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Experimental nonlinear localisation in a system of two coupled
beams

Aurélien GROLET, Zein SHAMI, Sadaf ARABI, Olivier THOMAS
LISPEN, ENSAM Lille, France

Abstract: This study presents results showing experimental non-linear localisation in
a (macro) system of two coupled beams. First a reduced order model of the system
is introduced, using the so called STEP method, leading to a two dof model with
cubic non-linearity. This model allows to shows that non-linear localisation is possible
through a 1:1 internal resonance mechanism. Moreover, one can show, using Harmonic
Balance Method, that the forced localised solution stems from the principal resonance
curve through pitchforck bifurcation, and the numerical model allows to compute the
amplitude of bifurcation as well as the bifurcated branch. The experimental results are
presented and compared to the numerical ones showing very good agreements.

1. Introduction

This study deals with the non-linear vibration of structural systems. The objective is to

present both numerical and experimental results related to non-linear localisation. Local-

isation corresponds to vibration states where the energy is localised to a spatial subset of

the structure, and is related to symmetry breaking bifurcation. Many studies have demon-

strated numerically that localisation can occur in system of coupled non-linear oscillators

(e.g. [7]). Some experimental results related to localisation are available for nano/micro

system of beams array (e.g. [8, 1]), but a small amount of experimental results are available

for macro structure. In this study, we design a macroscopic plate structure that can be

considered as two coupled non-linear beams. Considering numeric and experimental results,

we show that the structure allows for a non-linear modal interaction leading to symmetry

breaking bifurcation and localisation.

2. Two beams system and reduced order model

2.1. Description of the system

The system considered here consists of a circular plate that has been machined in order to

create to parallel beams as indicated on Fig. 1. In this study, we will consider only transverse

vibrations. The body of the circular plate provides a coupling between the beams, and it

also restrains the axial displacement of the beams ends, so that the behaviour of the beams

is similar to clamped-clamped beams, i.e. non-linearity occurs due to a coupling between

axial and transverse motions.



To observe non-linear localisation, we will consider two particular eigen-modes of the

structure depicted on Fig. 1. For those modes, the beams vibrate over a first bending mode

shape (in phase or out of phase) and the rest of the plate remains at quite low amplitude.

The idea is to design the structure such that both mode interacts non-linearly to give a

localized mode (i.e. with broken symmetry). Indeed, if one looks only at the mid-beam

amplitude, both modes can be described with the shape φ1 = (1, 1) and φ2 = (1,−1). The

idea is to generate a modal interaction of the form q1(t)φ1 + q2(t)φ2, where q1 and q2 are the

time varying modal amplitudes. If q1 and q2 are in phase, then the interaction will lead to a

shape of the form (a1 +a2, a1−a2) which tends to the localised shape (1, ε) as the amplitude

of the first mode a1 tend to the amplitude of the second mode a2.

In order to prevent interaction with other modes, we set the structure dimension such

that the two previous modes are consecutive (i.e. there is no other modes in between).

This can be achieve to a certain extend by increasing the distance between the beams.

The structure was also designed such that the vibration amplitude for symmetry breaking

bifurcation is quite small (about 0.23 mm at the center of the beams) in order to be observed

with reasonably low forcing amplitude. The design was realized in an iterative way using a

reduced order model presented briefly hereafter.

364Hz 367.5Hz

Figure 1. Linear mode shapes of interest (magnitude of the displacement) and their FEM

natural frequencies

2.2. Reduced order model for plate structure

In theory, the system could be modelled by finite element method, but in practice the

resolution time for non-linear computations would be prohibitive. An approximation of the

system behaviour can be obtained by a so called Reduced Order Model (ROM). Here, only

the form of the ROM equation for plate structure will be given, more details about the ROM

procedure can be found in [3].

We consider that the solution to the FEM plate model is expanded over the linear mode



shapes basis computed with free boundary conditions. We denote qj (reps. pk) the modal

amplitude of the j-th transverse mode (resp. the k-th in-plane mode). Neglecting in-plane

inertia and using a condensation procedure (so that the pk’s can be expressed as a function

of the qj ’s, [3]), it can be shown that the reduced set of equation for the FEM plate model

can be put under the following form (i.e. only considering modal amplitudes of transverse

modes) [3]:

q̈j + ω2
j qj +

Nt∑
k,l,m=1

Γjklmqkqlqm = fj(t), ∀j ∈ [1, Nt] (1)

where ωj is the natural angular frequency of the j-th transverse mode, Nt is the number

of transverse modes kept in the reduction basis and fj is the j-th transverse modal force.

The Γjklm are coefficients that can be evaluated using the so called STiffness Evaluation

Procedure (STEP) which is based on a series of static non-linear FEM computations [6, 3].

In this study we are interested in the interaction between the two modes described on

Fig.1, so that only those two modes are kept in the reduced order model. Based on Eq.(1),

the reduced set of equation have the following form:

q̈1 + ω2
1q1 +G1q

3
1 + E1q

2
1q2 + C1q1q

2
2 +D1q

3
2 = f1(t)

q̈2 + ω2
2q2 +G2q

3
2 + E2q1q

2
2 + C2q

2
1q2 +D2q

3
1 = f2(t)

(2)

When computing the values of the coefficient, one finds that some of them are order of

magnitudes smaller than the others, and are therefore neglected (see table 1).

coeff. G1 Ci Ei Di

i = 1 9.26 1010 3.46 1011 ≈ 0 ≈ 0

i = 2 1.09 1011 3.46 1011 ≈ 0 ≈ 0

Table 1. Non-linear coefficients for the reduced order model of the final design

3. Analytic and numeric results

3.1. Equation of motion and solution methods

Based on the previously presented ROM, we consider the following equation of motion (with

periodic forcing):

q̈1 + 2ξ1ω1q̇1 + ω2
1q1 +G1q

3
1 + C1q1q

2
2 = f1 sin(Ωt)

q̈2 + 2ξ2ω2q̇2 + ω2
2q2 + C2q

2
1q2 +G2q

3
2 = f2 sin(ωt)

(3)

where qi is the modal amplitude of the i-th transverse mode (i = 1: in phase mode, i = 2 out

of phase mode, see Fig.1), ξi’s are the modal damping ratio, ωi’s are the natural frequencies,



fi’s are the the modal forces amplitude and Ω is the excitation frequency. G1, G2 and C are

the non-linear coefficients obtained through the reduced order model procedure.

In this study, approximated solutions to the system in Eq.(3) are obtained using the

Harmonic Balance Method (HBM), coupled with a numerical continuation procedure based

on the Asymptotic Numeric Method (ANM) [2]. The solution is searched for as a truncated

Fourier series, and the coefficients of the Fourier series are obtained by solving an algebraic

equation depending on a parameter (here the frequency). The use of the MANLAB package

[4] allows to compute the solution as the parameter is varied, along with its stability.

In addition, in order to design the structure, a single harmonic approximation has been

used to derive analytical conditions resulting in the appearance of a modal interaction, which

will be presented hereafter.

3.2. Non-linear modal analysis

In this section, we consider the undamped, unforced version of the equation of motion (3). We

search for a single harmonic solution under the form qn(t) = Ane
iωt + c.c. (where c.c. stands

for complex conjugate). The following polar representation is introduced: An = ane
iγn .

The derivatives q̇n and q̈n are computed and substituted into (the unforced and undamped

version of) (3) leading to the following (after separation of real and imaginary parts):

a1
(
−ω2 + ω2

1 + 3G1a
2
1 + C1a

2
2(cos(2γ2 − 2γ1) + 2)

)
= 0

a2
(
−ω2 + ω2

2 + C2a
2
1(cos((2γ1 − 2γ2) + 2) + 3G2a

2
2

)
= 0

a1a
2
2C1 sin(2γ1 − 2γ2) = 0

a21a2C1 sin(2γ2 − 2γ1) = 0

(4)

The free HBM solutions can be separated into uncoupled and coupled solutions.

The uncoupled solutions are obtained by setting a2 = 0 (mode 1) or a1 = 0 (mode 2) in

Eq.(4), leading to the expression of the backbone curves for the first and the second mode:

ω2
nl,1 = ω2

1 + 3G1a
2
1, and a2 = 0

ω2
nl,2 = ω2

2 + 3G2a
2
2, and a1 = 0

(5)

The coupled solutions are obtained by setting sin(2γ2− 2γ1) = 0 in Eq.(4). There is two

cases to be considered, namely cos(2γ2 − 2γ1) = ±1, referred to as ”linear coupling” (+1,

the modes interact in phase, or in phase opposition) and ”elliptic coupling” (-1, the modes

interact in phase quadrature).

• For the linear coupling, the following equation can be obtained from Eq.(4):

3(G1 − C2)a21 + 3(C1 −G2)a22 = ω2
2 − ω2

1 (6)



It shows that a linear-coupled solution can bifurcate from mode one only if G1−C2 > 0,

and from mode 2 only if C1 −G2 > 0. The amplitudes of bifurcation are respectively

a21 =
ω2
2−ω

2
1

3(G1−C2)
and a22 =

ω2
2−ω

2
1

3(C1−G2)

• For the elliptic coupling, the following equation can be obtained from Eq.(4):

(3G1 − C2)a21 + (C1 − 3G2)a22 = ω2
2 − ω2

1 (7)

It shows that a elliptic-coupled solution can bifurcate from mode one only if 3G1−C2 >

0, and from mode 2 only if C1−3G2 > 0. The amplitudes of bifurcation are respectively

a21 =
ω2
2−ω

2
1

3G1−C2
and a22 =

ω2
2−ω

2
1

C1−3G2

Different behaviour may happen, based on the values of the non linear coefficients (see

e.g. [5]). In this study, the structure has been designed to allow both modes to interact

in order to generate localisation. Indeed, using the coefficients of the reduced order model

given in table 1, one has the following:

• G1 −C2 < 0 and C1 −G2 > 0, so that a linear-coupled mode can bifurcate only from

the out-of-phase mode when the mid-beam amplitude is close to 0.23mm.

• 3G1 − C2 ≈ 0 and C1 − 3G2 ≈ 0 so that the ”eliptic-coupled” bifurcation points are

at very high amplitude (considered here as infinity)

The summary of the non-linear analysis is given on Fig.2. The backbone curve of both

modes are represented, along with the bifurcated solution stemming from the out-of-phase

mode. A stability analysis, similar to the one use in the multiple scale method, allows to

draw an instability zone for the out-of-phase mode, defined by the following:

(2ωξ1ω1)2 +
(
ω2
1 − ω2 + 2C1a

2
2

)2
= (a22C1)2 (8)

As soon as the second mode enter the instability zone, it bifurcates to a coupled solution

where the first mode gets more and more activated though non-linear interaction. In the

physical domain, this correspond to a solution where both beams vibrate out-of-phase with

(increasing) different amplitude (see Fig.2, left panel), indicating the break of symmetry and

the localisation.

3.3. Forced response

In order to evaluate the structure of the forced response the MANLAB package is used [4].

In order to see clearly the non-linear interaction with the first mode, only the second mode

is excited (i.e. f1(t) = 0 in Eq.(3)). Fig.3 shows the forced response of the second mode
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Figure 2. Backbone curves for the two uncoupled modes (◦: in-phase mode, ·: out-of-phase

mode) along with the bifurcated solution (×) and the unstability zone of the out-of-phase

mode (shaded area). left panel: physical representation, right panel: modal representation

for several amplitude of forcing (for f2(t)), along with the instability zone presented in the

previous section. As the forcing amplitude increase, the response becomes more and more

non-linear, and turning points appear. As the amplitude increases even further the response

enters the shaded area and becomes unstable.

MANLAB allows to compute the bifurcated branch as depicted on Fig.4 (for a forcing

amplitude of f2 = 2). It turns out that, for this forcing amplitude, the bifurcated solution

is stable, then experiments a Neimark-Saker bifurcation, then gets stable again until the

turning point to the right. This stability analysis indicates that the bifurcated solution

could be observed in practice, as will be demonstrated by the experimental measurements.

The right panel of Fig.4 depicts the same forced response results using the physical

representation, i.e. the amplitude at the middle of each beam. It clearly shows that the

bifurcated branch corresponds to a non-symmetric state, which gets more and more localised

as the amplitude increases.
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Figure 3. Numerical forced response for an excitation on the second mode only, for several

amplitude of modal forcing (f2 = 0.1, 0.25, 0.6, 1.0, 2.0). Solid lines: stable, dotted lines:

unstable. The stars indicate the changes of stability.
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Figure 4. Numerical forced response for an excitation on the second mode with an ampli-

tude of f2 = 2.0). Solid lines: stable, dotted lines: unstable, the stars indicate the change of

stability. The dashed lines represents the backbone curves obtained in the modal analysis.

Right panel: modal representation, Left panel: Physical representation



4. Experimental set-up and protocols

4.1. Description of the experimental setup

The plate structure depicted on Fig.5 has been machined out of a stainless steel plate (thick-

ness e = 1.5 mm, density ρ = 7850kg.m−3, Young modulus E = 190GPa) using wire cutting.

For the experiments, the structure is hanged using four nylon wires, which allows to be close

to free boundary conditions.

beams

magnets

coil

current clamp

aquisition

and control 

current clamp

amplifier

laser

vibrometer

PC

coil and

magnet

intensityvelocity

excitation signal

Figure 5. Picture of the experimental setup and scheme of the measurement chain

In order to provides excitation to the structure, a small magnet (about 6 grams) is stuck

at a given excitation point, and a coil is then placed around it. Sending periodic current

thought the coil allows to transmit a force without having an actual physical contact with the

structure (Lorentz/Laplace forces). The amplitude of the force is controlled by the intensity

of the current sent to the coil, which is monitored using a current clamp.

Velocity measurements are carried out using a laser vibrometer, which allows to measure

the transverse velocity at each user-defined points on the top surface of the structure (most

of the time at the middle of the beams).

4.2. Measurement protocols

In this study, the measurement are made using swept sine excitation. The scheme of the

experimental set-up is depicted on Fig.5. For the analysis, a sinusoidal current with fixed

intensity is send to the coil, and the velocity amplitude is measured at the center of a

particular beam. Then the excitation frequency is slightly increased (or decreased) and the

velocity measurements is repeated, until a given excitation frequency has been reached. For



a given excitation level, this allows to plots the amplitude of the displacement at the middle

of each beam as as function of the excitation frequency (forced response).

Note that since only one laser vibrometer was available, the measurements are done one

after another (i.e. for a given level of excitation, the measurements is done for beam 1, then

the experiment is reset and the measurement is done for beam 2).

4.3. Location of the excitation

Following the numerical analysis of the previous section, the excitation point is chosen such

that it excites only the out-of-phase modes. This is done by positioning the magnets at

a node of the in-plane modes. In order to keep the structure symmetric, the magnet is

positioned on a node of the in-plane mode belonging to the horizontal axis of symmetry, and

a second magnet (without coil) is positioned in a symmetrical position with relation to the

vertical axis (see Fig.5).

5. Results and discussion

5.1. Linear modal analysis

An experimental modal analysis is conducted on the structure in order to evaluates its

symmetry. The experimental natural frequency are approximatively 364Hz and 367Hz, which

is in good agreement as compared to the FEM frequencies given in Fig.1. The modal damping

ratios are estimated approximatively using the -3dB bandwidth, leading to ξ1 = ξ2 = 10−4.

The experimental mode shapes of the the out-of-phase mode is evaluated by sending

a low intensity sinusoidal current to the coil (at the natural frequency) and scanning the

velocity over the structure. The results is depicted on Fig.6. The mode shape is very close

to the FEM mode shape presented in Fig.1. The maximum amplitudes at the middle of the

beam are respectively 2.2 10−3 and 1.9 10−3 mm (about 10% difference), which indicates a

small disturbance in the symmetry, mainly due to the magnet positioning.

Figure 6. Experimental mode shape for the out-of phase mode (top view and 3D view),

only the velocity amplitude of the beams have been depicted



5.2. Forced response

The results of the sweep-sine analysis are presented on Fig.7, where the mid-beam amplitudes

are plotted as a function of the excitation frequency for several current amplitudes.
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Figure 7. Mid-beam amplitude as a function of frequency for several current intensity

(solid line: beam one, dashed line: beam 2)

It can be observed that the response of the first mode (around 364Hz) is very low, which

indicates that the magnets are well positioned, and that the coil excites mainly the out-of-

phase mode. Since each measurement is carried out one after another, over time, it might

happen that the natural frequencies of the structure change a bit (about 0.5Hz) due to

temperature variations or other reasons (as observed for the resonance peak of the in-phase

mode in the zoom of Fig.7).

For low intensity currents (I=0.1A and I=0.25A), only the mid-beam amplitude of beam

1 is depicted on Fig.7 (solid lines). For I=0.1A, the behaviour of the structure is linear, and

both beams vibrates with the same amplitude. For I=0.25A, the non-linearity starts to be

activated, and a jumps occurs as the excitation frequency is increased.

For higher intensity, both the amplitude of beam one (solid lines) and two (dashed

lines) are depicted. For the three cases (I=0.6A, I=1A and I=2A) the behaviour is similar

and can be interpreted as follows. When the mid-beam amplitude is below 0.2mm, both

beams vibrate out-of-phase with roughly the same amplitude. However, when the vibration

amplitude increases, there is a break of symmetry in the vibration shape of the structure,



both beams vibrates with clearly different amplitude. As the current increases, the difference

in the beam amplitude increases as well leading to a localisation. For the highest excitation

current, one can see that the first beam vibrates with an amplitude 7 times greater than the

second beam.
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Figure 8. Comparison between experimental and numerical results for a current of 2A

(left: beam 1, right beam 2). The thick lines represent experimental sweep-sine responses

(upward and downward sweep). The thin lines represent numerical responses (solid: stable,

dotted: unstable). The stars indicate the stability changes

A comparison to the numerical results obtained using the reduced order model is given

on Fig.8. The current in the coil is fixed to the maximum tested amplitude (i.e. I = 2A). In

the experimental case both an upward and a downward sweep-sine analysis is carried out for

both beam (thick lines). In the numerical case, the solution to Eq.(2) is computed using the

HBM and the ANM (thin lines). In order to take into account the fact that magnet is not

exactly positioned at a node of the in-phase mode, we consider that the in-phase mode is also

forced, with an amplitude ten times smaller than the out-of-phase modes. This perturbation

leads to the destruction of the branching points, and the localisation appears in a continuous

way, as in the experimental data. One can see that the numerical simulations agree very

well with the experimental results, which validates the reduced order model procedure and

the theoretical analysis.

6. Conclusion

In this paper, we considered the transverse non-linear vibration of a system of coupled

beams. Numerical simulations based on a reduced model of the structure have shown that

a non-linear modal interaction can occur, leading to symmetry breaking bifurcation and



localisation. Experimental measurements using swept sine excitation were carried out, and

demonstrate that the modal interaction can be observed in practice (with good repeatability),

if the excitation amplitude is high enough. The numerical and the experimental results

agree very well, showing that the reduced order model procedure is able to generate a good

representation of the physical system with only a few degree of freedom. Further study

should consider systems with more than two beams, in order to generate travelling waves

and/or breathers.
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