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Abstract: Motivated by recent experimental results, we demonstrate that
the ubiquitous pulse propagation equation based on a single generalized
nonlinear Schrödinger equation is incomplete and inadequate to explain the
formation of the so called negative-frequency resonant radiation emitted
by optical solitons. The origin of this deficiency is due to the absence of a
peculiar nonlinear coupling between the positive and negative frequency
components of the pulse spectrum during propagation, a feature that the
slowly-varying envelope approximation is unable to capture. We therefore
introduce a conceptually new model, based on the envelope of the analytic
signal, that takes into account the full spectral dynamics of all frequency
components, is prone to analytical treatment and retains the simulation
efficiency of the nonlinear Schrödinger equation. We use our new equation
to derive from first principles the phase-matching condition of the negative-
frequency resonant radiation observed in previously reported experiments.
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1. Introduction and motivations

The study of supercontinuum generation (SCG), i.e. the explosive broadening of the spectrum
of an intense and short input pulse due to nonlinear effects in a medium, typically an optical
fiber or a bulk crystal, has been an active area of research since its first discovery in 1970 [1],
due to the many applications in metrology and device characterization [2, 3].

Constructing a theory of SCG has proved to be crucial in order to understand and control
the dynamics of pulses in optical fibers [4]. Such theory is based on the so-called general-
ized nonlinear Schrödinger equation (GNLSE), an enhanced version of the integrable nonlinear
Schrödinger equation [2]. The GNLSE, based on the concept of slowly varying envelope ap-
proximation (SVEA) of the electric field, is paradigmatic in nonlinear optics, and has been
extremely successful in explaining most of the features of SCG [2,3]. One of the most success-
ful predictions was the emission of dispersive waves from optical solitons, which are phase-
matched at specific wavelengths, usually referred to as resonant radiation (RR) or Cherenkov
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radiation [5–8]. RR contributes significantly to the formation of SCG spectra and can have
many applications especially when using photonic crystal fibers [4, 9, 10].

It is known that the conventional GNLSE fails when considering few- or single-cycle pulses.
Many approaches for deriving accurate propagation equations with minimal approximations
have been successfully developed for this situation during the years [11,12], which are capable
of dealing with broadband spectral evolution, Raman effect and the inclusion of backward
waves. However, recent experiments have revealed that new resonant frequencies [referred to
as negative-frequency resonant radiation (NRR)] can be emitted by solitons, which are not
predicted by any GNLSE formulation [13–15]. Such frequencies can be numerically predicted
by using the full Maxwell equations [solved with the finite difference time domain (FDTD,
[16]) or the pseudo-spectral spatial domain (PSSD, [17]) techniques], or alternatively by the
so-called unidirectional pulse propagation equation (UPPE, [18]), which includes only forward
propagating waves but uses the full oscillating electric field, while the phase-matching condition
for NRR formation has been derived heuristically [13, 15]. NRR has been attributed to the
presence of negative frequency components in the UPPE, which are absent in the GNLSE due
to SVEA. However, this claim sparked some controversy in the community [19], due to a lack of
a solid theoretical support that could confirm or disprove the given interpretation. For example,
this radiation could be confused with that generated by backward waves or by the conventional
four-wave mixing (FWM) between the soliton and co-propagating radiation as in [20]. It is
also interesting to notice that, despite the fact that negative frequencies are routinely used in
quantum optics [21] (where they are associated to the photon creation operator), quantum field
theory [22] and water waves [23], in nonlinear optics there is still some resistance in accepting
this concept, which we aim to solve in this manuscript.

In the present work we introduce a new equation for a properly defined pulse envelope that is
able to capture the surprising and peculiar interaction between positive and negative frequency
components during the propagation of an ultrashort pulse. Such an interaction is able to generate
phase-matched dispersive waves that would not exist in any model based on the conventional
envelope defined when deriving the NLSE, currently referred to as NRR in the literature. We
demonstrate that our new equation can be efficiently solve numerically and gives an analytical
insight into the very nature of ultrashort pulse propagation in any dielectric medium. Moreover,
in this paper we also show that there are some serious deficiencies in the universally adopted
equation based on the GNLSE, since the latter neglects the contribution of the cross-phase
modulation between the positive and negative frequency parts of the spectrum, which gives rise
to new and unexpected nonlinear phenomena that have been previously overlooked.

The structure of the paper is the following. In section 2 we discuss the physical relevance
and the existence of positive and negative frequency states, first in linear optics, and then in
nonlinear optics. We support our claims with simple yet robust mathematical arguments, and we
discuss the necessity for including negative energy states in the dispersion relation. In section 3
we introduce our notation for the analytic signal, and we derive our new equation based on the
envelope of the analytic signal, starting from the UPPE. The transparency of this equation when
compared to the UPPE allows us to identify the term responsible for the NRR. In section 4 we
derive the phase-matching conditions of the radiated frequencies, and we discover new phase-
matched frequencies that were previously unknown. In section 5 we present detailed numerical
simulations supporting our theory, and in particular we focus our attention to the dynamics of
the NRR. Discussion and conclusions are given in section 6, while appendix A and B treat the
delicate issue of the energy conservation of our new propagation equation, and the possibility
to control and observe the NRR in bulk crystals, respectively.
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2. The existence and reality of negative frequencies in optics

In this section we discuss the somewhat disputed physical reality and the interpretation of neg-
ative frequencies in optics. The logical conclusion is that both positive and negative frequencies
must be treated on equal footing and must be included in any meaningful formulation of a fully
consistent pulse propagation equation.

Let us discuss light propagation in the vacuum case for simplicity. The linear curl Maxwell
equations can be written (in the Heaviside-Lorentz unit system) as

∇×E =−1
c

∂tB, (1)

∇×B =
1
c

∂tE, (2)

where E and B are the electric and magnetic field vectors, and c is the speed of light in vacuum.
In order to analize the frequency content of these equations, we note that Eqs. (1)-(2) are exactly
equivalent to a linear relativistic Dirac equation. In order to see this we follow [24], and we
define a ’Dirac spinor’ as ψ = (Ey+ iEx,−iEz,−Bx+ iBy,Bz)

T . This is only one possible choice
out of a total of eight equivalent vectors [24]. With this definition, we can write Eqs. (1)-(2) in
the following form:

γμ ∂μ ψ = 0, (3)

where γμ are the 4× 4 Dirac matrices and ∂μ ≡ ( 1
c ∂t ,∇) is the derivative four-vector, with

μ = {0,1,2,3}. Equation (3) is exactly the massless Dirac equation that is encountered in the
theory of relativistic quantum mechanics of spin-1/2 particles. This equation is fully Lorentz-
invariant, as it should be since Maxwell equations have also this property. The two degrees
of freedom that correspond to the two states of spin in quantum mechanics, here represent
the two possible circular polarizations of light. Alternative (but equivalent) ways to write a
Dirac-like equation for Maxwell’s equations make use, for instance, of the Riemann-Silberstein
vector [25], and are treated in some textbooks as a mere curiosity [26].

From Eq. (3) one derives the wave equation, i∂tψ = −icα · ∇ψ , where α j ≡ γ0γ j =(
0 σ j

σ j 0

)
, and j = {1,2,3}. The Hamiltonian associated with this wave equation is

thus Ĥ = −icα · ∇. Eigenvalues of the Hamiltonian are found by solving the secular Eq.
det(cα ·k−λ ) = 0. By using the well-known relation (α · k)2 = |k|2, we finally obtain
λ± = ±|k|c. This brings us to the core conclusion of this section: Eq. (3) exhibits two fre-
quency eigenvalues with opposite sign, irrespective of the direction of propagation of the wave.
This is an unavoidable consequence of the fact that Maxwell’s equations are relativistic and can
be cast in a form identical to the massless Dirac equation, at least in the vacuum case. These two
eigenvalues correspond to positive and negative energy states: in full analogy with the classical
solutions of the Dirac equation, negative energy states are not unphysical solutions that should
be discarded. On the contrary, one must include them on equal footing with the positive energy
states, in order to preserve the internal consistency of Maxwell’s equations.

In Fig. 1 we show a full plot of the dispersion for plane waves for bulk silica. There are
four quadrants, containing all the combinations of forward/backward propagation and posi-
tive/negative energy states. It is customary in nonlinear optics, but certainly not complete, to
consider only the upper-rightmost quadrant with positive frequencies and forward propagation
when neglecting the backward waves, for example in the UPPE formulation. This is incorrect
and incomplete, since forward waves are described also by the bottom-leftmost quadrant of
Fig. 1, which contains negative frequency states. Note that the forward propagation constant
must satisfy (for lossless media) the relation β (−ω) = −β (ω), and thus it must be an odd
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Fig. 1. Dispersion curves for bulk silica. All possible combinations of forward/backward
waves and positive/negative energy states appear in this plot.

function with respect to the axis ω = 0. As a consequence, the real refractive index must satisfy
n(ω) = n(−ω), and it is thus an even function of the frequency.

In a medium different from vacuum, Maxwell’s equations cannot be written in the Dirac form
of Eq. (3), since the presence of the medium introduces a preferred reference frame, breaking
the Lorentz invariance. However, in this case, Maxwell’s equations can be cast in a form similar
to the Schrödinger equation by using 6 × 6 matrices, see [27]. The associated Hamiltonian
operator has positive and negative eigenvalues, exactly as in the vacuum case [27]. This result
can be directly generalized to the nonlinear case by using perturbation theory, assuming that
the nonlinear polarization does not perturb considerably the linear modes.

3. Derivation of the envelope equation for the analytic signal from the unidirectional
pulse propagation equation

We now introduce some important definitions that will be crucial for the following discussion,
mainly following [28–31].

The real electric field propagating in the fiber is denoted by E(z, t), where z is the propa-
gation direction and t is the time variable. The Fourier transform of the electric field is de-
noted by Eω(z) ≡ F [E(z, t)] =

∫ +∞
−∞ E(z, t)eiωtdt. The analytic signal of the electric field, i.e.

the positive frequency part of the field, which is a complex function, is defined as E (z, t) ≡
π−1 ∫ ∞

0 Eω(z)e−iωtdω . The analytic signal can also be defined alternatively by using the Hilbert
transform: E (z, t) = E(z, t)− iH [E(z, t)], where H [E(z, t)] ≡ π−1

P
∫ +∞
−∞ dt ′E(z, t ′)/(t − t ′),

and the simbol P
∫ +∞
−∞ indicates that the integral must be taken in the sense of the Cauchy

principal value. With these definitions, the Fourier transform of the electric field can be writ-
ten as the sum Eω = [Eω +(E−ω)

∗]/2 since only the positive (or negative) frequency part of
the spectrum carries information, while for the same reason the electric field itself is real and
is given by E(z, t) = [E (z, t)+E ∗(z, t)]/2. The analytic signal satisfies the following require-
ments: Eω>0 = 2Eω , Eω<0 = 0 and Eω=0 = Eω=0. Note that (E ∗)ω and (Eω)

∗ are different in
general and must be distinguished.

It can be proved that the fields E and E ∗ are the classical analogues of the annihilation and
creation operators a and a† used after quantization of the electromagnetic field, see e.g. [28,29].
This fact is quite understandable since a and a† are related to the positive and negative energy
parts of the electric field, which in quantum optics correspond to absorption and emission of
a photon [22]. Since the concept of discrete absorption or emission is extraneous to classical
electromagnetism, in a pre-second quantization context one is forced to talk about ’conjugated’
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fields or ’negative frequency’ fields, as we shall do in the following.
Operators a and a† are not linked to observables in quantum optics, since they are not Hermi-

tian. Only the real electric field, which is a Hermitian combination of a and a†, is an observable
quantity [22]. Due to the requirement that the electric field be real at all moments of time and
at all locations in space, the positive and negative energy content of any pulse in optics and in
quantum optics must be absolutely identical. This means that, since photons and antiphotons
are equivalent, i.e. they carry the same information, there are no quantum numbers that can
distinguish between them, and this results in a perfectly real-valued electric field [25]. An in-
teresting, albeit somewhat trivial, corollary is that (contrary to common belief) a measurement
can only detect the positive and negative frequency content of a pulse simultaneously, and never
one or the other individually. For instance, a real-valued cosine wave is the combination of ex-
ponentials with both positive and negative energies. The exponential form is the correct basis
that has to be used, since only exponentials are eigenfunctions of the Hamiltonian Ĥ written in
the previous section, which is a first order operator.

The starting point of our discussion is the so-called unidirectional pulse propagation equation
(UPPE) [18], which is a reduction of Maxwell’s equations that accounts only for the forward
propagating part of the electric field:

i
∂Eω
∂ z

+β (ω)Eω +
ω

2cn(ω)
PNL,ω = 0, (4)

where β (ω) is the full propagation constant of the medium, c is the speed of light in vacuum,
n(ω) is the linear refractive index, and PNL,ω(z)≡ χ(3)F [E(z, t)3]ω is the nonlinear Kerr polar-
ization. Particular care must be devoted to the definition of the complex envelope, since we do
not want to put any limitation to the frequency extent of the signals. This aspect is overlooked in
the literature, and it is taken for granted that the frequency bandwidth of the envelope is narrow
with respect to the carrier wave.

The key element that we introduce here is that only a proper definition of the envelope is
able to capture the correct coupling between the positive and the negative frequency parts of
the spectrum. The ’envelope’ we introduce here is based on the analytic signal and is defined
as:

A(z, t)≡ E (z, t)e−iβ0z+iω0t , (5)

i.e. the frequency components of the analytic signal are ’shifted’ by an amount −ω0. By doing
this, we shift the carrier frequency of the analytic signal to zero, so that we deal with frequency
detuning Δω from ω0, and not with absolute frequencies, in analogy with the conventional
definition of envelope done in many textbooks [3]. However, there is a key difference between
the conventional definition of envelope (see e.g. [3]) and Eq. (5): the former is adequate only if
the spectral extension of the pulse evolution is much smaller than the pulse central frequency,
|Δω| ≡ |ω −ω0| � ω0, i.e. only under SVEA conditions, while the envelope of the analytic
signal A(z, t) considered here does not suffer from this limitation, and so supp{AΔω(z)} =
[−ω0,+∞). By clearly dividing the envelope associated to the positive frequency components
from that associated to the negative frequency components, we will be able to write the envelope
equation that correctly describes the dynamics of pulses of arbitrary duration and spectral
extension, taking into account the peculiar and non-trivial interaction between positive and
negative frequencies that arises due to the nonlinear polarization.

With the above definitions, the nonlinear polarization is now written as:

PNL(z, t) =
χ(3)

8

[
A3e−3iω0t+3iβ0z +A∗3e3iω0t−3iβ0z +3|A|2Ae−iω0t+iβ0z +3|A|2A∗eiω0t−iβ0z

]
. (6)

Due to our definition of A, the first (second) term in the square brackets contains only positive
(negative) frequencies, and they are responsible for third harmonic generation (THG). The third
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and fourth terms contain both positive and negative frequencies, because the Fourier transform
of |A|2 has a frequency support (i.e. a domain of existence) that extends from −∞ to +∞. In
fact F [|A|2]Δω is the convolution between AΔω , whose support is [−ω0,+∞), and A∗

Δω , whose
support is (−∞,+ω0]. By applying the Titchmarsh convolution theorem (i.e. the support of the
convolution is contained in the sum of the supports of its individual terms [32]), it immediately
follows that supp{F [|A|2]Δω} ⊆ (−∞,+∞). This means that although in absence of nonlin-
earities positive and negative frequencies live a completely separate existence, in presence of
nonlinear terms they can interact nonlinearly. Such an interaction is also present in the tradi-
tional Kerr term |A|2A. However, new nonlinear effects will only be visible numerically and
experimentally in the presence of resonant processes, such as the emission of RR and NRR
from solitons. If we denote with PNL(z, t) the analytic signal for the nonlinear polarization,
then its envelope Ap(z, t) = PNLe−iβ0z+iω0t can be expressed as:

Ap(z, t) =
3χ(3)

4

[
|A|2A+ |A|2A∗e2iω0t−2iβ0z +

1
3

A3e−2iω0t+2iβ0z
]
+

(7)

The subscript ’+’ prescribes that only positive frequencies must be taken (i.e. Δω > −ω0)
and is a shorthand notation to indicate the positive frequency spectral filtering involved in the
analytic signal, and operated in the time domain by the Hilbert transform, which is crucial in
our formulation. The first and third terms in Eq. (7) are the conventional Kerr term and the THG
term, respectively. The second term, which we call a conjugated Kerr term, is the new feature
of our formulation and it emerges as a consequence of the analytic signal envelope.

Finally, with all the above ingredients, one can write an equation for the analytic signal
envelope A which contains only positive frequencies:

i∂ξ A+ D̂(i∂τ)A+ γ Ŝ(i∂τ)

[
|A|2A+ |A|2A∗e2iω0τ+2iΔkξ +

1
3

A3e−2iω0τ−2iΔkξ
]
+

= 0, (8)

where Δk ≡ (β1ω0 − β0) (this is a central quantity in this work), ξ ≡ z and τ ≡ t − β1z
are the new space-time variables in the co-moving frame, the dispersive operator D̂(i∂τ) ≡
∑∞

m=2 βm(i∂τ)
m/m!, γ is the nonlinear coefficient of the medium, and Ŝ(i∂τ) is the operator

accounting for the dispersion of the nonlinearity [provided in the Fourier space by the fac-
tor ω/n(ω) in Eq. (4)], which is necessary to include since the equations are broadband and
SVEA is not used. For our purposes, and without loss of generality (our results are valid for
any form of this operator, provided it includes at least the first order expansion term), it will
be sufficient to perform the traditionally adopted approximation Ŝ(i∂τ)� 1+ i∂τ/ω0. Note that
the field A feels a dispersion given by D(Δω) = ∑∞

m=2 βmΔωm/m! (where Δω is the detuning
from ω0) and a positive nonlinearity, while the field A∗ feels a different, ’conjugate’ dispersion
−D(−Δω) �= D(Δω) and a negative nonlinearity, and both fields are forward-propagating.

Equation (8) is the central result of this paper. Since A and A∗ carry the same amount of
information, it is sufficient to consider a single equation only: indeed the dynamics around the
positive carrier frequency (ω0) must be the mirror image of the dynamics around the negative
carrier frequency (−ω0), due to the requirement that the electric field E must be real. The two
modes A and A∗ do not see each other in the absence of nonlinearity, but they mutually exchange
energy when the nonlinear terms are included, thus generating new frequencies. Since the in-
teraction modifies the phase, new resonant nonlinear effects occur. It is possible to prove (we
give the non-trivial derivation in appendix A) that in Eq. (8) the energy is perfectly conserved,
i.e. ∂ξ

∫ +∞
−∞ |A(ξ ,τ)|2dτ = 0, due to the detailed balance of the energy flow from A to A∗ and

back. It is interesting to note that the presence of the shock operator and the THG term are es-
sential for energy conservation, which establishes a deep and previously un-noticed connection
between the shock operator, THG and negative frequencies. In the absence of THG terms, Eq.
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(8) would exhibit a small non-conservation of energy proportional to the missing THG energy.
Another crucial point to notice is that, although Eq. (8) looks at first sight as a kind of GNLSE
written for an envelope, this equation is in its physical content completely equivalent to the
UPPE [Eq. (4)]: the analytic signal and the filtering procedure is used to completely separate
positive from negative frequency parts in the UPPE, and the introduction of the envelope of
the analytic signal is used only to give Eq. (8) a formal resemblance with the GNLSE, but our
equation is not restricted by any of the limitations of by the latter.

4. Phase-matching conditions between soliton and radiation

In order to derive phase-matching conditions between a soliton and its resonant radiations,
we follow a standard procedure described in [20]. We first pose A(ξ ,τ) = F(τ)eiqξ + g(ξ ,τ),
where F(τ) is the (purely real) envelope of the optical soliton, q is the nonlinear mismatch
and g is a small amplitude dispersive wave. After substitution into Eq. (8), and by taking only
the fundamental and first order terms, one obtains (neglecting the shock term for simplicity,
without loss of generality):

(i∂ξ + D̂)g+ γF2g∗e2iqξ +2γF2g =−
(

D̂+
1
2

β2∂ 2
τ

)
Feiqξ +

−γF3e2iω0τ+2iΔkξ−iqξ − 1
3

γF3e−2iω0τ−2iΔkξ+3iqξ . (9)

The phase-matching conditions derived from Eq. (9) are then easily found:

D(Δω) = q, (10)

D(Δω) = 2Δk−q, (11)

D(Δω) =−2Δk+3q. (12)

Solving Eqs. (10)-(12) for Δω will provide all the phase-matched frequencies. In particular, Eq.
(10) is very well known [5, 7] and corresponds to the positive-frequency RR, while Eq. (11),
found experimentally in [13] and heuristically in [13,15], corresponds to the negative-frequency
RR. Equation (12) represents the phase-matching condition of the non-solitonic radiation due
to THG (which we call third harmonic resonant radiation, or TH-RR), and is also a new unex-
pected feature of our model, which is vindicated by our numerical simulations. A curious and
unexpected feature of the TH-RR radiation is that, even though this is due to the interaction
between the soliton and its third harmonic waves, it is strongly detuned to long wavelengths,
and is thus very feeble and unobservable in bulk crystals, but it is possible that in small-core
waveguides such radiation could become experimentally accessible.

Equations (11) and (12) are impossible to find by using a single GNLSE based on SVEA and
thus correspond to new features of our envelope model Eq. (8). In all the transparent bulk crys-
tals we have examined, Δk > 0 and 2Δk 	 q, thus the NRR is usually strongly blueshifted with
respect to the RR. This fact is ultimately due to the structure of the Lorentz oscillator theory,
and we give the proof in appendix B. However, this restriction seems not to be fundamental for
transparent waveguides and there might well be waveguide structures with a range of frequen-
cies for which Δk < 0, so that they would be able to exhibit redshifted NRR. This interesting
and potentially important question is left for future investigations.

The last important thing to mention regarding the NRR generation, is that there is an intimate
relation between the NRR and the FWM between the soliton and THG, which can contribute to
its amplitude at the second order of perturbation theory. In fact, one can prove by using the the-
ory reported in [20], that the FWM between soliton and THG gives exactly the phase-matching
condition Eq. (11). Thus, the formation of the NRR is due to two different contributions, one
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Fig. 2. (a) Phase-matching curve (normalized to β0) derived by using Eqs. (10-11) in bulk
silica. q/β0, (2Δk− q)/β0 and (−2Δk+ 3q)/β0 are indicated by the green, red and gray
horizontal lines, respectively. RR, NRR and TH-RR frequencies are indicated by circles.
(b) Δk for bulk silica vs. pump wavelength.

(of first order) coming directly from the conjugated Kerr term, and the other one (of second or-
der) coming indirectly from the process of FWM of soliton and CW waves, but the amplitudes
of these two contributions could be quite different since they are of different order, as we will
see below. This interesting ’coincidence’ has deep roots in the structure itself of Eq. (8), and in
particular in the energy conservation law (see appendix A).

Figure 2(a) shows the phase-matching curve D(Δω) versus pump frequency (normalized to
β0 and ω0 respectively), together with its intersections with q, 2Δk−q and −2Δk+3q, which
give respectively the RR, NRR and TH-RR frequencies. Figure 2(b) shows the value of 2Δk
versus pump wavelength, showing that in bulk silica there is an optimal pump wavelength (in
the normal dispersion regime) for which the NRR would be closer to the pump frequency, an
thus would have an unusually large amplitude.

The above procedure is able to give only the exact frequency position of each resonant ra-
diation that is emitted by the soliton. However, the procedure is not able to provide a correct
value for the amplitude of the NRR, for the following reason. When we wrote Eq. (9), we have
assumed implicitly that an analytical solution for the soliton field F is known. Although it is rea-
sonable to assume, at least for pulses that are not sub-cycle, that the conventional Schrödinger
soliton is a good approximation, this cannot be completely correct since a true soliton solution
of Eq. (8) must include the conjugated Kerr term and the THG term as well. Such solution is
not currently available (we leave this problem to future investigations, with few indications in
the literature on how to do that [33, 34]), and thus we are temporarily forced to use the conju-
gated Kerr term as a source term in Eq. (9), which gives the correct phase-matching condition
but cannot give the correct amplitude, since the amplitude of the NRR must be proportional to
the third order dispersion β3, as it happens for the normal RR. We can however always find the
emitted NRR amplitude numerically, as it was done in Fig. 4.

5. Numerical simulations

In this section we support the above theory with numerical simulations performed by integrating
Eq. (8). In Fig. 3(a) we show the spectral evolution of a 15 fs sech pulse, with peak intensity 1.4
TW/cm2 propagating in bulk silica, for a pump wavelength λ0 = 2 μm, obtained by solving Eq.
(8) when the THG term is neglected. Both RR and NRR emissions are visible. Vertical black
dashed lines indicate the predictions given by Eqs. (10) and (11), see also Fig. 2(a). Figure 3(b)
shows the same as Fig. 3(a), when omitting also the second nonlinear term inside the square
brackets in Eq. (8). No NRR radiation is generated in this case, showing that such radiation is
indeed coming from the interaction between the positive and the negative frequency spectral
components. Figure 3(c) shows the same simulation as in Fig. 3(a) but when switching off the
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(a) (b)

(d)(c)

Fig. 3. (a) Contour plot of the spectral evolution of a short sech pulse in bulk silica, obtained
by direct simulation of Eq. (8), when THG is neglected. The pulse is pumped at λ0 = 2 μm,
with a peak intensity of 1.4 TW/cm2 and a duration t0 = 15 fsec. The formation of RR and
NRR is clearly visible. Vertical black dashed lines indicate the position of the radiations
as predicted by Eqs. (10-11), compare with Fig. 2(a). (b) Same as (a) when also switching
off the second nonlinear term inside the square brackets of Eq. (8), i.e. the conjugated Kerr
term. The NRR line has completely disappeared. (c) Same as (a) but when switching off the
shock operator, and for a peak intensity 2.6 TW/cm2. (d) Results obtained with the UPPE
of Eq. (4), using the same parameters as in (a). All plots are in logarithmic scale.

shock term, i.e. Ŝ(i∂τ) = 1, and for a peak intensity of 2.6 TW/cm2. One can see that both RR
and NRR are visible, conclusively proving that NRR is not due to the shock effect, even though
the shock helps to further broaden the spectrum and thus to feed the soliton tail that excites the
NRR. Finally, Fig. 3(d) shows the evolution of the pulse by solving the full-field UPPE, Eq.
(4), which also shows evidence of small THG. Exactly the same figure is obtained by solving
Eq. (4), showing that our envelope model based on the analytic signal is indeed correct.

Figure 4 shows the comparison between the amplitudes of the generated NRR when switch-
ing on and off the various terms of Eq. (8). Parameters are the same as in Fig. 3, and the spectra
are recorded after z = 5 mm of propagation. One can notice that, for the chosen parameters, the
conjugated term alone overestimates the radiation amplitude, while the THG alone underesti-
mates it with respect to the case when both terms are maintained. Figure 4 first of all proves
that the FWM between soliton and THG on one hand, and the contribution of the conjugated
term on the other hand give exactly the same phase-matching point for the NRR, as we have
predicted in the previous section. Moreover, since when omitting the THG or the conjugated
Kerr term energy is not conserved, the radiation amplitude is not correctly predicted in these
cases, and the only consistent way to simulate correctly the problem is to consider all the terms
in Eq. (8), which strictly conserves energy.
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Fig. 4. Comparison between the amplitudes of the generated NRR when the conjugated
Kerr term (CKT) is present but THG is absent (red line), when THG is present but conju-
gated Kerr term is absent (black line), and in the case when both terms are present (blue
line). Equation (8) has been used in the simulation, and parameters are the same as in Fig.
3. Spectra are recorded after z = 5 mm of propagation, and the vertical scale is logarithmic.

6. Discussion and conclusions

In conclusion, we have derived an equation that correctly describes the nonlinear interaction
between the positive and the negative frequency parts of the spectrum of optical pulses. The
key concept is that the envelope function is now defined in terms of the analytic signal of the
electric field, therefore clearly dividing the dynamics of the negative and positive frequency
parts of the spectrum, and avoiding SVEA altogether, while still retaining an envelope for-
mulation. The interaction between positive and negative frequencies is due to the presence of
a cross-phase-modulation-like term in the nonlinear polarization, the role of which we have
elucidated here for the first time. By using the new equation we have analytically derived the
phase-matching conditions between a soliton and the positive- and negative-frequency resonant
radiation emitted by it. Our theory opens up a new realm in nonlinear optics and in other areas
that are described by NLSE-like equations (for instance BEC, plasmas, etc.), since it proves
that conventional treatments based on GNLSE are deficient, due to the lack of the negative
frequency terms. These interactions are of course present in the UPPE and in the nonlinear
Maxwell’s equations, which are however less transparent and less suitable for analytical treat-
ment than Eq. (8). Exciting future perspectives are represented by the inclusion of the Raman
nonlinearity, which could provide additional unexplored non-linear effects that are not captured
by conventional GNLSE based on SVEA.

Appendix A: Proof of energy conservation of Eq. (8)

In this appendix we provide the nontrivial proof of the global energy conservation of Eq. (8),
i.e. the relation

dN
dξ

=
d

dξ

∫ +∞

−∞
|A(ξ ,τ)|2dτ =

∫ +∞

−∞
[Aξ A∗+ c.c.]dτ = 0. (13)

We start with the case in which the filtering procedure (i.e. the removal of the negative frequency
part in the equation) is absent. Note that the usual |A|2A term, is conservative by itself, but the
conjugated Kerr term |A|2A∗ and THG term A3/3 must be both retained to conserve energy.
Dispersive term is obviously conservative by itself.
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Let us start from the usual SPM term, so let’s demonstrate that Aξ = iγ(1+ i/ω0∂τ)|A|2A
conserve energy. We get

dN
dξ

=
∫

dτ
{

iγ|A|4 − γ
ω0

(|A|2A)τ A∗ − iγ|A|4 − γ
ω0

(|A|2A∗)τ

}
A =

= − γ
ω0

∫
dτ

{
2(|A|2)τ |A|2 +Aτ A∗|A|2 +A∗

τ A|A|2}=

= − γ
ω0

∫
dτ3(|A|2)τ |A|2 = 0. (14)

Last step can be verified by integrating by parts and assuming vanishing boundary conditions
for the fields.

Now let us show that Aξ = iγ(1+ i/ω0∂τ)
(|A|2A∗e2iφ +A3/3e−2iφ ) conserves energy (φ ≡

ω0τ +Δkξ ). We get (all integrals are performed in dτ):

dN
dξ

=
∫

iγ|A|2A2∗e2iφ + i
γ
3
|A|2A2e−2iφ − γ

ω0

[
(|A|2A∗)τ +2iω0|A|2A∗

]
A∗e2iφ +

− γ
ω0

[
A2Aτ −2i

ω0

3
A3

]
A∗e−2iφ + c.c. =

=
∫

−iγ|A|2A2∗e2iφ + iγ|A|2A2e−2iφ − γ
ω0

[
Aτ A3∗+2A∗

τ A∗|A|2
]

e2iφ +

− γ
ω0

[
Aτ A|A|2

]
e−2iφ + c.c. =

=
γ

2ω0

∫
(Aτ A3∗+3|A|2A∗A∗

τ)e
2iφ +(A3A∗

τ +3|A|2AAτ)e
−2iφ +

−2(Aτ A3∗+2|A|2A∗A∗
τ)e

2iφ −2|A|2AAτ e−2iφ + c.c. =

=
γ

2ω0

∫
(2Aτ A3∗+6|A|2A∗A∗

τ −2Aτ A3∗ −6|A|2A∗A∗
τ)e

2iφ + c.c. = 0.

We now turn to the full case in which the filtering is introduced. Useful relations:

H [E(t)] =
1
πt

⊗E(t) = P

∫ +∞

−∞

E(t − t ′)
πt ′

dt ′ (15)

H [E(t)e±iω0t ] = P

∫ +∞

−∞

E(t − t ′)e±iω0(t−t ′)

πt ′
dt ′ = e±iω0t

[
e∓iω0t

πt
⊗E(t)

]
(16)

F

{
− i

πt

}
= sgn(ω), F

{
− ie±iω0t

πt

}
= sgn(ω ±ω0) (17)

Defining the operator Q̂[·] = Î − iH [·] as the operator that when applied to an arbitrary real
function f (t) gives its analytic signal (Î is the identity operator), we have

F{E (t)} ≡ F{Q̂[E(t)]}= F{E(t)− iH [E(t)]}= Eω + sgn(ω)Eω = 2Eω>0 (18)

and
F{Q̂[E(t)e−iω0t ]}= Eω−ω0 + sgn(ω)Eω−ω0 = 2EΔω>−ω0 . (19)

The analytic signal of the nonlinear polarization can be written as

Q̂[PNL(z, t)] =
3χ(3)

8

[
|A|2Ae−iω0t+iβ0z − i

[
eiω0t

πt
⊗|A|2A

]
e−iω0t+iβ0z + |A|2A∗eiω0t−iβ0z +

−i

[
e−iω0t

πt
⊗|A|2A∗

]
eiω0t−iβ0z +

2
3

A3e−3iω0t+3iβ0z
]

(20)
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and the nonlinear polarization

Ap(z, t) =
3χ(3)

8

{
|A|2A− i

[
eiω0t

πt
⊗|A|2A

]
+

+|A|2A∗e2iω0t−2iβ0z − i

[
e−iω0t

πt
⊗|A|2A∗

]
e2iω0t−2iβ0z +

2
3

A3e−2iω0t+2iβ0z
}

Equation (8) in the time domain, written in the reference frame moving with group velocity
β−1

1 , reads (again we define φ ≡ ω0τ +Δkξ , Δk ≡ β1ω0 −β0):

i
∂A
∂ξ

+ D̂(i∂τ)A+
γ
2

(
1+

i
ω0

∂
∂τ

){
|A|2A− i

[
eiω0τ

πτ
⊗|A|2A

]
+

+|A|2A∗e2iφ − i

[
e−iω0t

πτ
⊗|A|2A∗

]
e2iφ +

2
3

A3e−2iφ
}
= 0 (21)

Terms with same color in the Eq. (21) are expected to conserve energy independently. The term
in green color (first term inside curly brackets) obviously conserves energy: it corresponds to
the conventional unfiltered case of the derivative nonlinear Schrödinger equation, for which it
is known that energy conservation holds, as showed above.

Let’s show that the red term (second term inside curly brackets) is conservative, i.e. ∂zA =

iγ/2(1+ i/ω0∂τ)

[
− i eiω0τ

πτ ⊗|A|2A

]
conserves energy. In order to do this, we go from the time

domain to the frequency domain by repeatedly using Parseval’s theorem, and exploit the fact
that sgn(ω +ω0)F [A∗] = F [A∗] and sgn(ω −ω0)F [A∗]∗ =−F [A∗]∗:

dN
dξ

=
γ
2

∫
dτi

[(
1+

i
ω0

∂
∂τ

)(
− i

eiω0τ

πτ
⊗|A|2A

)]
A∗+

−i

[(
1− i

ω0

∂
∂τ

)(
i
e−iω0τ

πτ
⊗|A|2A∗

)]
A =

=
γ
2

∫
dωi

[(
1+

ω
ω0

)
sgn(ω +ω0)F{|A|2A}

]
F [A]∗+

+i

[(
1− ω

ω0

)
sgn(ω −ω0)F{|A|2A∗}

]
F [A∗]∗ =

=
γ
2

∫
dωi

[(
1+

ω
ω0

)
F{|A|2A}

]
F [A]∗ − i

[(
1− ω

ω0

)
F{|A|2A∗}

]
F [A∗]∗ =

=
γ
2

∫
dτi

[(
1+

i
ω0

∂
∂τ

)
|A|2A

]
A∗ − i

[(
1− i

ω0

∂
∂τ

)
|A|2A∗

]
A = (22)

=
γ
2

∫
dτ

[
i|A|4 − 1

ω0
(|A|2A)τ A∗ − i|A|4 − 1

ω0
(|A|2A∗)τ A

]
=

= − γ
2ω0

∫
dτ

[
2(|A|2)τ |A|2 +Aτ A∗|A|2 +A∗

τ A|A|2]=− γ
2ω0

∫
dτ3(|A|2)τ |A|2 = 0,

where in the last step we have assumed that all fields are localized in time. It is worth noting that
Eq. (22) is equivalent to the energy conservation of the term (γ/2)(1+ i/ω0∂τ)|A|2A without
filtering. In practice, when calculating dN/dξ the Hilbert transform has disappeared.

Let us now show that the blue terms (last three terms inside curly brackets) are conservative.

We consider now the term Aξ = iγ/2(1+ i/ω0∂τ)

[(
− i e−iω0τ

πτ ⊗ |A|2A∗
)

e2iφ
]

. We have for
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this term:

dN
dξ

=
γ
2

∫
dτi

{(
1+

i
ω0

∂
∂τ

)[(
− i

e−iω0t

πτ
⊗|A|2A∗

)
e2iφ

]}
A∗+

−i

{(
1− i

ω0

∂
∂τ

)[(
i
eiω0t

πτ
⊗|A|2A

)
e−2iφ

]}
A =

=
γ
2

∫
dωi

{(
1+

ω
ω0

)[
sgn(ω +ω0)F{|A|2A∗}ω+2ω0

]}
F [A]∗e2iΔkξ +

+i

{(
1− ω

ω0

)[
sgn(ω −ω0)F{|A|2A}ω−2ω0

]}
F [A∗]∗e−2iΔkξ =

=
γ
2

∫
dτi

{(
1+

i
ω0

∂
∂τ

)[
|A|2A∗e2iφ

]}
A∗ − i

{(
1− i

ω0

∂
∂τ

)[
|A|2Ae−2iφ

]}
A.

Again the Hilbert transform has disappeared. The considered term gives the same contribu-
tions to the energy as |A|2A∗, so the total energy variation corresponding to the blue terms can
be calculated considering the equation Aξ = iγ(1+ i/ω0∂τ)

(|A|2A∗e2iφ +A3/3e−2iφ ), that we
showed before (unfiltered case) to conserve energy.

Appendix B: Positiveness of Δk for transparent bulk media

Transparent bulk media, i.e. media without a waveguide dispersion contribution, can be de-
scribed by the Sellmeier equation

n(ω) =

√√√√1+
m

∑
j=1

B jω2
j

ω2
j −ω2

, (23)

where B j are appropriate dimensionless coefficients, and ω j are material resonances. Near one
particular resonance j = R, ω = ωR +Δω , with Δω � ωR, one can consider a single term in
the sum:

n(ω)�
√

1+
BRω2

R

ω2
R −ω2

�
√

1− μ
2(ω −ωR)

, (24)

with μ ≡ BRωR. The physical requirements that this refractive index must satisfy in order to
have a value of Δk < 0 in the anomalous dispersion, where the soliton can propagate, are
n(ω) > 0, ∂ω n < 0 and ∂ 2

ω n < (2/ω)|∂ω n|. These three conditions are impossible to fullfil
simultaneously for a positive μ , and therefore in bulk media NRR emitted by solitons can only
be observed in the blue part of the spectrum.

Things can change drastically in a lossy bulk medium. Again, near a resonance one has

n(ω)�
√

1− μ
2(ω −ωR + iγ)

, (25)

where γ is the resonance damping parameter. In this case, one can easily show that in the ap-
proximate range ωR−γ <ω <ωR one can fulfill the above conditions for Δk < 0, but this range
is located around the maximum of absorption. In practical experiments, this limits strongly the
observability of NRR in the red part of the spectrum in bulk media - for instance in metals the
region where the soliton should be pumped is typically located in close proximity of the plasma
frequency. This reasoning does not hold in general for waveguides, for which the waveguide
dispersion can compete with the material dispersion, however it remains to be seen whether
the above three conditions can be satisfied simultaneously in realistic optical fibers or other
confining microstructures.
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