

Discharge properties of macroscopic glass capillaries after irradiation by low intensity low energy single charged Ar ions

Eric Giglio, R. Dubois, K. Tőkési

▶ To cite this version:

Eric Giglio, R. Dubois, K. Tőkési. Discharge properties of macroscopic glass capillaries after irradiation by low intensity low energy single charged Ar ions. Journal of Physics: Conference Series, 2015, XXIX International Conference on Photonic, Electronic, and Atomic Collisions (ICPEAC2015) 22–28 July 2015, Toledo, Spain, 635 (4), pp.042010. 10.1088/1742-6596/635/4/042010. hal-02394135

HAL Id: hal-02394135 https://hal.science/hal-02394135

Submitted on 23 May 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

PAPER • OPEN ACCESS

Discharge properties of macroscopic glass capillaries after irradiation by low intensity low energy single charged Ar ions

To cite this article: E Giglio et al 2015 J. Phys.: Conf. Ser. 635 042010

View the article online for updates and enhancements.

You may also like

- <u>Research and Application of BIM Cloud</u> <u>Monitoring System for Open Caisson</u> <u>Construction of Super Large Bridge</u> Sanping Zhu, Hang Nan and Yi Zheng
- <u>Study on the precision of the quide control</u> <u>system of independent wheel</u> Y ji, L Ren, R Li et al.
- <u>Feedback control of monotonic shocks</u> A V Porubov, R S Bondarenkov, D Bouche et al.

DISCOVER how sustainability intersects with electrochemistry & solid state science research

This content was downloaded from IP address 195.220.202.112 on 23/05/2024 at 15:34

Discharge properties of macroscopic glass capillaries after irradiation by low intensity low energy single charged Ar ions

E. Giglio¹, R. D. DuBois², and K. Tőkési³

¹Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), F-14000, Caen, France, EU

²Missouri University of Science and Technology, Rolla MO 65409 USA

³Institute for Nuclear Research, Hungarian Academy of Sciences (ATOMKI), Hungary, EU

Synopsis The discharge properties of a macroscopic cylindrically shaped glass capillary, initially charged by a 1 keV Ar⁺ beam tilted by 5° whith respect to the capillary axis is studied. Our experimental observations were compared to our Monte Carlo simulation, higlighting the importance of the surface conductivity.

While the guiding of ions through glass-capillaries due to charged patches is qualitatively understood, the complex nature of the electric conduction in such insulators makes quantitative predictions still a challenging task. Indeed, for a given ion beam, the guiding is entirely determined by the discharge dynamics of the charge patches at the surface, which in turn depend (i) on the electrical properties of insulators under ion beam irradiation and (ii) on the position and nature of grounded electrodes. In order to get some insights into the discharge dynamics of formally created charged patches, a combined experimental and theoretical study was performed. Experimentally, guiding of 1 keV Ar⁺ ions through a macroscopic borosilicate glass capillary tilted by 5° with respect to the beam axis was studied. The capillary was inserted into an aluminum mount with the front surface covered with conductive paint. The current on the front surface and the transmitted current were measured, yielding absolute transmission rates. The aim was to measure the charging and discharging times for the capillary. This was done by centering the capillary on the entrance aperture and waiting until the transmitted intensity stabilized. Then the beam was blocked for varying times and the transmitted intensity was measured as a function of time. By plotting the ratio of the beam intensity immediately after the beam was re-injected with respect to the intensity just before the beam was blocked for the various blocking times, yields information about the capillary discharge time. This was done for several beam intensities ranging from 0.15 to 16 pA. Using a home-made numerical code [1], the same observables were simulated and compared to the experimental data. The theoretical model, on which the simulations are based, includes a realistic descriptions of the surface and bulk conductivity of glass capillaries. It was found that the charge relaxation of the former created patches depends strongly on the mobility of the charge carriers, giving boundary values for the effective mobility of the charge carriers. The capillary being grounded only at the entrance, surface conduction is privileged, and the simulations predict a non-linear discharge of the patches of the type $Q(t)=Q_0/(1+t/\tau)$, with $\tau=10$ s being the characteristic discharge time.

Figure 1. – Transmitted intensity as a function of the discharge time, normalized to the transmitted one, just before the beam was blocked, for a cylindrical capillary of 43 mm length, 0.575 mm inner diameter.

This work was supported by the TéT Grant No. TéT_12_FR-1-013-0007, by the Hungarian Scientific Research Fund OTKA No.NN 103279 and by the COST Action CM1204 (XLIC)

References:

[1] E.Giglio, R.D. Dubois, A.Cassimi, K.Tökési, NIMB B, doi:10.1016/j.nimb.2014.11.056

E-mail: giglio@ganil.fr Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Published under licence by IOP Publishing Ltd 1