83),
IEEE Computer Society Press, pp. 116-124 (1983)

[21] Raynal M., Concurrent programming: algorithms, principles
and foundations. Springer, 515 pages, ISBN 978-3-642-
32026-2 (2013)

[22] Raynal M., Fault-tolerant message-passing distributed sys-
tems: an algorithmic approach. Springer, 492 pages, ISBN
978-3-319-94140-0 (2018)

[23] Taubenfeld G., Synchronization algorithms and concurrent
programming. Pearson Prentice-Hall, 423 pages, ISBN 0-131-
97259-6 (2006)

APPENDIX

The shared memory domain S considered in [1] is defined

as a set of process subsets, each S ∈ S defining a subset

of processes sharing a specific common memory. While in

the general case S can be be arbitrary, the algorithms in [1]

consider the cases where the shared memory domain S is

uniform.

“Uniform” means that the shared memory domain can be

represented by an undirected graph G = (V,E) where V is

the set of proceses, and a process pi ∈ V can share registers

with its neighbors as defined by E. More explicitly, Si being

{Si} = {pj : (pi, pj) ∈ E}, we have S = {Si : pi ∈ V }.

p1

p2

p3

p4

p5

Figure 2. Example of a uniform shared memory domain

An example of a graph G = (V,E), where V =
{p1, · · · , p5} (from [1]) is given in Fig. 2. We have:

• S1 = {p1, p2},

• S2 = {p1, p2, p3},

• S3 = {p2, p3, p4, p5},

• S4 = {p3, p4, p5},

• S5 = {p3, p4, p5}.

Consequently, the shared memory domain S defined in

Fig. 2 is {S1, S2, S3, S4, S5}. More explicitly, S =
{{p1, p2}, {p1, p2, p3}, {p2, p3, p4, p5}, {p3, p4, p5}}.

