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Classification of different species with Raman measure-
ments is analyzed when a total of exactly N photons
are detected with binary filtered Raman spectra instead
of fixing the measuring time. The optimal classifica-
tion method for this problem leads to classification er-
ror probabilities upper bounded by the Bhattacharyya
bound and that are invariant to the multiplication of
the spectrum intensities by an unknown factor. Fur-
thermore, it is shown that this approach can be imple-
mented with a number of binary filters smaller than the
number of species to discriminate.

OCIS codes: 070.4560 Data processing by optical means 110.4280
Noise in imaging systems 110.3055 Information theoretical analysis
070.5010 Pattern recognition.
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Raman spectrum can be used to classify different species. In
order to limit measuring times and to implement photon lim-
ited sensors, it has been proposed to only measure few charac-
teristics obtained by optically filtering the Raman spectrum [1–
11]. It has also been shown [1–11] that this approach can lead to
measurements limited by photon noise with small measuring
times. These techniques, also known as compressive Raman
detection [3–6, 8–11], or compressed methods [12] can be im-
plemented with binary filters (BF). Indeed, it leads to simpler
technological constraints than using continuous valued filters
with, nevertheless, very good performance [12]. In the previ-
ous compressive methods with BF [1–13], the light is transmit-
ted or blocked out for each frequency channel and the classifi-
cation between the different species is performed with the num-
ber of photons detected during a fixed measuring time. How-
ever, there exists situations for which it is necessary to control
the classification error probability without knowing a priori the
mean number of the emitted photons but only of the normal-
ized Raman spectra. In this Letter, this problem is addressed
with the alternative technique that consists of measuring the
number of photons detected after each BF until the total number
of detected photons has reached an a priori fixed value N. More
precisely, let us assume that a set of P mathematically orthogo-
nal BF (OBF) are implemented (orthogonality means physically
that there is no overlap between the filters). Let nm, denote the

number of photons detected on detector Dm after the light has
been filtered by the OBF number m. The measurements are thus
performed until that n1 + n2 + ... + nP = N.
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Fig. 1. Schematic representation of the considered detecting
system when P = 3. Orthogonal Binary Filters are assumed
implemented with an optical perfect shuffle.

Let τ denote the measuring time and let u denote the an-
alyzed species. In the following, full Raman technique corre-
sponds to the situation for which the whole spectrum is mea-
sured with K bins. In that case, the average number of photons
that could be detected for frequencies ν ∈ [νk − δν/2, νk + δν/2],

with k = 1, 2, ..., K, will be denoted S(u)(νk) τ. It is assumed that
νk+1 − νk > δν, i.e. that the frequency bins are non overlapping.
A set of P OBF [9, 12, 13], Fm (with m = 1, .., P) is defined so
that Fm(νk) = 0 or 1 and ∑

K
k=1 Fm(νk)Fn(νk) = 0 (see schematic

representation in Fig. 1). Thus at most one BF does not block
out each frequency bin. The mathematical orthogonality of OBF
thus allows one to potentially implement them in parallel and
opens also new perspectives for experimental strategies. In that
case, the mean number of measured photons on Dm after OBF

Fm is thus µ
(u)
m = φ

(u)
m τ where:

φ
(u)
m =

K

∑
k=1

Fm(νk)S
(u)(νk) (1)

Thus, knowing that a photon has been detected, the probability
that it has been detected on Dm is:

p
(u)
m =

µ
(u)
m

∑
P
m=1 µ

(u)
m

=
∑

K
k=1 Fm(νk)S

(u)(νk)

∑
P
m=1 ∑

K
k=1 Fm(νk)S

(u)(νk)
(2)
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This quantity is independent of τ and is invariant if the spec-
trum intensity is multiplied by an unknown factor (i.e. if

S(u)(νk) → a S(u)(νk)). Let n = (n1, n2, ..., nP), then, the proba-
bility to observe n for species u knowing that a total of N pho-

tons have been detected (i.e. that ∑
P
m=1 nm = N) is:

P(n|u, N) = N!
P

∏
m=1

[
p
(u)
m

]nm

nm!
(3)

which corresponds to a multinomial distribution and where
x! = 1× 2× 3...× x. All along this letter, it will be assumed that
each class u has the same probability to occur, i.e. P(u) = 1/M
where M is the number of classes. Thus, the classification
method that minimizes the classification error probability [14]
is the value ûopt of u that maximizes log [P(n|u, N)], which can
be written ûopt = arg maxu log [P(n|u, N)] and which leads to:

ûopt = arg max
u

[
P

∑
m=1

nm log
(

p
(u)
m

)]
(4)

Let us first discuss the case of classification between two
classes u and v (and thus, in that case P(u) = P(v) = 1/2).
When optimal classification methods are implemented, it can
be shown that the classification error probability is necessarily
smaller than bounds that are often easier to determine than the
classification error probability itself [14]. In particular the clas-
sification error probability Pu,v(E) of the optimal method of
Eq. (4) is upper bounded by the Bhattacharyya bound (BB) [13–
16]:

Pu,v(E) ≤
1

2
e−Bu,v (5)

where the Bhattacharyya distance is:

Bu,v = − log

[

∑
n∈ΩN

√
P(n|u, N) P(n|v, N)

]
(6)

where ΩN is the set of n values so that nm ≥ 0 and ∑
P
m=1 nm =

N. A simple calculus shows that:

Bu,v = −N log

[
P

∑
m=1

√
p
(u)
m p

(v)
m

]
(7)

With qT
u =

(√
p
(u)
1 ,

√
p
(u)
2 , ...

√
p
(u)
P

)
, the BB can be written:

Pu,v(E) ≤
1

2
(qu.qv)

N (8)

where qu.qv is the scalar product between qu and qv. Since the
norm ||qu|| of qu satisfies ||qu|| = 1, the scalar product qu.qv
has a simple geometrical interpretation on the part of the sphere
(which is a circle if P = 2 and an hypersphere is P ≥ 4) defined

by q
(u)
m ≥ 0 and ∑

P
m=1 |q

(u)
m |2 = 1.

Let us first illustrate the relevance of the BB when P = M =
2 and when each species has the same probability to occur. In
that case, n1 has a binomial distribution with parameter pu for
species u and n2 = N − n1. The classification error probabilities
can thus be estimated considering realizations of random vari-
ables with binomial distributions with parameter pu for species
u or with parameter pv for species v. Simulation results are
shown in Fig.2 when N = 20. The classification error proba-
bilities have been estimated with Ne = 103 independent real-
izations of random variables n1 for each class u and v. Such

estimations have been performed for Np = 50 different values
of pu and pv that are realizations of random numbers uniformly
distributed in [0, 1]. The results are shown in Fig.2 as a function

of 1
2 e−Bu,v .
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Fig. 2. Decimal logarithm of the estimated classification error

probability P̂u,v(E) with Ne = 103 independent realizations
of binomial random variables when N = 20 photons are de-
tected and for Np = 50 random laws (pu, pv), where pu and
pv are independent realizations of uniformly distributed ran-
dom variables in [0, 1]. It is assumed that P = 2 (i.e. 2 OBF are

implemented) for 2 classes. P̂u,v(E) are shown in Black. Gray
points show these values plus or minus the standard deviation

of estimation (estimated with

√
P̂u,v(E)

[
1 − P̂u,v(E)

]
/
√

Ne).

The continuous curve shows the Bhattacharyya bound.
Insert: The same but it is now assumed that N = 50 and that
P = 4 OBF are implemented for 4 classes and where the gen-
eralized Bhattacharyya bound is provided by Eq. (11). In that

case, p
(u)
m =

y
(u)
m

∑
p
m=1 y

(u)
m

where y
(u)
m are independent realizations

of random variables uniformly distributed in [0, 1].

Let Nu = Φu τu = ∑
K
k=1 S(u)(νk) τu, where τu is the mean

measuring time in order to get N photons on the detectors for
species u. Thus, Nu is the equivalent photon numbers of the
light emitted by the sample of species u before the OBF for this
measuring time τu. The total mean number of detected photons

after the OBF is in that case φu τu with φu = ∑
2
m=1 φ

(u)
m . The ra-

tio ηOBF = (φu τu + φv τv)/(Φu τu + Φv τv) is thus equivalent
to an optical efficiency of the BF. Synthesizing OBF by maximiz-
ing Eq. (7) can lead to low optical efficiency ηOBF. In such a
case, the measurement can require the emission of a high num-
ber of photons by the sample before getting N photons on the
detector. It can thus be useful to impose that Nu +Nv, or equiv-
alently Φu τu + Φv τv, is upper bounded. Moreover, when the
spectrum models have been normalized so that Φu = Φv = Φ,
this is equivalent to impose a constraint on T = (τu + τv)/2.
Furthermore, N = φu τu and then:

τu =
N

∑
2
m=1 φ

(u)
m

=
N

∑
2
m=1 ∑

K
k=1 Fm(νk)S

(u)(νk)
(9)

In the following, results are illustrated with spectra of the form:

S(u)(νk) = Au,α
(
Xu,k

)α
(10)

where Xu,k are real positive random numbers distributed with a
unit mean exponential probability density function, where α >

0, where Au,α is defined so that ∑
K
k=1 S(u)(νk) = 1 (i.e. A−1

u,α =

∑
K
k=1

(
Xu,k

)α
) and where K = 50. The exponent α allows one
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to simulate spectra with different correlations characterized by
qu.qv ([13]).

The design of the filters is obtained here with a simple op-
timization technique. This technique consists, for each νk, to
chose a new value of [F1(νk), F2(νk)] in [(0, 0), (0, 1), (1, 0)] and
to accept it only if it increases Bu,v and satisfies T = (τu +
τv)/2 ≤ Tλ. Let TF corresponds to the obtained value of T with
the OBF that maximize Bu,v (Eq. (7)) without constraint on T.
Then, in Fig. 3, the optimizations have been realized for seven
maximal imposed values Tλ of T so that Tλ = λ TF with λ ≤ 1.
The process is repeated a fixed number of times (2000 in the
shown numerical experiments). Since the obtained results are
sensitive to the initialization, the result with the highest Bu,v

was selected among 20 different initial couples of OBF. These
initial OBF were chosen so that ∑

2
m=1 Fm(νk) = 1 for any fre-

quency bin νk. Fig.3 shows that the optimized Bhattacharyya
distance strongly depends on the imposed Tλ value and, of
course, on α.

For two classes, the ratio Bu,v/T is a criterion independent

of N as shown with Eq. (7) and Eq. (9). Let F(0) denote the set of

P OBF obtained by maximizing Bu,v/T and let F(T1) denote the
set of P OBF that has been obtained by maximizing Bu,v with
N = 1 with the constraint that T ≤ T1. To each set of P OBF cor-
responds a point in the [time, BB] diagram analogous to the one

of Fig. 3. Points obtained with F(0) when applied with different
N values are located on a straight line in this diagram since both
Bu,v and T are proportional to N. The point in the [time, BB] dia-

gram for any set of filters F(T1) cannot be located on the left side
of this straight line. Indeed, otherwise there will be a contrac-

tion with the property that F(0) maximizes Bu,v/T. Since the
mean number of equivalent emitted photons before the OBF is
N = (Nu +Nv)/2 = Φ T, if several sets of OBF leads to the
same BB, the one with the smallest T value corresponds to the
one that leads to a minimal mean number of equivalent emit-
ted photons before the OBF. From that point of view, the OBF

couple F(0) leads to a good trade-off.

Results obtained with this approach are shown in Fig.3 for
three values of α. It can be observed that the optimization of
Bu,v/T leads to a trade-off between Bu,v and T that is not im-
proved by maximizing Bu,v with imposed Tλ values.
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Fig. 3. Bhattacharyya distance Bu,v as a function of the mean
measuring time T for classification between two classes with
couples of spectra with exponent α = 0.5, 2, 3.5 and with
P = 2 OBF. Gray points (OBFR) show the obtained results
with optimization of Bu,v/T. Continuous and dashed lines are
only guides for the eyes. Optimizations have been performed
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for two N values. The results obtained with maximization of
CN/T are also reported (OBFR). Optimizations have been per-
formed for Tλ = λTF with λ ∈ {1/20, 1/10, 1/5, 1/2, 1}.
Insert: Idem but for several N and P (number of OBF) values.

The method analyzed in this Letter can be adapted to a num-
ber M of species larger that 2. When each of the M species has
the same probability 1/M to occur the classification error prob-
ability P(E) satisfies (see the Appendix):

P(E) ≤ 1

2
e−CN (11)

with:

CN = − log

[
2

M ∑
v

∑
u>v

(qu.qv)
N

]
(12)

It can be noticed that, when M = 2, CN = Bu,v but when M >

2, CN is not a mean value of Bhattacharyya distances and can
possibly be negative.

Analogous results to the ones obtained for M = 2 in Fig.2
are reported in the insert of this Figure for M = P = 4 (i.e. for
four classes and simulation of four OBF) and for N = 50. In that
case, (n1, n2, n3, n4) has a multinomial distribution with param-

eters p
(u)
1 , p

(u)
2 , p

(u)
3 , p

(u)
4 for species u. The classification error

probabilities have been estimated with 103 realizations of ran-
dom variables distributed with multinomial distributions and
when each class has the same probability to occur. For these nu-

merical simulations, pu
m =

yu
m

∑
P
m=1 yu

m

, where yu
m are realizations of

random numbers uniformly distributed in [0, 1] and Np = 50.

The generalized Bhattacharyya bound 1
M ∑v ∑u>v (qu.qv)

N is
also reported in the insert of Fig.2, showing a similar behavior
to the one with two classes.

Analogous results to the ones of Fig.3 are reported in Fig.4
when α = 1 and for two different values of the imposed number
of photons (N = 20 and N = 80). In that case, the optimized cri-
terion is CN with several maximal imposed value Tλ of T. The
optimization process is analogous to the one with P = 2. The
OBF are initialized with binary random values but with the con-

straint that ∑
P
m=1 Fm(νk) = 1. Then, for each νk, a new value of

[F1(νk), .., FP(νk)] is chosen equal to (a1, a2, ..aP) where ai is a

random value equal to 0 or 1 and so that ∑
P
i=1 ai ≤ 1 (i.e. only

one value Fm(νk) can be equal to 1). This new value is accepted
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if it increases CN and satisfies T = 1
M ∑

M
m=1 τm ≤ Tλ. The num-

ber of iterations of the optimization process was set equal to
4000. Fig.4 illustrates the ability of the discussed method to be
applied with several classes. It has nevertheless to be noticed
that CN/T is no more independent of N. Thus maximizing
CN/T for two different values of N could in principle lead to
OBF that correspond to different trade-off (denoted OBFR in
Fig.4). This is indeed what can be observed since the optimiza-
tion for respectively N = 20 and N = 80 leads respectively, for
these examples, to CN/T = 0.0701 and CN/T = 0.0844.

It is not necessary to impose P = M (i.e. equal number of
OBF and of classes). Results with different values of P (P ∈
{2, 4, 6}) when M = 4 are reported in the insert of Fig. 4 for
α = 1. For these examples the number of iterations has been
chosen equal to 103 P so that each value Fm(νk) for different k
and m values has been tested in average the same number of
times. It can be seen that P = 2 is not very efficient. Indeed,
for approximately the same CN it leads to a large value of T. In
other words, it leads to a mean number of equivalent emitted
photons before the OBF, larger than the one obtained with P = 4
or 6. It has nevertheless to be noticed that classification with M
species and P < M are possible with low error probability at the
expense of larger mean equivalent number of emitted photons
before the OBF than when P = M.

In conclusion, the discussed method of this Letter presents
several properties that can be very useful for practical applica-
tions. It leads to probabilities of classification error that can be
upper bounded without knowing a priori the mean number of
emitted photons but only knowing the shape of the normalized
Raman spectra. It thus allows one to easily determine the total
number of measured photons to guaranty that the classification
error probability is smaller than an apriori fixed value. Mathe-
matically orthogonal binary filters can be designed using a sim-
ple criterion obtained with the Bhattacharyya bound.

There exist many perspectives to this work. It will be in-
teresting to develop more efficient OBF design methods since
the obtained results are sensitive to the initialization of the op-
timization algorithm. However, this is not the central problem
for the study of this Letter since the proposed approach can be
implemented with any OBF. Thus, the most promising perspec-
tive is probably to implement optically the described approach
of this Letter. The assumption that the energy of each frequency
band can be sent to a specified detector although difficult is in-
teresting in order not to loose too much efficiency in compar-
ison to standard Raman measurements. It has nevertheless to
be taken into account that simpler optical implementations may
be considered for some applications since only few photons are
necessary to get very low classification error probabilities with
spectra that are not too much similar. It will be also interesting
to analyze if such a technique can be used for other applica-
tions for classification based on other measurements than Ra-
man spectrum analysis.

APPENDIX

Let P (M)
u|v denote the classification error probability to decide

that the observed spectra is due to species u while it is due

to species v. Let tu(n) = ∑
P
m=1 nm log

(
p
(u)
m

)
and R(M)

u =

{n| ∑m nm = N and tu(n) ≥ tw(n), ∀w 6= u}. Then P (M)
u|v =

∑n∈R(M)
u

P(n|v, N). Clearly, P (M)
u|v ≤ P (2)

u|v where P (2)
u|v =

∑n∈R(2)
u|v

P(n|v, N) with R(2)
u|v = {n| ∑m nm = N and tu(n) ≥

tv(n)} that corresponds to a two classes problem. But, the er-

ror probability Pu,v(E) = 1
2

[
P (2)

u|v + P (2)
v|u

]
is upper bounded by

1
2 e−Bu,v . With M equally probable species, (i.e. so that the apri-
ori probability to observe species v is P(v) = 1/M) the mean

error probability is P(E) = ∑u,v|u 6=v P
(M)
u|v P(v) and thus satis-

fies:

P(E) ≤ 1

M ∑
u,v|u 6=v

P (2)
u|v =

1

2 M ∑
u,v|u 6=v

[
P (2)

u|v + P (2)
v|u

]
(13)

that leads to Eq. (11) and Eq. (12).
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