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A Poisson sample of a smooth surface is a good sample

. Using this result, we prove that when points are Poisson distributed on a surface under the same hypothesis, whose expected number of vertices is λ, the expected size is O(λ log 2 λ).

Introduction

While the complexity of the Delaunay triangulation of n points is strictly controlled in two dimensions to be between n and 2n triangles (depending on the size of the convex hull) the gap between the lower and upper bound ranges from linear to quadratic in dimension 3. The worst case is obtained using points on the moment curve 1 and the best case by using the center of spheres defining a packing. 2To get a more precise result on the size of the 3D Delaunay triangulation, it is possible to make different kinds of hypotheses on the point set. A first possibility is to assume a random distribution in 3D and if the points are evenly distributed in a sphere [START_REF] Dwyer | The expected number of k-faces of a Voronoi diagram[END_REF], (resp. in a cube [START_REF] Bienkowski | Average case complexity of voronoi diagrams of n sites from the unit cube[END_REF]), Dwyer (resp. Bienkoswski et al.) proved that the expected size is Θ(n). But this hypothesis of random distribution is not relevant for all applications, for example when dealing with 3D reconstruction the Delaunay triangulation is an essential tool and it is much more natural to assume that the points are not distributed in space but on a surface [START_REF] Cazals | Delaunay triangulation based surface reconstruction[END_REF]. If the points are evenly distributed on the boundary of a polyhedron, the expected size was proved to be Θ(n) in the convex case [START_REF] Golin | On the average complexity of 3d-Voronoi diagrams of random points on convex polytopes[END_REF] and between Ω(n) and Õ(n) in the non convex case by Golin and Na [START_REF] Golin | The probabilistic complexity of the Voronoi diagram of points on a polyhedron[END_REF].

Instead of using probabilistic hypotheses one can assume that the points are a good sampling of the surface, namely an ( , η)-sample where any ball of radius centered on the surface contains at least one and at most η points of the point-set. Under such hypothesis Attali and Boissonnat proved that the complexity of the Delaunay triangulation of a polyhedron is linear [START_REF] Attali | A linear bound on the complexity of the Delaunay triangulation of points on polyhedral surfaces[END_REF]. Attali, Boissonnat, and Lieutier extend this result to smooth surfaces verifying some genericity hypotheses with an upper bound of O(n log n) [START_REF] Attali | Complexity of the Delaunay triangulation of points on surfaces: The smooth case[END_REF]. The genericity hypothesis is crucial since Erickson proved that there exists good sample of a cylinder with a triangulation of size Ω(n √ n) [START_REF] Erickson | Dense point sets have sparse Delaunay triangulations or ". . . but not too nasty[END_REF]. In the example by Erickson the point set is placed in a very special position on an helix, nevertheless, even with an unstructured point set it is possible to reach a supra-linear triangulation since Erickson, Devillers, and Goaoc proved that the triangulation of points evenly distributed on a cylinder has expected size Θ(n log n) [START_REF] Devillers | Empty-ellipse graphs[END_REF].
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Poisson sample is good Contribution

In this paper we prove that a Poisson sample of parameter λ on a smooth surface of finite area is an (ε, η)-sample for ε = 3 » log λ λ and η = 1000 log λ with high probability. Using the result of Attali, Boissonnat, and Lieutier, it yields that the complexity of the Delaunay triangulation of a Poisson sample of a generic surface is O(λ log 2 λ) losing an extra logarithmic factor with respect to the case of good sampling (see Section 3).

Notation, definitions, previous results

We consider a surface Σ embedded in R 3 , compact, smooth, oriented and without boundary. At a point p ∈ Σ, for a given orientation, we denote by κ 1 (p) and κ 2 (p) the principal curvatures at p with κ 1 (p) > κ 2 (p). We assume that the curvature is bounded and define

κ sup = sup p∈Σ max(|κ 1 (p)|, |κ 2 (p)|).
We denote by σ(p, R) the sphere of center p and radius R. We denote by B(σ) the closed ball whose boundary is the sphere σ, by E the interior of a set E and, for p ∈ Σ, by D(p, R) the intersection between Σ and the B(σ(p, R)). Abusively we call D(p, R) a disk. For a discrete set X, we denote (X) the cardinality of X. If X is a set of points, Del (X) denotes the Delaunay triangulation of X. In the 3D case, (Del (X)) is the sum of the number of tetrahedra, triangles, edges and vertices belonging to the Delaunay triangulation.

Without loss of generality, we assume that Area(Σ) = 1 and consider that the set of points X is a Poisson point process with parameter λ > 0 over Σ.

We recall classical properties of a Poisson sample:

Observation 2.1. For two regions R and R of Σ,

P [ (X ∩ R) = k] = (λ Area(R)) k k! e -λ Area(R) , E [ (X ∩ R)] = λ Area (R), R ∩ R = ∅ ⇒ (X ∩ R
) and (X ∩ R ) are independent random variables.

In particular, we have P [ (X ∩ R) = 0] = e -λ Area(R) and E [ (X)] = λ. We consider the same definition of genericity as Attali, Boissonnat and Lieutier, roughly: the set of points where one of the principal curvatures is locally maximal is a finite set of curves whose total length is bounded and, the number of contacts of any medial ball with the surface is finite.

Then we define what is a good-sampling of a surface and precise the result by Attali, Boissonnat and Lieutier.

Definition 2.2 (Good sample).

A point-set on a surface is an (ε, η)-sample if any ball of radius ε centered on the surface contains at least one and at most η points of the sample.

Theorem 2.3 ([2]). The 3D Delaunay triangulation of an (ε, η)-sample of a generic smooth surface has complexity

O Ä η 2 ε 2 log 1 ε ä .
While the result of Attali et al. provides a bound O(N ln N ) on complexity of the Delaunay triangulation of an (ε, η)-sample of N points and a constant η, by looking more carefully at the result [2, Eq.( 14)], we notice that the actual complexity can be expressed by C( η ε ) 2 log(ε -1 ) for C being a constant of the surface. 
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Is a random sample a good sample?

In a Poisson sampling of parameter λ on the surface, a disk of radius ε = 1 √ λ is expected to contain π points, but with constant probability it can be empty or contains more than η points. Thus with high probability there will be such disks even if their number is limited. Thus such a sample is likely not to be a good sample with ε 2 = 1 λ and η constant. Nevertheless, it is possible to not consider η as a constant, namely, we take η = Θ(log(λ)). In a first Lemma, we bound the area of D(p, R), for any p ∈ Σ and R > 0 sufficiently small. Lemma 3.1. Let Σ be a smooth surface of curvature bounded by κ sup , and consider p ∈ Σ and R > 0 smaller than 1 κsup . The area of D(p, R) is greater than 3 4 πR 2 . Proof. The bound is obtained by considering the fact that the surface must stay in between the two tangent spheres of curvature κ sup tangent to the surface at p. The tangent disk at p of radius

√ 3 2 R > √ 3 2 1
κsup is included in the projection of D(p, r) on the tangent plane and thus has a smaller area than D(p, R). Lemma 3.2. Let Σ be a C 3 surface of curvature bounded by κ sup . For R small enough, Area(D(p, R)) < 5 4 πR 2 . Proof. Let z = f (x, y) := 1 2 κ 1 x 2 + 1 2 κ 2 y 2 + O(x 3 + y 3 ) be the Monge of Σ patch [START_REF] Peter W Hallinan | Twoand three-dimensional patterns of the face[END_REF] at a point p. We denote by dσ an element of surface and by A(p, R) the projection of D(p, R) on the xy-plane. Since on D(p, R) the slope of the normal to Σ is bounded, we have:

Area (D(p, R)) = D(p,R) dσ = A(p,R) 1 + ( ∂f ∂x (x, y)) 2 + ( ∂f ∂y (x, y)) 2 dxdy
That is smaller than 

Area(D(p, R)) ≤ 2π θ=0 R r=0 r » 1 + 2(rκ sup ) 2 drdθ = π 3
(2(Rκ sup ) 2 + 1) Noticing that (a + 1)

3 2 -1 = a a+ √ a+1+2 √ a+1+1 ≤ 15
8 a for a < 1, we can conclude that for any R small enough,

Area(D(p, R)) ≤ π 3 15 4 (Rκ sup ) 2 κ 2 sup = 5 4 πR 2 . Lemma 3.3. Let Σ be a C 3 surface with Area(Σ) = 1. Let M R be a maximal set of k R disjoint disks D(p i , R) on Σ. If R is small enough then k R ≤ 4 3πR 2 .
Proof. By Lemma 3.1, for R small enough, we have D(p, R) ≥ 3 4 πR 2 . Thus: does not contain any point of X is O(λ -1 ).

k R • 3 4 πR 2 ≤ i=k R i=1 Area (D(p i , R)) ≤ Area (Σ) =
Proof. We prove that a Poisson sample has no empty disk of radius 3 » log λ λ with probability O(λ -1 ). In a first part we use a packing argument. On the one hand, for any ε > 0 small enough and given a maximal set M ε/3 and any point p ∈ Σ, the disk D(p, ε) contains entirely one of the disks D(p i , ε

3 ) belonging to M ε/3 . Indeed, by maximality of M ε/3 , the disk D(p, ε/3) intersects a disk of M ε/3 whose diameter is 2ε/3 so D(p, ε) contains it entirely. On the other hand, remember from Lemma 3.1 that if ε is small enough then Area(D(p, ε))≥ 3 4 πε 2 . Then we can bound the probability of existence of an empty disk for ε small enough:
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 1 Figure 1 Illustration of the proof of Lemma 3.1 for the 2D case.
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 32 Figure 2 A disk of radius ε always contains a disk of a maximal set of disks of radius ε 3 ,

  Let X be a Poisson sample of parameter λ distributed on a C 3 smooth closed surface Σ of area 1. If λ is large enough, the probability that there exists p ∈ Σ such that D p, 3 »

	1,
	and we can deduce the following bound: k R ≤ 4 3πR 2 .
	Lemma 3.4. log λ
	λ

The moment curve is parameterized by (t, t

, t

). When computing the Delaunay triangulation of points on this curve, any pair of points define a Delaunay edge.[START_REF] Attali | Complexity of the Delaunay triangulation of points on surfaces: The smooth case[END_REF] The kissing number in 3D is 12, thus in such a point set, the number of edges is almost 6n.

= 12 πε 2 e -λ 1πε 2 12 .

By taking ε = 3 » log λ λ we get:

We have proved that when a Poisson sample is distributed on a surface, the points sufficiently cover the surface, i.e., there is no large empty disk on the surface with high probability. Now we have to verify the other property of a good sample, namely, a Poisson sample does not create large concentration of points in a small area. Lemma 3.5. Let X be a Poisson sample of parameter λ distributed on a C 3 closed surface of area 1. If λ is large enough, the probability that there exists p ∈ Σ such that D(p, 3

Proof. Consider an M ε maximal set, we can notice that for any p ∈ Σ, the disk

Then we can bound the probability of existence of a disk containing more than η points:

We use a Chernoff inequality [START_REF] Mitzenmacher | Probability and computing: Randomized algorithms and probabilistic analysis[END_REF] 

From Lemmas 3.1 and 3.2, we have that: 27 4 πε 2 ≤ Area(D(c, 3ε)) ≤ 45 4 πε 2 for ε small enough. Consequently we can say that the expected number of points v 0 in D(c, 3ε) verifies