
HAL Id: hal-02394246
https://hal.science/hal-02394246

Submitted on 5 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimal Memory-Anonymous Symmetric Deadlock-Free
Mutual Exclusion

Zahra Aghazadeh, Damien Imbs, Michel Raynal, Gadi Taubenfeld, Philipp
Woelfel

To cite this version:
Zahra Aghazadeh, Damien Imbs, Michel Raynal, Gadi Taubenfeld, Philipp Woelfel. Optimal Memory-
Anonymous Symmetric Deadlock-Free Mutual Exclusion. PODC 2019 - ACM Symposium on Princi-
ples of Distributed Computing, Jul 2019, Toronto, Canada. pp.157-166, �10.1145/3293611.3331594�.
�hal-02394246�

https://hal.science/hal-02394246
https://hal.archives-ouvertes.fr

Optimal Memory-Anonymous

Symmetric Deadlock-Free Mutual Exclusion

Zahra Aghazadeh1, Damien Imbs2 Michel Raynal3,4 Gadi Taubenfeld5 Philipp Woelfel1

1 Dept of Computer Science, University of Calgary
2 LIS, Université d’Aix-Marseille, CNRS, Université de Toulon, Marseille, France

3 Univ Rennes IRISA, 35042 Rennes, France
4 Department of Computing, Polytechnic University, Hong Kong

5 The Interdisciplinary Center, Herzliya, Israel

Abstract—The notion of an anonymous shared memory,
introduced by Taubenfeld in PODC 2017, considers that
processes use different names for the same memory location.
As an example, a location name A used by a process p
and a location name B 6= A used by another process q
can correspond to the very same memory location X , and
similarly for the names B used by p and A used by q which
may (or may not) correspond to the same memory location
Y 6= X . In this context, the PODC paper presented a 2-process
symmetric deadlock-free mutual exclusion (mutex) algorithm
and a necessary condition on the size m of the anonymous
memory for the existence of such an n-process algorithm. This
condition states that m must be belongs to M(n) \ {1} where
M(n) = {m : ∀ ℓ : 1 < ℓ ≤ n : gcd(ℓ,m) = 1}. Symmetric
means here that, process identities define a specific data type
which allows a process to check only if two identities are equal
or not.

The present paper presents two optimal deadlock-free
symmetric mutual exclusion algorithms for n-process systems
where communication is through m registers. The first
algorithm, which considers anonymous read/write registers,
works for any m which is ≥ n and belongs to the set M(n).
It follows that this condition on m is both necessary and
sufficient for symmetric deadlock-free mutual exclusion in this
anonymity context, and this algorithm is optimal with respect
to m. The second algorithm, which considers anonymous
read/modify/write atomic registers, works for any m ∈ M(n),
which is shown to be necessary and sufficient for anonymous
read/modify/write registers. It follows that, when m > 1,
m ∈ M(n) is a tight characterization of the size of the
anonymous shared memory needed to solve deadlock-free
mutex, be the registers read/write or read/modify/write.

KEYWORDS: Anonymous shared memory, Asynchronous sys-
tem, Atomic register, Computability, Deadlock-freedom, Mu-
tual exclusion, Read/modify/write register, Read/write register.

I. INTRODUCTION

A. Memory Anonymity

While the notion of memory-anonymity has been implic-

itly used in some works in the early eighties (e.g., [16]), it

was explicitly captured as a concept and investigated only

very recently in [21]1. More precisely, this paper considers

the explicit case where “there is no a priori agreement

between processes on the names of shared memory loca-

tions”, and presents possibility/impossibility results in such

systems.

Considering a shared memory defined as an array R[1..m]
of m memory locations (registers), memory-anonymity

means that, while the same location identifier R[x] always

denotes the same memory location for a process p, it does

not necessarily denote the same memory location for two

different processes p and q. This means that there is an

adversary that may initially give different global names to

different processes for the same memory locations. In other

words, the adversary associates a permutation on the set of

memory indices {1, . . . ,m} with each process p, and p uses

them to access the memory locations. This is illustrated

in Table I, which considers two processes p and q and a

shared memory comprising three registers (as an example

the register known as R[2] by p and the register known as

R[3] for q are the very same register, which actually is R[1]
from an external omniscient observer point of view).

names for an location names location names
external observer for process p for process q

R[1] R[2] R[3]
R[2] R[3] R[1]
R[3] R[1] R[2]

permutation 2, 3, 1 3, 1, 2

Table I
EXAMPLE OF AN ANONYMOUS MEMORY MODEL

B. Related Work and Motivation

Related work. The memory-anonymous mutual exclusion

problem was introduced by Taubenfeld in [21], where are

1See [18] for an introductory survey to process anonymity and memory
anonymity.

presented the first results on mutual exclusion in read/write

memory-anonymous systems. More precisely, are presented

• a symmetric deadlock-free algorithm for two processes

(the notion of “symmetric” is related to the use of

process identifiers, and will be defined in Section II-C);

• a theorem stating that there is no deadlock-free algo-

rithm if the number of processes is not known; and

• a necessary condition stating that any deadlock-free

symmetric mutex algorithm for n processes, which uses

m ≥ 2 read/write registers, requires that m belongs to

the set M(n) = {m : ∀ ℓ : 1 < ℓ ≤ n : gcd(ℓ,m) =
1} (i.e., ℓ and m are relatively prime). Let us observe

that M(n) is infinite (among other values, it contains

an infinite number of prime numbers).

A common technique employed by shared memory al-

gorithms that aims at minimizing the number of read/write

registers, is that a process keeps writing its ID (and possibly

additional information) to different registers, until suffi-

ciently many registers store the information written by that

process. Sufficiently many registers means that, even if all

other processes write at the same time (possibly to different

registers), they cannot obliterate too much information. This

idea is used, e.g., by obstruction-free algorithms for space

efficient test-and-set objects [7], [8] (which can be viewed as

one-time mutual exclusion primitives). Our mutual exclusion

algorithms also require a process to “win” sufficiently many

registers by writing its ID to them. However, this serves

another purpose, in addition to ensuring that not too much

information can get obliterated by overwrites: Once all

m ∈M(n) registers have been written, not every process’s

ID can appear equally often, which allows breaking ties.

The main algorithmic idea is to let processes “remove”

themselves from registers, if the tie-breaking mechanism

favors other processes. This has to be done carefully to

ensure that different processes, which may view different

system configurations, do not all back off at the same time.

Motivation: This work has two primary motivations.

The first is related to the basics of computing, namely,

computability and complexity lower/upper bounds. Increas-

ing our knowledge of what can (or cannot) be done in the

context of an anonymous memory, and providing associated

necessary and sufficient conditions, helps us determine the

weakest possible system assumptions under which funda-

mental problems, such as mutual exclusion, can be solved.

The second one is more application-oriented. It appears that

the concept of an anonymous memory allows epigenetic

cell modification to be modeled from a computing point

of view [19]. Hence, anonymous shared memories could be

useful in biologically inspired distributed systems [14], [15].

If this is the case, mastering mutex in such an adversarial

context could be of primary importance.

C. Content of the Paper

As announced, this paper is on deadlock-free mutual ex-

clusion in an n-process system (n ≥ 2), where the processes

communicate by accessing a shared memory composed of

m anonymous registers (hence there are no other non-

anonymous registers).

Preliminary definitions: Two types of registers are

considered, giving rise to two communication models.

• A read/write (RW) register is an atomic register that

provides the processes with a read operation and a write

operation [12]. In the RW communication model, all

registers are RW registers.

• A read/modify/write (RMW) register is an atomic reg-

ister that provides the processes with a read operation,

a write operation, and an additional read/modify/write

operation [10]. Such an operation allows a process to

atomically read a register, and, based on the value

read, compute a new value that is assigned to the

register. One of the most prominent read/modify/write

operations is compare&swap(). When a process in-

vokes R.compare&swap(x, old, new), where R[x] is an

anonymous register, it reads the value of the register

locally known as R[x], say v, and assigns it the

value new if and only if new = v. In that case the

operation returns true, and otherwise it returns false.

In the RMW communication model, all the registers are

RMW registers.

Results presented in the paper:

• RW anonymous communication model. A deadlock-

free mutex algorithm for this model is presented, which

assumes the necessary condition stated above, namely,

m ∈ M(n). As the condition m ≥ n is necessary to

solve mutex in an RW non-anonymous system [3], it

remains necessary in an anonymous system. The very

existence of the proposed algorithm shows that the

predicate m ∈ M(n) ∧ m ≥ n (which is equivalent

to m ∈ M(n) ∧ m 6= 1) is a tight characterization

of the values of m that permit a deadlock-free mutex

algorithm in RW anonymous systems. In this sense, the

proposed algorithm is space optimal.

• RMW anonymous communication model. A deadlock-

free mutex algorithm for this model is presented, which

requires m ∈M(n). As, in this communication model,

m ≥ n is not a previously known necessary require-

ment to solve deadlock-free mutex in a non-anonymous

system, we cannot conclude from the existence of the

previous algorithm that m ∈M(n) is a tight character-

ization of the values of m which allow deadlock-free

mutex algorithm in RMW anonymous systems.

To address this issue, the paper presents a proof that

m ∈ M(n) is actually a necessary and sufficient

condition for deadlock-free mutex in RMW anonymous

systems. Let us observe that when the whole memory is

composed of a single register (case m = 1), the fact that

it is anonymous or not is irrelevant as when they access

the shared memory, the processes access the very same

register. (Said differently, when m = 1, the adversary

defining the addressing permutations has no power, and

consequently the notion of non-anonymous/anonymous

register disappears.)

Hence, eliminating the pathological case m = 1,

deadlock-free mutex for both the RW model and the RMW

model can be solved if and only if m ∈ M(n). The

corresponding algorithms differ in their algorithmic design,

and in the fact that, to enter the critical section, the algorithm

for the RW model requires a process to read its identity from

all m anonymous registers, while the algorithm for the RMW

model requires it to read its identity from a majority of the

anonymous registers only. Hence, while requiring the same

computability assumption (namely m ∈ M(n) assuming

m 6= 1), these algorithms differ from a complexity point

of view (measured as the number of registers that have to

contain the same process identity to allow this process to

enter the critical section).

D. Roadmap

This paper is composed of VII sections. Section II intro-

duces the computational model and provides some technical

definitions. Section III presents an n-process symmetric

deadlock-free mutex algorithm for the anonymous RW com-

munication model. Section IV proves its correctness. Sec-

tion V presents an n-process symmetric deadlock-free mutex

algorithm for the anonymous RMW communication model.

Section VI-A proves its correctness, while Section VI-B

proves a space lower bound which shows that the algorithm

is space optimal. Finally, Section VII concludes the paper. It

is important to notice that both algorithms have a first class

noteworthy property, namely, their simplicity.

II. SYSTEM MODEL, SYMMETRIC ALGORITHM, AND

MUTUAL EXCLUSION

A. Processes and Anonymous Registers

The system is composed of n asynchronous processes p1,

..., pn with identifiers from a set P . “Asynchronous” means

that each process proceeds in its own speed, which can vary

with time and always remains unknown to the processes.

When considering a process pi, i is its index, which is

used only to distinguish processes from an external point of

view. A process pi knows its own identity, denoted idi, but

never knows its index i. No two processes have the same

identity. Each process knows the number n of processes in

the system, and all processes know a common symbol ⊥ /∈
P , which is interpreted as a default identity (hence, when

it reads an anonymous register, a process can distinguish a

process identity from ⊥).

B. Anonymous Registers

RW communication model: Processes communicate

through a shared anonymous memory, represented by an

array R[1..m]. It is important to stress that the size m of

the shared memory is imposed by the system model, and is

not under the control of the programmer. The entire memory

is anonymous. Consequently the only means for processes

to communicate is by accessing R[1..m]. Each register can

be accessed by two operations, denoted write and read.

As already indicated, memory-anonymity means that, for

each process pi, there is a permutation fi() over the set

{1, . . . ,m} such that, when pi uses address R[x], it actually

accesses R[fi(x)]. Anonymity means that no permutation fi
is known by any process; each fi is defined by an adversary.

• When a process pi invokes R.write(x, v) it writes value

v in the atomic read/write register R[fi(x)],
• When a process pi invokes R.read(x) it obtains the

value currently saved in the register locally denoted

R[fi(x)].

To simplify the presentation of the first algorithm, we also

assume that process pi can use an operation R.snapshot()
to obtain the value of array

[

R[fi(1)], . . . , [R[fi(m)]
]

as if

the read of all its entries were instantaneous (i.e., produced

at a single point of the time line during the operation [10],

[12]). We require that the operation snapshot() satisfies the

following progress guarantee (slightly modified from [9]):

Any invocation of R.snapshot() by a process

pi terminates within a finite number of pi’s
steps, given that no process invokes write()
during its execution.

(1)

The memory-anonymous snapshot() operation is a simple

extension of the classical snapshot() introduced in [1],

[2]. All its executions are linearizable [10]. The operation

R.snapshot() can be implemented with the well-known

“double scan” technique (as used in [1]), where each process

pi is provided with an additional local sequence number

sni, which it uses to identify all its write invocations

(namely, when it invokes R.write(x, v), pi actually issues

the following sequence of statements “sni ← sni + 1;

R[x] ← (v, idi, sni)”. As no two processes have the same

identity, each invocation of R.write() is unambiguously

identified.2 To not overload the presentation, the sequence

2 The proof of the operations R.write(), R.read(), and R.snapshot()
terminate and are linearizable is the same as the one in [1]. As far as the
proof for R.snapshot() is concerned, this comes from the observation that,
in the algorithm described in [1], the order in which a process scans the
array R[1..m] is irrelevant. The important point is that, after it sequentially
scanned twice the array R[1..m], a process compares the corresponding
entries of the two copies of R[1..m] it has obtained. In our case, for
any x, the first read of R[x] and a second read of R[x] by the same
process are on the very same memory location, from which follows that
the process correctly compares the corresponding entries of the two copies
it has obtained to see if R[1..m] changed between the two consecutive
scans.

numbers associated with the write operations (and used in

the “double scan” inside the snapshot operations) are left

implicit in the rest of the paper3.

RMW anonymous communication model:

This is the RW model where, in addition to the

operations R.read(x) and R.write(x, v), a process

can also invoke an additional operation denoted

R.compare&swap(x,−,−) defined in Section I-C. (The

deadlock-free mutex algorithm described in Section V does

not use the operation R.snapshot().)

C. Symmetric Algorithm

The notion of a symmetric algorithm dates back to the

eighties [6], [11]. Here, as in [21], a symmetric algorithm is

an algorithm in which there is no way for two processes to

distinguish one from the other.

This means that the process identities are defined by a

specific data type, which allows to compare two identities

for equality only. Hence process identities are not convertible

to other data types, such as integers to know (the odd/even

notion is meaningless for this data type). This type is

similar to the Boolean data type in the sense that while

Boolean values can be compared, there no odd/even notion

for Boolean values).

Let us notice that the previous notion of symmetry can

be seen as a weak notion of process anonymity in the sense

it is not possible to define a ranking function on processes

that could be exploited to solve mutual exclusion.

D. Initial Values

Moreover, in order for the initial values not to be used to

destroy anonymity (which could favor a given process), all

registers are initialized to the same value, namely the default

value ⊥.

E. Mutual Exclusion

Mutual exclusion is the oldest and one of the most

important synchronization problems. Formalized by E. W.

Dijkstra in the mid-sixties [4], it consists in building what is

called a lock (or mutex) object, defined by two operations,

denoted lock() and unlock(). (Recent textbooks including

mutual exclusion and variants of it are [17], [20].)

The invocation of these operations by a process pi al-

ways follows the following pattern: “lock(); critical section;

unlock()”, where “critical section” is any sequence of code.

A process that is not in the critical section and has no

pending lock() or unlock() invocation, is said to be in the

remainder section. An infinite execution is fair, if every

process that has a pending lock() or unlock() invocation,

either finishes its operation or executes infinitely many steps.

3Defining each register as a record which has two fields (a value field
and a sequence number field) with global (non-anonymous) names is done
only for convenience. The two values in these fields can be encoded as a
single value, removing the need for using more than one field.

The mutex object satisfying the deadlock-freedom progress

condition is defined by the following two properties.

• Mutual exclusion: No two processes are simultaneously

in their critical section.

• Deadlock-freedom: If a process pi has a pending lock()
or unlock() invocation and no process is in the critical

section, then some process pj (possibly pj 6= pi)
eventually finishes its lock() or unlock() operation,

provided the execution is fair.

III. ANONYMOUS RW MODEL: SYMMETRIC

DEADLOCK-FREE MUTUAL EXCLUSION

This section presents Algorithm 1, that is a symmet-

ric (with respect to equality) deadlock-free mutex algo-

rithm suited to the RW memory-anonymous communication

model. As indicated in the introduction, as this algorithm

works for the necessary condition (m > 1) ∧ (m ∈M(n)),
its existence proves that this condition is also sufficient.

A. Representation of the Lock Object

Shared memory: Let m be such that m > 1 and

m ∈M(n). The shared memory is composed of a memory-

anonymous array R[1..m], as defined in Section II-A.

For any x ∈ {1, . . . ,m}, the initial value of a register

R[x] is ⊥. If R[x] 6= ⊥, it contains the identity of the last

process that wrote in this register. Given any execution and

any of its configuration C, we use the following terminology

(intuitively, a configuration is a consistent global state –local

state of each process and value of each anonymous register–

See [13] for a formal definition):

• “process pi owns R[x]”, if R[x] = idi;
• “register R[x] is owned” if R[x] 6= ⊥;

• “R is full” if all its entries are owned;

• “R is empty” if none of its entries are owned.

Local memory: Each process pi manages two local

variables: an integer denoted cnti, and a local array denoted

viewi[1..m]. The aim of viewi[1..m] is to contain the value

of R obtained by pi from its last invocation of R.snapshot().
To prevent confusion, the shared array R[1..m] is denoted

with an uppercase letter, while the local variables are de-

noted with lowercase letters. As already indicated, the local

sequence number associated with each write operation of a

process pi is left implicit.

B. Algorithm 1

Underlying principles: The core of Algorithm 1 con-

sists in managing a competition among the processes until

all the entries of R[1..m] contain the same process identity,

the corresponding process being the winner.

When a process invokes unlock(), or when it concludes

while competing that it will not be the winner, it resets the

entries of R[1..m] containing its identity to ⊥ (their initial

value).

m > 1 and m ∈ {m such that ∀ ℓ ∈ {2, ..., n} : gcd(ℓ,m) = 1}
R[1..m]: array of anonymous RW atomic registers, each initialized to ⊥
pi: process executing this code; idi is its identity

viewi: process pi’s local array of size m (with global scope)

——-

operation owned() is

(1) return (|{x ∈ {1, . . . ,m} : viewi[x] = idi}|). % # of registers owned by pi %

——-

operation shrink() is

(2) for each x such that viewi[x] = idi do if (R.read(x) = idi) then R.write(x,⊥) end if end for.

——-

operation lock() is

(3) repeat

(4) repeat viewi ← R.snapshot() until owned() > 0 ∨ ∀ x ∈ {1, . . . ,m} : viewi[x] = ⊥ end repeat;

% This point is reached only if either pi is present (at least one entry of R contains idi) or no one is %

(5) if (∃ x ∈ {1, . . . ,m} : viewi[x] = ⊥)

(6) then R.write(x, idi)
(7) else % viewi is full %

(8) let cnti = |{viewi[1], . . . , viewi[m]}|; % number of current competitors %

(9) if (owned() < m/cnti) then shrink() end if

% pi owns fewer registers than the average ⇒ pi withdraws from the competition %

(10) end if

(11) until ∀ x ∈ {1, . . . ,m} : viewi[x] = idi end repeat.

——-

operation unlock() is

(12) shrink().

Figure 1. (Algorithm 1) RW memory-anonymous deadlock-free mutex (n-process system, n ≥ 2, code for pi)

Hence, the core of the algorithm lies in the definition of

predicates that direct a process to either withdraw from the

competition or continue competing. To this end, a process

pi checks whether its local view viewi (obtained from

the invocation of R.snapshot()) is full (line 5), and if so,

whether pi owns less than the average of all registers present

in the competition (line 9).

Detailed description of the algorithm: Operation

unlock() is a simple invocation of an internal operation

called shrink() (line 12). With a shrink() invocation, a

process pi removes itself from the array by considering

its latest view, viewi. More specifically, for each index

x ∈ {1, . . .m} with viewi[x] = idi, process pi first reads

R[x], and if R[x] still equals idi, it writes ⊥ into R[x]
(line 2).

The core of the algorithm is the code of the operation

lock(). When a process pi invokes this operation, it enters

a “repeat-until” loop from which it can only exit when

it obtains a snapshot of the anonymous shared memory

R[1..m], according to which pi owns all entries (lines 3-

11).

Hence, process pi repeatedly invokes R.snapshot()
(line 4) until it sees only the default value ⊥ in the array

viewi obtained from R.snapshot() (which means that, from

its local point of view, there is no competition), or it is

present in this array (which means it is already competing).

Then, when it stops looping, pi checks whether viewi is

full (line 5) to know if it should continue writing (line 6)

or if it should consider withdrawing from the competition

(lines 7-9).

If viewi is full, processes are engaged in a competition.

If its identity appears in fewer than the average number of

owned registers, process pi withdraws from the competi-

tion by invoking the operation shrink() (lines 7-9), which

suppresses its identity from the anonymous RW memory

R[1..m]. After finishing its shrink() invocation, a process re-

enters the repeat-until loop at line 4. The fact that m ∈M(n)
guarantees that not all processes that appear in R when it

is full, own the same number of registers, so at least one

process will withdraw. If a process owns at least the average

number of registers when its view is full, it re-enters the

repeat-until loop and invokes the operation snapshot() again

at line 4.

If viewi is not full and pi owns at least one register,

it continues competing. To this end, before re-entering the

repeat-until loop, pi chooses an entry of R[1..m] equal to

⊥, and writes its identifier idi in this register (lines 5-6).

To summarize, during a lock() operation, a process pi

decides its future steps based on its latest view of the

anonymous memory as follows:

1) If pi owns all registers, it enters the critical section

(line 11).

2) If pi owns no register, and the view is not empty,

then it waits (by repeatedly taking snapshots) until it

obtained an empty view (line 4).

3) If the view is full, and cnti different processes own

some registers, and pi owns fewer than m/cnti reg-

isters, then it removes itself from all registers it owns

by calling shrink() (line 9).

4) If the view is not full, there is at least one register that

is not owned, and pi writes its identity idi into any

not owned register (line 6).

IV. ANONYMOUS RW MODEL: PROOF OF ALGORITHM 1

AND TIGHT SPACE LOWER BOUND

A. RW Memory-Anonymous Model: Proof of Algorithm 1

Let us remember that the anonymous RW array R[1..m]
is the only object that the processes can use to communi-

cate. The notions of “time”, “first” and “last” used in the

proofs are well-defined, as all write() and read() operations

are atomic. As stated in Section II-A, the proof assumes

that operation snapshot() (which can be implemented from

atomic read/write operations) is linearizable and satisfies the

progress condition 1. The proof assumes n ≥ 2, as otherwise

mutual exclusion is trivial. Moreover, let us remember that

m is assumed to be greater than 1 and belong to the set

M(n) = {m : ∀ ℓ : 1 < ℓ ≤ n : gcd(ℓ,m) = 1}, from

which it follows that m > n.

Let E be an arbitrary infinite execution E, L(E) an

execution where all snapshot() operations occur atomically

at their linearization points (i.e., L(E) is a linearization of

all operations on R in E).

Theorem 1. Algorithm 1 satisfies mutual exclusion.

Proof Consider history L(E). Let us suppose by contradic-

tion that two processes are inside their critical section at the

same time, and assume that pi is the first of them to take

its last snapshot before entering its critical section. More

precisely, suppose process pi’s lock() invocation terminates

(and thus pi enters the critical section) following some

iteration of the outer repeat-until loop in lock(). Then due to

the predicate of line 11, pi owns all registers of R at the point

of pi’s snapshot() (line 4) in its last iteration. Therefore, in

the same iteration the predicate of line 5 and the predicate of

lines 9 are false, and the predicate of lines 11 is true. Hence,

the snapshot() in line 4 at the beginning of the iteration

is pi’s last access to the RW anonymous memory before

its lock() operation terminates. We therefore say a process

enters the critical section at the point when it is taking a

snapshot in line 4 while owning all registers.

Now suppose pi enters the critical section at some point t.
Let t′ be the point when pi executes its first shared memory

operation in its subsequent unlock() invocation, if there is

such an invocation, and otherwise t′ = ∞. Let us consider

the following claim:

Claim 1. Throughout [t, t′], the value of the anonymous

memory returned by all the invocations of snapshot() con-

tains the identity of pi.

It follows from this claim that at no point in [t, t′] a

process other than pi can observe itself as owning all

registers. Also, as assumed at the beginning of the proof,

process pi is the first to take its last snapshot before entering

its critical section. Thus no other process, except pi, can be

in the critical section throughout [t, t′], which contradicts

the assumption that pi is not alone in the critical section.

Proof of the claim. For the purpose of a contradiction, let

us assume that Claim 1 is not true. Because all m registers

are owned by pi at time t and m > n, by the pigeonhole

principle, at least one process has issued more than one write

that changed the value of a register from the identity of pi
to another value. Let pj be the first process to do so. Hence,

process pj took a snapshot at some point Ts ∈ [t, t′] in

line 4 at the beginning of the iteration of the outer repeat-

until loop in which it executes its second R.write() in line 5,

that changes the value of a register from the identity of pi
to another value.

Process pi is the only process that can write its own

identity, it owns all the registers at time t, and it does not

execute any write operation in [t, t′]. Then, in the snapshot

taken at Ts ∈ [t, t′] by pj , the second register overwritten

by pj contains pi’s identity, and is not chosen at line 5. A

contradiction which completes the proof of the claim and

the theorem. ✷Theorem 1

Theorem 2. Algorithm 1 is deadlock-free.

The remainder of this section is devoted to the proof of

this theorem. For the purpose of contradiction let us assume

that E is an infinite fair execution, and that after some

point t∗ no invocation of lock() or unlock() terminate, even

though at least one process has a pending lock() or unlock()
operation and no process is in the critical section. Since

unlock() is wait-free [9] (see also the Claim 2 below)

we may assume w.l.o.g. that no invocation of unlock() is

pending at any point after t∗.

Definitions.

• A process is shrinking if it is poised to read or write

in a shrink() operation.

• A process is large if it owns at least 2 registers.

Claim 2. In any execution, each invocation of shrink() by

a process pi terminates within a finite number of pi’s steps,

and when it does, process pi owns no register.

Proof Process pi executes at most m iterations of the for-

loop in shrink(), and in each iteration it executes the wait-

free operations write() and read(), so shrink() terminates

after a finite number of pi’s steps. Before calling shrink(),
process pi calls snapshot() to obtain viewi (line 6), and

it does not write to the RW anonymous memory R[1..m]
between that snapshot() and its subsequent call of shrink().
In the for-loop in the operation shrink(), process pi writes

⊥ into all registers R[x], x ∈ {1, . . . ,m}, such that

viewi[x] = idi. Since no other process writes the value idi
to any register R[x], no register contains idi anymore when

pi terminates its shrink() operation. ✷Claim 2

Claim 3. If a process owns a register, then it is not in the

remainder section (i.e., it has a pending lock() or unlock()
invocation, or it is in the critical section).

Proof A process pi can only begin to own a register R[x],
x ∈ {1, . . . ,m}, by writing idi into R[x], that can only

happen in line 12 of the operation lock(). When pi enters

the remainder section, it has not written to any register of R
since its latest shrink() invocation in the operation unlock()
terminated, so the statement follows from the Claim 2.

✷Claim 3

In the following, for any given time t ≥ t∗, we say that

pi is competing if pi has a pending lock() operation at t and

the last snapshot taken by pi before t satisfies the condition

at line 4 (i.e. pi is not stuck in the inner loop).

Claim 4. At any point t ≥ t∗, there is a competing process

pi whose last snapshot() invocation does not cause it to

invoke shrink() at line 9.

Proof If at least one competing process pi obtains a view

that is not full, the condition at line 5 is satisfied, and thus

this view does not cause pi to invoke shrink(). We can then

consider that all competing processes have obtained a full

view in their last snapshot.

Let pi be the process that owns the most registers in the

last snapshot taken before t (if more than one process satisfy

this condition, pi can be chosen arbitrarily among them). If

pi took this snapshot, it wouldn’t cause it to invoke shrink()
(pi owns more than the average, condition at line 9). Let us

then consider that pi didn’t take this last snapshot before t,
but took one previously at time t′ < t. Process pi is the only

one which can write its own identity, and its last view was

full, causing it not to write (condition at line 4). At time t′,
pi then owns at least as many registers as in the last snapshot

taken before t. Furthermore, any competing process in the

last snapshot taken before t is also competing at time t′

(otherwise it would be stuck in the inner loop at line 4).

Thus, the view taken by pi at time t′ does not satisfy the

condition at line 9, and does not cause pi to invoke shrink().
✷Claim 4

Claim 5. At any point t ≥ t∗, if there is more than one

competing process, at least one of them will invoke shrink().

Proof Suppose not. Note that the only point at which a

process can write ⊥ is during the shrink() operation. If

at least one competing process obtains a view that is not

full, it will invoke R.write(). This will happen again until

no register has the value ⊥ and all competing processes

obtain full views in their last snapshot, preventing them

from writing. We can then consider w.l.o.g. that, at time

t, all competing processes have stopped writing and have

obtained the same view. Let cnt be the number of these

competing processes.

Because 1 < cnt ≤ n and ∀ ℓ : 1 < ℓ ≤ n : gcd(ℓ,m) =
1, at least one competing process owns less registers than

m/cnt, causing it to call shrink(); a contradiction which

proves the claim. ✷Claim 5

Proof of Theorem 2.

By Claim 4, at any point t ≥ t∗, there is a competing process

whose last snapshot() invocation does not cause it to invoke

shrink(). By Claim 2, any shrink() operation terminates, and

causes the invoking process to be stuck in the inner loop at

line 4, causing it to stop competing after its next snapshot()
invocation. This implies that at least one competing process

never calls shrink() after point t∗.

By assumption, no process is in the critical section, and

no unlock() operation is pending. By Claim 3, if a process

owns a register, then it is not in the remainder section. The

only processes that own registers are then the ones that are

competing.

By Claim 5, if there is more than one competing process,

at least one of them invokes shrink(), causing it to stop

competing. There is then eventually a single competing

process that owns all the registers, a contradiction with the

original assumption that after some point t∗, no invocation

of lock() or unlock() terminates, even though at least one

process has a pending lock() or unlock() operation and no

process is in the critical section. ✷Theorem 2

B. Anonymous RW Model: Tight Space Bound

Given M(n) = {m : ∀ ℓ : 1 < ℓ ≤ n : gcd(ℓ,m) = 1}, it

is shown in [21] that m ∈M(n) is a necessary condition for

any algorithm solving symmetric deadlock-free mutex in an

anonymous memory composed of m read/write registers. As

already indicated, as m ≥ n is a necessary condition for any

algorithm solving deadlock-free mutex in a non-anonymous

system, it remains necessary in a read/write anonymous

system. This translates as follows: m ∈ M(n) \ {1} is a

necessary condition for deadlock-free mutex in an anony-

mous memory composed of m read/write registers.

As Algorithm 1 solves deadlock-free mutex under this

condition, it follows that m ∈ M(n) \ {1} is a necessary

and sufficient condition.

V. ANONYMOUS RMW MODEL: SYMMETRIC

DEADLOCK-FREE MUTUAL EXCLUSION

This section presents an algorithm implementing

a deadlock-free mutex lock object in an n-process

read/modify/write (RMW) memory-anonymous system. As

the previous algorithm, the algorithm presented below is

particularly simple.

A. Representation of the Lock Object

The shared anonymous memory is made up of m RMW

atomic registers, denoted R[1..m] where m ∈ {1} ∪ {m :
∀ ℓ : 1 < ℓ ≤ n : gcd(ℓ,m) = 1} (let us notice that this set

includes the value 1).

In Algorithm 2, a process uses three local variables,

denoted most presenti, ownedi, and viewi (which has the

same meaning as in Algorithm 1).

B. Algorithm 2

When a process pi invokes lock(), it enters a repeat

loop from which it will exit when it will obtain a view

viewi[1..m] in which its own identity appears in a majority

of registers (line 12).

Process pi first invokes the RMW operation

compare&swap() on all registers in order to write its

identity in all the registers whose current value is the

default value ⊥ (line 2). Then, it reads (asynchronously)

the whole anonymous memory and saves it in viewi[1..m]
(line 3). From this non-atomic view of the shared memory,

pi computes the occurrence number of the most present

value (most presenti, line 4) and the occurrence number

of its own identity (ownedi, line 5).

• If ownedi ≥ most presenti, pi proceeds to the next

iteration of the repeat-until loop if ownedi ≤ m/2, and

enters the critical section if ownedi > m/2.

• If ownedi < most presenti, pi resigns from the com-

petition. To this end, it first writes ⊥ in all entries that,

from its local point of view, contain its identity (line 7),

and then waits until it sees that all the anonymous

registers contain the default value ⊥ (lines 8-10).

When a process pi invokes unlock(), it simply resets to

⊥ all the registers that contain its identity idi (line 13).

VI. ANONYMOUS RMW MODEL: PROOF OF

ALGORITHM 2 AND TIGHT SPACE LOWER BOUND

A. Proof of Algorithm 2

Theorem 3. Algorithm 2 satisfies mutual exclusion.

Proof Assume that a process pi is in its critical section,

while some other process, say process pj , is executing the

operation lock(). Before pi entered its critical section the

exit predicate of line 12, namely, ownedi > m/2 must

be evaluated to true. This means that, before pi entered

its critical section, it succeeded to change more than m/2
RMW anonymous registers from ⊥ to its identifier idi. As

long as process pi does not set these RMW registers back to

⊥, process pj cannot succeed in changing more than m/2
registers from ⊥ to idj . Thus, process pj will not be able

to enter its critical section while pi is in its critical section.

✷Theorem 3

Theorem 4. Algorithm 2 is deadlock-free.

Proof We show that if a process is trying to enter its critical

section, then some process eventually enters its critical

section.

In the first for loop (line 2) each process scans the m
RMW anonymous registers trying to set those that are ⊥ to

its identifier. If the process is running alone, it will clearly

succeed to set them all to its identifier and will enter its

critical section.

When there is contention (i.e., several processes are in

their entry codes) since ∀ x ∈ {1, ..., n} : m and x are

relatively prime, at least one of the processes pk must find

that less than most presentk of the RMW registers are set

to its identifier. It follows from lines 6-7 that pk gives up

the competition, and waits in the inner repeat loop (lines 8-

10). This enables at least one other process pj , for which

most presentj of the RMW registers are set to its identifier,

to proceed. Repeating this argument, eventually one of the

processes will find that its identifier appears in more than

m/2 of the RMW registers and will enter its critical section.

Finally, as in its exit code (line 13), a process sets to

⊥ all the registers containing its identifier. This enables a

possibly waiting process to continue. Thus, it is not possible

for all the processes to simultaneously remain forever in the

operation lock(). ✷Theorem 4

B. Anonymous RMW Model: Tight Space Lower Bound

Theorem 5. There is an n-process symmetric deadlock-free

mutual exclusion algorithm using m ≥ 1 anonymous RMW

registers only if m ∈ M(n) = {m : ∀ ℓ : 1 < ℓ ≤
n : gcd(ℓ,m) = 1}.

Proof Let us assume to the contrary, namely, there is a

symmetric deadlock-free mutual exclusion algorithm for n
processes using m ≥ 1 anonymous RMW registers such

that for some positive integer 1 < ℓ ≤ n, m and ℓ are not

relatively prime. This means that there is a number 1 < ℓ ≤
m such that ℓ divides m.

Let us arrange the m RMW registers on a ring with m
nodes where each register is placed on a different node.

Then, let us pick ℓ processes. For simplicity let us call these

processes p0, ..., pℓ−1. To each one of the ℓ processes, we

assign an initial RMW register (namely, the first register that

the process accesses) such that for every two processes pi
and pi+1 (mod ℓ), the distance between their initial registers

is exactly m/ℓ when walking on the ring in a clockwise

direction. Here we use the assumption that ℓ divides m.

m ∈ {m such that ∀ ℓ ∈ {2, ..., n} : gcd(ℓ,m) = 1}
R[1..m]: array of anonymous RMW atomic registers, each initialized to ⊥
pi: process executing this code; idi is its identity

viewi: process pi’s local array of size m (with global scope)

———–

operation owned() is return (|{x ∈ {1, . . . ,m} : viewi[x] = idi}|). % # of registers owned by pi %

———–

operation lock() is

(1) repeat

(2) for each x ∈ {1, ...,m} do R.compare&swap(x,⊥, idi) end for;

(3) for each x ∈ {1, ...,m} do viewi[x]← R.read(x) end for;

(4) most presenti ← maximum number of times the same non-⊥ value appears in viewi;

(5) ownedi ← owned();
(6) if ownedi < most presenti then

(7) for each x ∈ {1, ...,m} do if (viewi[x] = idi) then R.write(x,⊥) end if end for;

(8) repeat

(9) for each x ∈ {1, ...,m} do viewi[x]← R.read(x) end for

(10) until ∀ x ∈ {1, . . . ,m} : viewi[x] = ⊥ end repeat

(11) end if

(12) until ownedi > m/2 end repeat.

———–

operation unlock() is

(13) for each x ∈ {1, ...,m} do R.compare&swap(x, idi,⊥) end for.

Figure 2. (Algorithm 2) RMW mem.-anonymous deadlock-free mutex (n-process system, n ≥ 2, code for pi)

The lack of global names, allows us to assign for each

process an initial RMW register and an ordering of the reg-

isters which determines how the process scans the registers.

An execution in which the ℓ processes are running in lock

steps, is an execution where we let each process take one

step (in the order p0, ..., pℓ−1), and then let each process take

another step, and so on. For process pi and integer k, let

order(pi, k) denotes the kth new register that pi accesses

during an execution where the ℓ processes are running in

lock steps, and assume that we arrange that order(pi, k) is

the register whose its distance from pi’s initial registers is

exactly (k − 1), when walking on the ring in a clockwise

direction.

We notice that order(pi, 1) is pi’s initial register,

order(pi, 2) is the next new register that pi accesses and

so on. That is, pi does not access order(pi, k + 1) before

accessing order(pi, k) at least once, but for every j ≤ k,

pi may access order(pi, j) several times before accessing

order(pi, k + 1) for the first time.

With this arrangement of RMW registers, we run the ℓ
processes in lock steps. Since only comparisons for equality

are allowed, and all registers are initialized to a the same

value –which (to preserve anonymity) is not a process

identity– processes that take the same number of steps will

be at the same state, and thus it is not possible to break

symmetry. It follows that either all the processes will enter

their critical sections at the same time, violating mutual

Registers RW anonymous RMW anonymous

Sufficient condition This paper This paper
(Algorithm 1) (Algorithm 2)

Necessary condition [21]4 This paper
(Theorem 5)

Table II
A GLOBAL PICTURE FOR n-PROCESS ANONYMOUS MUTEX (n ≥ 2)

exclusion, or no process will ever enter its critical section,

violating deadlock-freedom. A contradiction. ✷Theorem 5

VII. CONCLUSION

“Anonymous shared memory” means there is no a priori

agreement among the processes on the names of the shared

registers. Moreover, “symmetric algorithm” means that the

process identities define a specific data type with no internal

structure (such as a total order) and no relation with other

data type (hence an identity cannot be compared with an

integer). Identities can only be read, written, and compared

with equality.

Considering two types of anonymous registers (the atomic

read/write (RW) registers and the atomic read/modify/write

4Notice that the lower bound for the RW model from [21], follows
immediately from our stronger lower bound for the RMW model present
in this paper.

(RMW) registers) this paper presented several results on

symmetric mutual exclusion algorithms, summarized in Ta-

ble II. These algorithms differ in their design principles and

their costs (measured as the number of registers which must

contain the identity of a process to allow it to enter the

critical section).

The symmetric deadlock-free mutex algorithm built on

top of an anonymous memory made up of m atomic RW

registers works for m ∈ M(n) \ {1}, where M(n) = {m :
∀ ℓ : 1 < ℓ ≤ n : gcd(ℓ,m) = 1}, while the algorithm

for m atomic RMW registers works for m ∈ M(n). The

necessity of the first condition was proved in [21], while the

necessity of the second condition was proved in this paper.

The existence of the algorithms presented in the paper proves

these conditions are also sufficient.

Let us remark that a system composed of a single anony-

mous register is no really anonymous. Hence, if we eliminate

the “pathological” case m = 1, the condition m ∈M(n) is a

necessary and sufficient for symmetric deadlock-free mutex

in both the read/write and the read/modify/write anonymous

register models. This shows a fundamental computability

difference separating the “memory anonymity” adversary

(which operates before the execution and is consequently

static) and the “process crash” adversary (which operates

during the execution and is consequently dynamic), for

which read/write and read/modify/write registers (provided

with an operation such as compare&swap) are located at

the two extremes of the synchronization power hierarchy

as defined in [9]. (Let us remind that mutex can be solved

neither in the read/write nor in the read/modify/write non-

anonymous register models in the presence of process

crashes.) Last but not least, a noteworthy property of the two

algorithms that have been presented lies in their simplicity.

ACKNOWLEDGMENTS

Zahra Aghazadeh and Philipp Woelfel were partially

supported by the Canada Research Chairs program and

by the Discovery Grants program of the Natural Sciences

and Engineering Research Council of Canada (NSERC).

Michel Raynal was partially supported by the French ANR

project 16-CE40-0023-03 DESCARTES devoted to layered

and modular structures in distributed computing.

The authors want to thank the referees for their construc-

tive comments.

REFERENCES

[1] Afek Y., Attiya H., Dolev D., Gafni E., Merritt M. and

Shavit N., Atomic snapshots of shared memory. Journal

of the ACM, 40(4):873-890 (1993)

[2] Anderson J., Multi-writer composite registers. Dis-

tributed Computing, 7(4):175-195 (1994)

[3] Burns J. E. and Lynch N. A., Bounds on shared memory

for mutual exclusion. Information and Computation,

107(2):171-184 (1993)

[4] Dijkstra E .W., Solution of a problem in concurrent

programming control. Communications of the ACM,

8(9):569 (1965)

[5] Fischer M. J., Lynch N. A., and Paterson M. S.,

Impossibility of distributed consensus with one faulty

process. Journal of the ACM, 32(2):374-382 (1985)

[6] Garg V.K. and Ghosh J., Symmetry in spite of hierar-

chy. Proc. 10th Int’l Conference on Distributed Com-

puting Systems (ICDCS’90), IEEE Computer Press,

pp. 4-11 (1990)

[7] Giakkoupis G., Helmi M., Higham L., and Woelfel P.,

An O(sqrt n) space bound for obstruction-free leader

election. Proc. 27th Int’l Symposium Distributed Com-

puting (DISC’13), Springer, LNCS 8205, pp. 46-60

(2013)

[8] Giakkoupis G., and Woelfel P., Randomized abortable

mutual exclusion with constant amortized RMR com-

plexity on the CC Model. Proc. 36th ACM Symposium

on Principles of Distributed Computing (PODC’17),

ACM Press, pp. 221-229 (2017)

[9] Herlihy M.P., Wait-free synchronization. ACM Trans-

actions on Programming Languages and Systems,

13(1):124-149 (1991)

[10] Herlihy M.P. and Wing J.M., Linearizability: a

correctness condition for concurrent objects. ACM

Transactions on Programming Languages and

Systems,12(3):463-492, (1990)

[11] Johnson R.E., and Schneider F.B., Symmetry and simi-

larity in distributed systems. Proc.4th ACM Symposium

on Principles of Distributed Computing (PODC’85),

pp. 13-22, ACM Press (1985)

[12] Lamport L., On interprocess communication, Part I:

basic formalism. Distributed Computing, 1(2):77-85

(1986)

[13] Loui M. and Abu-Amara H., Memory requirements for

agreement among unreliable asynchronous processes.

Advances in Computing Research, 4:163-183, JAI Press

(1987)

[14] Navlakha S. and Bar-Joseph Z., Algorithms in na-

ture: the convergence of systems biology and computa-

tional thinking. Molecular systems biology, 7(546):1-11

(2011)

[15] Navlakha S. and Bar-Joseph Z., Distributed infor-

mation processing in biological and computational

systems. Communications of the ACM, 58(1):94-102

(2015)

[16] Rabin M., The choice coordination problem. Acta

Informatica, 17(2):121-134 (1982)

[17] Raynal M., Concurrent programming: algorithms,

principles and foundations. Springer, 515 pages, ISBN

978-3-642-32026-2 (2013)

[18] Raynal M. and Cao J., Anonymity in distributed

read/write systems: an introductory survey. Proc. 6th

Int’l Conference on Networked Systems (NETYS’18),

Springer LNCS, 17 pages (2018)

[19] Rashid S., Taubenfeld G., and Bar-Joseph Z., Genome

wide epigenetic modifications as a shared memory

consensus. 6th Workshop on Biological Distributed

Algorithms (BDA’18), London (2018)

[20] Taubenfeld G., Synchronization algorithms and con-

current programming. Pearson Education/Prentice Hall,

423 pages, ISBN 0-131-97259-6 (2006)

[21] Taubenfeld G., Coordination without prior agreement.

Proc. 36th ACM Symposium on Principles of Dis-

tributed Computing (PODC’17), ACM Press, pp. 325-

334 (2017)

