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We derive unidirectional pulse propagation equations to describe extreme high-intensity and ultra-broadband optical interactions in uniaxial crystals, showing both second-and third-order nonlinear optical susceptivities. We focus our attention on the anisotropic nature of the quadratic and cubic nonlinear response of β-BaB 2 O 4 (BBO) crystals. Two nonlinearly coupled first order (in the propagation coordinate) equations describe the dynamics and interactions of the ordinary and extraordinary field polarizations, and are valid for arbitrarily wide pulse bandwidth. We exploit this model to predict harmonic and supercontinuum generation in BBO crystals under strong and competing influence of quadratic and cubic susceptivities.

I. INTRODUCTION

In recent years there has been a great deal of interest in research on second-harmonic (SHG) [START_REF] Cittadini | I like fuck Fabio[END_REF], high-order harmonic (HHG) [START_REF] Krausz | Attosecond physics[END_REF], and supercontinuum (SC) generation [START_REF] Dudley | Supercontinuum generation in photonic crystal fiber[END_REF] in nonlinear optical media for such diverse applications as frequency metrology, few-cycle pulse generation, spectroscopy, biological and medical analyses.

The SHG of super-strong ultrashort (tens of femtoseconds) laser pulses, using the χ (2) nonlinearities in optical crystals, is a very important task, because the process can be used not only for wavelength conversion, but for significant improvement of temporal intensity contrast ratio and pulse shortening. SHG is especially important for Ti:sapphire laser facilities operating at 800 nm [START_REF] Aoyama | 0.85-PW, 33-fs Ti:sapphire laser[END_REF] and optical parametric amplifiers at 910 nm [START_REF] Lozhkarev | Compact 0.56 petawatt laser system based on optical parametric chirped pulse amplification in KDP crystals[END_REF].

SC generation has been performed conventionally using the χ (3) nonlinearities in optical fibers. Due to the high nonlinearity and engineerable dispersion available in fibers, spectra spanning multiple octaves can be achieved [START_REF] Farrell | Octave-spanning super-continuum from a silica photonic crystal fiber pumped by a 386 MHz Yb:fiber laser[END_REF][START_REF] Fang | Multiwatt octave-spanning supercontinuum generation in multicore photonic-crystal fiber[END_REF]. However, reaching the mid-infrared spectral region with χ (3) -based SC sources is challenging [START_REF] Price | Mid-IR supercontin-uum generation from nonsilica microstructured optical fibers[END_REF]. A promising alternative approach consists on the exploitation of the χ (2) nonlinearities of optical crystals for SC generation [START_REF] Conforti | Nonlinear envelope equation for broadband optical pulses in quadratic media[END_REF][START_REF] Phillips | Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tmdoped fiber laser system[END_REF]. SC interactions can readily be achieved in birefringent or quasi-phase matched (QPM) crystals [START_REF] Conforti | Ultra-broadband optical phenomena in quadratic nonlinear media[END_REF][START_REF] Phillips | Supercontinuum generation in quasi-phasematched waveguides[END_REF], with high-intensity light pulse excitation. Quadratic SC generation, difference frequency generation and optical parametric generation are currently active areas of research [START_REF] Zhou | Ultrafast and Octave-Spanning Optical Nonlinearities from Strongly Phase-Mismatched Quadratic Interactions[END_REF][START_REF] Levenius | Multistep quadratic cascading in broadband optical parametric generation[END_REF].

Nowadays, technological advances in ultrafast optics have permitted the generation of ultraintense light pulses comprising merely a few field oscillation cycles. Peak intensities approaches 10 15 W/cm 2 [START_REF] Sung | 0.1 Hz 1.0 PW Ti:sapphire laser[END_REF], opening the study of an entirely new realm of nonlinear interactions in solid materials.

Beta-Barium-Borate (β-BaB 2 O 4 , BBO) is a very popular crystal, among all solid-state optical materials: BBO has a high damage threshold, low dispersion and χ (2) nonlinearities of few pm/V allowing for efficient quadratic frequency conversion interactions [START_REF] Nikogosyan | Nonlinear Optical Crystals: A Complete Survey[END_REF].

In this work, we explore the use of BBO crystals in extreme optical regimes, where dispersion effects and cubic nonlinearities play an essential role. In particular, we derive a comprehensive model to describe the propagation of extreme high-intensity and ultrabroadband optical pulses in BBO crystals. This model provides a powerful tool due to its generality and simplicity, and can be easily solved with a modest computational effort.

The paper is organized as follows. In Section 2, we recall the derivation of the master equations in uniaxial media, discussing the validity of the model. We consider both the second-and third-order nonlinear contributions, and their angular dependences. We take into account all possible second-and third-order interactions, including ones typically nonphase-matchable. In Section 3, we present some numerical examples of second harmonic generation and supercontinuum generation in BBO crystals, showing the key role of cubic susceptivity. Eventually we draw our conclusions in Section 4.

II. DERIVATION OF THE PROPAGATION EQUATIONS

In this section we review and extend the derivation of the unidirectional nonlinear vector field equations reported in [START_REF] Conforti | Modeling of ultrabroadband and single-cycle phenomena in anisotropic quadratic crystals[END_REF] (also called Forward Maxwell Equations, FME [START_REF] Housakou | Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers[END_REF], or Unidirectional Pulse Propagation Equation, UPPE [START_REF] Kolesik | Unidirectional optical pulse propagation equation[END_REF]), describing the propagation of the ordinary and extraordinary polarizations of the electric field in uniaxial crystals with both χ (2) and χ (3) nonlinearities.

We start from Maxwell equations written in MKS units, in the reference frame x y z

∇ × E = - ∂B ∂t (1) 
∇ × H = ∂D ∂t (2) 
B = µ 0 H (3) 
D = D L + P N L (4) 
where D L and P N L account for the linear and nonlinear response of the medium, respectively. The components of the linear displacement vector for a dispersive anisotropic medium reads (assuming summation over repeated indxes)

D L,j = ε 0 ∞ -∞ ε jk (t -t )E k (t )dt . (5) 
In the reference frame of the principal axes of a uniaxial crystal, the dielectric permittivity tensor is the diagonal matrix ε = diag(ε o , ε o , ε e ), where ε o , ε e are the ordinary and extraordinary relative dielectric permittivity, respectively. The reference frame of the principal axes of the crystal (x y z ) is not convenient for the derivation of the propagation equations.

We introduce a reference frame xyz that is rotated by (θ, φ) with respect to crystal axes.

Namely, θ is the angle between the propagation vector (parallel to z) and the crystalline z axis (the crystal optical axis), and φ is the azimuthal angle between the propagation vector and the x z crystalline plane. The two reference frame are linked by the orthogonal rotation matrix A:

A =       cos φ cos θ sin φ cos θ -sin θ -sin φ cos φ 0 sin θ cos φ sin φ sin θ cos θ       . ( 6 
)
The dielectric permittivity tensor in the xyz frame is no longer diagonal, and it can be written as

ε = Aε A T =       ε o cos 2 θ + ε e sin 2 θ 0 (ε o -ε e ) cos θ sin θ 0 ε o 0 (ε o -ε e ) cos θ sin θ 0 ε o sin 2 θ + ε e cos 2 θ       . (7) 
In the reference frame xyz, it is possible to decompose the electromagnetic field into two linear and orthogonal polarizations of D, both transverse to the propagation direction

z [20]: D = (0, D y , 0) T + (D x , 0, 0) T .
We assume the propagation of plane waves, so the electric field and displacement vectors depend upon the z coordinate (and time) only. It is worth noting that this decomposition is rigorous for linear propagation only, since the nonlinearity can rotate locally the polarization. However it is reasonable to consider the nonlinearity as a perturbative term whose effect is to couple the orthogonal polarized field vector components during propagation. If we neglect dispersion and nonlinearity, just for the moment, the electric field vector can be straightforwardly computed as:

E = ε -1 0 ε -1 D = ε -1 0       cos 2 θ εo + sin 2 θ εe D x ε -1 o D y εe-εo εeεo cos θ sin θD x       (8) 
By eliminating the magnetic field from Maxwell equations we obtain the vector wave equation:

∇ × ∇ × E - 1 ε 0 c 2 ∂ 2 D L ∂t 2 = 1 ε 0 c 2 ∂ 2 P N L ∂t 2 (9) 
Note that obviously ∇ • D = 0, but ∇ • E = 0. By writing (9) in components we obtain

∂ 2 E x ∂z 2 - 1 ε 0 c 2 ∂ 2 D L,x ∂t 2 = 1 ε 0 c 2 ∂ 2 P N L,x ∂t 2 (10) ∂ 2 E y ∂z 2 - 1 ε 0 c 2 ∂ 2 D L,y ∂t 2 = 1 ε 0 c 2 ∂ 2 P N L,y ∂t 2 (11) 0 = 1 ε 0 c 2 ∂ 2 P N L,z ∂t 2 (12) 
The last equation witnesses the fact that the decomposition into two independent orthogonal polarizations is rigorous only in the linear case. We neglect P N L,z , in the reasonable hypothesis of small nonlinearity.

Exploiting the relation ( 5) we obtain:

∂ 2 E m (z, t) ∂z 2 - 1 c 2 ∂ 2 ∂t 2 +∞ -∞ E m (z, t )ε m (t -t )dt = 1 ε 0 c 2 ∂ 2 ∂t 2 P N L,m (z, t) , m = x, y (13) 
where we have defined

ε x = cos 2 θ ε o + sin 2 θ ε e -1 (14) 
ε y = ε o (15) 
We thus have obtained the propagation equations for an ordinary polarized wave E y and an extraordinary polarized wave E x .

By defining the Fourier transform F[E](ω) = Ê(ω) = +∞ -∞ E(t)e -iωt dt, we can write (13) in the frequency domain:

∂ 2 Êm (z, ω) ∂z 2 + ω 2 c 2 εm (ω) Êm (z, ω) = - ω 2 ε 0 c 2 PNL,m (z, ω), ( 16 
)
where c is the velocity of light in vacuum, ε 0 is the vacuum dielectric permittivity, εm (ω) = 1 + χm (ω), χm (ω) is the linear electric susceptibility and k m (ω) = (ω/c) εm (ω) is the propagation wavenumber.

We now proceed to obtain, from the second order vector wave equation ( 16), an equation, first order in the propagation coordinate z, describing electromagnetic fields propagating in the forward direction only. Several techniques have been proposed in literature in order to achieve a pulse propagation equation with minimal assumptions [START_REF] Housakou | Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers[END_REF][START_REF] Kolesik | Unidirectional optical pulse propagation equation[END_REF][START_REF] Brabec | Intense few-cycle laser fields: Frontiers of nonlinear optics[END_REF][START_REF] Kolesik | Nonlinear optical pulse propagation simulation: From Maxwell's to unidirectional equations[END_REF][START_REF] Genty | Nonlinear envelope equation modeling of sub-cycle dynamics and harmonic generation in nonlinear waveguides[END_REF][START_REF] Kinsler | Theory of directional pulse propagation[END_REF][START_REF] Kinsler | Optical pulse propagation with minimal approximations[END_REF][START_REF] Kumar | Ultrashort pulse propagation in a cubic medium including the Raman effect[END_REF]. The interested reader can find in [START_REF] Kinsler | Optical pulse propagation with minimal approximations[END_REF][START_REF] Kolesik | Theory and simulation of ultrafast intense pulse propagation in extended media[END_REF] an exhaustive discussion on the different derivation styles. Here we decided to follow the approach outlined in the review paper [START_REF] Kolesik | Theory and simulation of ultrafast intense pulse propagation in extended media[END_REF], that combines minimal assumptions and straightforward derivation.

We write the electric field components in spectral domain as the sum of a forward (F ) and a backward (B) propagating part, that with our definition of the Fourier transform reads:

Êm (z, ω) = Fm (z, ω)e -ikm(ω)z + Bm (z, ω)e ikm(ω)z . ( 17 
)
By plugging Ansatz ( 17) into ( 16), we get:

∂ 2 Fm ∂z 2 -2ik m (ω) ∂ Fm ∂z e -ikm(ω)z + ∂ 2 Bm ∂z 2 + 2ik m (ω) ∂ Bm ∂z e ikm(ω)z = - ω 2 ε 0 c 2 PNL,m ,
that can be rewritten as:

∂ ∂z ∂ Fm ∂z e -ikm(ω)z + ∂ Bm ∂z e ikm(ω)z - -ik m (ω) ∂ Fm ∂z e -ikm(ω)z - ∂ Bm ∂z e ikm(ω)z = - ω 2 ε 0 c 2 PNL,m , (18) 
from where it is trivial to see that vector wave equation ( 16) is satisfied exactly, if the forward and backward components satisfy the following first order equations:

∂ Fm (z, ω) ∂z = - i 2k m (ω) ω 2 ε 0 c 2 PNL,m (z, ω)e +ikm(ω)z ∂ Bm (z, ω) ∂z = + i 2k m (ω) ω 2 ε 0 c 2 PNL,m (z, ω)e -ikm(ω)z . ( 19 
)
It is worth noting that up to this point we did not make any assumptions, so the model is equivalent to the starting equations. Equations ( 19) represent a nonlinear boundary value problem that cannot be solved with direct methods, but must be solved iteratively. However in the great majority of cases of interest, we can assume that (i) there are no reflections and

(ii) that nonlinear polarization does not couple forward and backward waves (perturbative regime). In this case we can assume Bm (z, ω) ≈ 0 and Eqs. [START_REF] Kolesik | Unidirectional optical pulse propagation equation[END_REF], through [START_REF] Conforti | Modeling of ultrabroadband and single-cycle phenomena in anisotropic quadratic crystals[END_REF], reduce to the Forward Maxwell Equations:

∂ Êm (z, ω) ∂z + ik m (ω) Êm (z, ω) = -i ω 2ε 0 cn m (ω) PNL,m (z, ω). (20) 
We consider an instantaneous nonlinear polarization composed of a quadratic and cubic parts (summation over repeated indexes is assumed)

P N L,j = ε 0 (χ (2) jkl E k E l + χ (3) jklm E k E l E m ), (21) 
where χ

(2)

jkl and χ

jklm are the second and third order nonlinear susceptivity tensors, that are usually given in the crystal axes reference frame. In order to obtain the effective nonlinearity [START_REF] Midwinter | The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization[END_REF][START_REF] Midwinter | The effects of phase matching method and of crystal symmetry on the polar dependence of third-order non-linear optical polarization[END_REF], we have to rotate the polarization vector with matrix A, following the prescription

P N L (E) = AP N L (A T E). ( 22 
)
After some calculations, we can write:

∂ Êx ∂z + ik x (ω) Êx = -iω cn x (ω) Px (23) ∂ Êy ∂z + ik y (ω) Êy = -iω cn y (ω)

Py

where the nonlinear terms P x , P y read as follows:

P x = d 0 E 2 x + 2d 1 E x E y + d 2 E 2 y + c 0 E 3 x + 3c 1 E 2 x E y + 3c 2 E 2 y E x + c 3 E 3 y , (24) 
P y = d 1 E 2 x + 2d 2 E x E y + d 3 E 2 y + c 1 E 3 x + 3c 2 E 2 x E y + 3c 3 E 2 y E x + c 4 E 3 y . ( 25 
)
where d m , m = 0, . . . , 3, are the effective nonlinearity for quadratic interactions, whereas c m , m = 0, . . . , 4 are the effective cubic nonlinearities. The values of the effective nonlinearity depend upon the crystal and their values can be found in literature [START_REF] Nikogosyan | Nonlinear Optical Crystals: A Complete Survey[END_REF][START_REF] Midwinter | The effects of phase matching method and of uniaxial crystal symmetry on the polar distribution of second-order non-linear optical polarization[END_REF][START_REF] Midwinter | The effects of phase matching method and of crystal symmetry on the polar dependence of third-order non-linear optical polarization[END_REF][START_REF] Banks | High intensity third-harmonic generation[END_REF]. In Tables I, II we report the effective nonlinearity for the crystals of class 3m, to which BBO belongs, and specify the kind of interaction. For example, eeo (e+e → o) indicates the sum frequency generation of two extraordinarily polarized electric fields (E x ) that generate an ordinarily polarized field (E y ).

Equations ( 23) are first order in the propagation coordinate, conserve the total field energy and retain their validity for arbitrary wide pulse bandwidth. The computational effort needed to solve these equations, by a standard split step Fourier method exploiting Runge-Kutta for the nonlinear step, is of the order of magnitude of that needed for solving the standard three-wave equations universally exploited to describe light propagation in quadratic crystals [START_REF] Baronio | Three-wave trapponic solitons for tunable high-repetition rate pulse train generation[END_REF][START_REF] Baronio | Velocity-locked solitary waves in quadratic media[END_REF]. However Eqs. ( 23) are far more general, and are equivalent to Maxwell equations when dealing with unidirectional propagation [START_REF] Kolesik | Unidirectional optical pulse propagation equation[END_REF][START_REF] Kolesik | Theory and simulation of ultrafast intense pulse propagation in extended media[END_REF].

III. EXAMPLES

In this section, we first show a representative example of the modeling of SHG of highintensity femtosecond pulses under strong influence of cubic nonlinearities. Then, we report quadratic ultrabroadband continuum dynamics with competing cubic nonlinearities. At last, we present soliton compression and dispersive waves dynamics in BBO, dominated by cubic nonlinearities.

A. High-intensity SHG

We fix the orientation angles of the BBO crystal to θ = 38 o and φ = 90 o .

We consider the propagation of an ordinary polarized (o) pulse of duration T = 30 fs, with intensity up to few TW/cm 2 , and central wavelength λ 0 = 630 nm injected in a 1mm long crystal. Under such assumptions, a type I (o + o → e) efficient phase-matched SHG interaction occurs.

Figure 1 shows the dependence of second harmonic conversion efficiency on the pump peak pulse intensity, with and without consideration of cubic nonlinearities. The obtained data indicate that for pump intensities exceeding 50 GW/cm 2 , the effects caused by cubic nonlinearities become significant and lead to a decrease of conversion efficiency. Figure 3a shows the time domain evolution of the ordinarily polarized (o) electric field envelope at 1200 nm during the propagation in BBO crystal. With envelope we mean the inverse Fourier transform of the positive frequency components of the spectrum. This visualization permit to have an envelope-like appearance, without fast oscillations of the carrier, but accounts of all frequency components. The input pulse undergoes a strong compression up to z = 0.6 mm, where the minimum pulse duration and maximum of spectral extension is achieved. Figure 3b shows the evolution of the ordinarily polarized field spectrum. The compression is due to the cascaded quadratic effects (γ 2 = -14 • 10 -16 m/V 2 , γ 3 = 6.65 • 10 -16 m/V 2 ). At the compression point the ordinary polarized pulse shows trailing oscillations, and subsequently radiation is emitted at a slower Figure 5a shows the time domain propagation of the ordinarily polarized electric field during the propagation in BBO crystal, figure 5b shows the evolution of the field spectrum.

The input pulse undergoes a strong compression up to z = 0.8 mm, where the minimum pulse duration and maximum of spectral extension. The compression is due to high-order cubic soliton excitation. A linear dispersive wave [START_REF] Wai | Soliton at the zero-group-dispersion wavelength of a single-model fiber[END_REF], located in the blue part of the spectrum at 900 nm, has been generated.

IV. CONCLUSIONS

We have derived unidirectional pulse propagation equations to describe extreme highintensity and ultra-broadband optical interactions in anisotropic crystals showing both quadratic and cubic nonlinear optical susceptibilities, taking BBO as the most relevant example. This model can be used to to enlighten high-order harmonic and ultrabroadband generation in BBO crystals under strong and competing influence of quadratic and cubic susceptivities.

FIG. 1 :

 1 FIG. 1: (Color online) Dependence of SHG efficiency on the pump peak intensity at the fundamental frequency, obtained without (blue stars) and with (red circles) consideration of the cubic nonlinear effects.

Figure 2

 2 Figure 2 shows typical evolutions of the field spectrum during the propagation in BBO crystal, at different intensity regimes. Above 50 GW/cm 2 , cubic nonlinearities give rise to a nonlinear-phase mismatch and to self-and cross-action of the interacting fundamental pump and second harmonics (i.e., o + o + o → o, o + o + e → e, e + e + o → o, e + e + e → e interactions), which not only decrease conversion efficiency but lead to spectral broadening of fundamental and second harmonic spectra.
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 23 FIG. 2: (Color online) Evolution of the total power spectrum | Êx | 2 + | Êy | 2 (decibels). The initial pulse has duration T = 30 fs, wavelength λ 0 = 630nm. The peak intensity is 10 GW/cm 2 (a), and 2 TW/cm 2 (b). Crystal's orientation: θ = 38 o and φ = 90 o .

  group velocity: a linear dispersive wave located in the red part of the spectrum at 2400 nm [? ].

FIG. 3 :

 3 FIG. 3: (Color online) a) temporal propagation and b) field spectrum evolution (decibels) of the ordinarily polarized electric field envelope in BBO crystal. The initial pulse has duration T = 20 fs, wavelength λ 0 = 1200 nm, peak intensity of 120 GW/cm 2 . Crystal's orientation: θ = 19 o and φ = 90 o .

Figure

  Figure4ashows the time domain evolution of the ordinarily polarized electric field during the propagation in BBO crystal, whereas figure4bshows the evolution of the field spectrum.The scenario has been dramatically changed with respect to the previous case. In fact, the effective quadratic negative Kerr nonlinearity (γ 2 = -6.6 • 10 -16 m/V 2 ), induced by mismatched type I (o + o → e) interaction, is perfectly balanced by the cubic nonlinearity of the medium (o + o + o → o interaction). The ordinarily polarized pulse propagates in the BBO crystal in the same way as the nonlinearities were vanishing, independently from input intensity.

FIG. 4 :

 4 FIG. 4: (Color online) a) temporal propagation and b) field spectrum evolution (decibels) of the ordinarily polarized electric field envelope in BBO crystal. The initial pulse has duration T = 20 fs, wavelength λ 0 = 1200 nm, peak intensity of 120 GW/cm 2 . Crystal's orientation θ = 16.2 o and φ = 90 o .

TABLE II :

 II Effective cubic nonlinear coefficients. c 11 = 5.6•10 -22 m 2 /V 2 , c 10 = -0.24•10 -22 m 2 /V 2 ,

	Coefficient		Expression	Interaction
	d 0	-3d 31 cos 2 θ sin θ -d 22 cos 3 θ sin 3φ	eee
	d 1		-d 22 cos 3φ cos 2 θ	eeo, oeo, oee
	d 2		-d 31 sin θ + d 22 cos θ sin 3φ	ooe, eoo, oeo
	d 3		d 22 cos 3φ	ooo
	TABLE I: Effective quadratic nonlinear coefficients. d 22 = 2.2pm/V, d 31 = 0.04pm/V [31].
	Coefficient	Expression	Interaction
	c 0		c 11 cos 4 θ + c 33 sin 4 θ + 3 2 c 16 sin 2 2θ	eeee
			-4c 10 sin 3φ sin θ cos 3 θ
	c 1		3 2 c 10 cos 3φ sin 2θ cos θ	eeoe, eeeo
	c 2		-1 3 c 11 cos 2 θ + c 16 sin 2 θ	ooee,eeoo
			+c 10 sin 2θ sin 3φ
	c 3		c 10 cos 3φ sin θ	oooe, ooeo
	c 4		c 11	oooo

c 16 = -1.4 • 10 -22 m 2 /V 2 [32].

V. ACKNOWLEDGMENTS We thank Daniele Faccio, Niclas Westerberg, and Stefano Trillo for discussions. The present research is supported in Brescia by the Italian Ministry of University and Research (MIUR), Grant PRIN 2009P3K72Z.