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We show that second-harmonic generation in the regime of weak dispersion/diffraction can exhibit a coexistence
of wave breaking mechanisms, such that a gradient catastrophe yielding a dispersive shock wave competes
with modulational instability, leading to the generation of wavetrains with incommensurate frequencies, and
eventually to destruction of the shock wave-train. c© 2013 Optical Society of America

OCIS codes: 000.0000, 999.9999.

Dispersive nonlinear wave propagation give rise to dif-
ferent universal mechanisms of breaking. Modulational
(or Bejamin-Feir-Lighthill) instability (MI), in its basic
manifestation, entails the breaking of a carrier wave due
to growth of low frequency modulations [1–3]. A differ-
ent mechanism involves, in the weakly dispersive (diffrac-
tive) limit, a gradient catastrophe, where a smooth en-
velope steepens until it develops an infinite gradient at
finite distance. This behavior is characteristic of Hamil-
tonian systems which possess a hyperbolic dispersion-
less limit. After the breaking (catastrophe) point, un-
steady fast oscillations appear due to the regularizing
action played by the dispersion, forming what is called
a dispersive shock waves (DSW) [4–9]. For the scalar
nonlinear Schrödinger (NLS) equation, describing Kerr
media, these two mechanims are mutually exclusive. In
fact, the gradient catastrophe occurs in the defocusing
regime characterized indeed by a hyperbolic dispersion-
less limit [5–9]. Conversely, MI takes place in the focusing
regime where the gradient catastrophe is precluded, re-
flecting the elliptic dispersionless limit of this case.
In this letter we show that, when considering sec-

ond harmonic generation (SHG), the two mechanisms
may coexist inducing a new scenario where the onset of
MI [10,11] dramatically affects a two-color DSW emanat-
ing from a gradient catastrophe occurring on both fields.
In order to analyze such competition, we consider SHG
in a regime of low (or even zero) mismatch, establishing
the fact that DSW do not require to operate in the cas-
cading (high mismatch) regime, where SHG mimics the
dynamics of Kerr media [12]. We start from the 1+1D
model for type I SHG in a planar waveguide [13,14] with
weak diffraction
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where u1(z, x) and u2(z, x) are normalized envelopes at
fundamental frequency (FF) and its second harmonic
(SH), respectively, x is the transverse coordinate in
units of beam width W0, z is the distance in units of
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ing the nonlinear and diffraction lengths associated with
nonlinearity χ, power P and beam width W0. The pa-
rameter ε =

√

LNL/LD sets the weakness of diffraction.

δk = (2k1 − k2)LNL is the mismatch, with βj = kj/k1,
k1,2 being FF and SH wavenumbers.
The competition of wave-breaking mechanism can be

efficiently investigated by restricting to the experimen-
tally accessible case [15] of FF and SH phase-locked
beams. In the limit of vanishing diffraction, strict
phase-locking at any z can be satisfied only for non-
linear eigenmodes of Eqs. (1-2) [10], i.e. plane waves
u1(z) = U1 exp(isµz/ε), u2(z) = sU2 exp(i2sµz/ε),
which are solutions of Eqs. (1-2) provided that

U1 = ±
√

µ(2µ+ sδk), U2 = µ, where µ > 0 is
arbitrary and the SH sign s = ±1 is conveniently
introduced to discriminate between in-phase (s = 1,
φ = 0) and out-of-phase (s = −1, φ = π) locking of
the overall phase φ = φ2 − 2φ1, with φ1,2 ≡ arg(u1,2).
Since plane-waves give rise to MI but not to shock
formation, we show that the competition phenomenon
can be conveniently addressed by considering the
evolution of quasi-eigenmodes, i.e. beams with arbitrary
x−shape which evolve while maintaining valid only
locally (both in x and z) the eigenmode constraint.
Our aim is to develop a simple hydrodynamic descrip-
tion of the evolution of such beams, which is valid
under the hypothesis that they remain phase-locked
upon evolution (a general hydrodynamic reduction
of Eqs. (1-2) remains a challenging open problem,
which is beyond the scope of this paper). To this
end we apply to Eqs. (1-2) the Madelung (or WKB)

transformation u1(z, x) =
√

ρ1(z, x) exp[iS1(z, x)/ε],

u2(z, x) = s
√

ρ2(z, x) exp[iS2(z, x)/ε], assuming
S2(z, x) = 2S1(z, x). Neglecting terms O(ε2), we obtain
the first–order quasi-linear system of equations

ρ1z + β1(v1ρ1)x = 0, ρ2z + β2(v2ρ2)x = 0, (3)
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where ρ1,2 and v1,2 ≡ S1,2x play the role of equivalent
densities and velocities of two coupled fluids [4]. Note,
however, that the first two of Eqs. (3) entail no direct
coupling terms between the two densities, equivalent to
transfer of mass, as a consequence of the phase-locking
assumption. We have reduced the system of four equa-
tions for the unknowns (ρ1, ρ2, v1, v2) just to three by
imposing the compatibility constraint v1 = v2/2 ≡ v.
Following the quasi-eigenmode hypothesis, we assume

1



−4 −2 0 2 4

0.2

0.4

0.6

0.8

1
µ

x

a)

−4 −2 0 2 4

−0.5

0

0.5

v

x

b)

Fig. 1. (Color online) (a) Equivalent fluid density µ and
(b) velocity v at distance z = 1.4 ≃ zs from numerical
integration of Eqs. (5) with δk = −4 (solid blue curves),
compared with SH amplitude |u2| and chirp S2x from
Eqs. (1-2) with ε = 0.05 (dots), and input (dashed line).

ρ1,2 = ρ1,2(z, x) to vary in such a way to follow locally
the eigenmode constraint, so that:

ρ1 = µ(z, x)[2µ(z, x) + sδk], ρ2 = µ2(z, x). (4)

The first two of Eqs. (3) are continuity equations that
represent the conservation in differential form of the in-
dividual FF and SH powers, that hold strictly only for
plane-wave eigenmodes. However, since we allow µ to
vary with z, FF and SH no longer strictly conserve their
powers independently. However, conservation must hold
for total power, and we can derive a continuity equa-
tion for the total density ρ = ρ1 + ρ2 = µ(3µ + sδk),
by inserting Eqs. (4) into the the first two of Eqs.
(3), and summing up. Moreover we exploit the relation
β2 = β1/2 = 1/2, thus obtaining ρz + (vρ)x = 0 and
vz + vvx − sµx = 0, which, once further cast in terms of
the ”fluid density” µ (SH amplitude), read as

µz + (vµ)x − g(µ)µvx = 0; vz + vvx − sµx = 0. (5)

Equations (5) constitute a reduced hydrodynamic de-
scription, which is reminiscent of the dispersionless limit
of the NLS [4], except for an extra correction term
weighted by the function g(µ) ≡ 3µ/(6µ + sδk), which,
depending on the value of δk, can take values in the
range [0,1/2]. However, two important differences must
be emphasized: (i) Since the Riemann eigenvelocities as-

sociated with Eqs. (5) are V ± = v ±
√

−s(1− g)µ, the
SHG interaction allows to investigate in the same phys-
ical system both the elliptic problem (s = 1, V ± are
c.c.) and the hyperbolic problem (s = −1, V ± are real),
by simply flipping the locking of the phases of the FF
and SH, which can be easily accomplished experimen-
tally [15]; (ii) although Eqs. (5) are reminiscent of the
NLS dispersionless limit, they do not require to operate
in the high-mismatch regime (cascading), where SHG
is approximated by the NLS equation [14]. This limit,
studied in Ref. [12] is correctly recovered for |δk| → ∞,
which yields g = 0. However Eqs. (5) hold valid under
much more general conditions, also when the genuine
nature of the parametric process is retained, namely for
perfect phase matching δk = 0, that gives g = 1/2. In
the following we focus on the hyperbolic case s = −1
(φ = π) and its gradient catastrophe. While Eqs. (5)
entail breaking for a variety of smooth input, in order
to be specific we consider common launching conditions
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Fig. 2. (Color online) (a,c) Color level plot of FF field
|u1|, ruled by Eqs. (1-2) (the SH, not shown, is similar);
(b,d) Snapshots of output amplitudes |u1| (FF, solid red)
and |u2| (SH, solid blue). Dashed curves are the input.
Here ε = 0.05 and δk = −4 (a,b) or δk = 0 (c,d).

used in experiments [6], i.e. unchirped Gaussian beams
on pedestal: µ(0, x) = ν + (1− ν) exp(−x2), v(0, x) = 0,
with ν ≪ 1 (for definiteness, examples are reported for
ν = 0.1). According to numerical solutions of Eqs. (5),
breaking occurs via two symmetric gradient catastro-
phes at finite distance zs (which slightly depends on δk).
This is displayed in Fig. 1 for δk = −4 (zs = 1.4) and
compared with simulation of the full dynamics ruled by
Eqs. (1-2) from input u1(0, x) =

√

µ(0, x)[2µ(0, x)− δk],
u2(0, x) = −µ(0, x). The reduced system (5) is found to
capture the breaking dynamics with remarkable accu-
racy in a wide range of δk. We have also verified (data
not shown) that the phases remain nearly locked to yield
φ ≃ π in spite of their large individual changes with z.
We then proceed to study the dynamics beyond the

critical point zs, where the validity of Eqs. (5) breaks
down. In particular our aim is to show that, chang-
ing the mismatch δk, severely and qualitatively affects
the post-shock dynamics. We show examples obtained
from numerical integration of the original model (1-2)
for fixed ε = 0.05 The SHG dynamics for δk = −4 is
illustrated in Fig. 2(a,b). The weak diffraction regular-
izes the shocks (steep fronts in Fig. 1) originating from
the gradient catastrophe, through the appearance of two
DSW which fill with fast oscillations extending portions
of space in outward directions, well visible in the snap-
shots of the output fields in Fig. 2(b). However, the sce-
nario changes qualitatively at phase-matching (δk = 0)
as illustrated in Fig. 2(c,d). While the emergence of the
DSW is similar compared to the mismatched case, in-
dependent additional oscillations with incommensurate
frequency appear on top of the beams, inducing a loss of
coherence of the DSW, thus making the behavior rather
chaotic already at relatively short distance [z = 2.5,
see Fig. 2(d)]. This behavior, which bears no similar-
ity in experiments performed on DSW and described
by defocusing NLS-type models [5–7, 9], must be as-
cribed to the onset of MI. The latter arises when pe-
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Fig. 3. (Color online) (a) Color level plot of MI gain
vs. scaled wavenumber εq and phase mismatch δk, for
µ = 1. The intersecting white line indicates the esti-
mated wavenumber qSH from the DSW; (b) Critical mis-
match δkc [value at intersection between qSH and the
gain bandwith in (a)] vs. µ. The shaded (red) region
gives stable DSW.

Fig. 4. (Color online) Evolution of spatial spectra for
stable DSW at δk = −4 [(a) FF; (b) SH] and competing
MI at δk = 0 [(c) FF; (d) SH]. The double arrow indi-
cates the estimated DSW frequency qSH (see text). The
dashed vertical lines refers to the peak of MI gain g(q).

riodic perturbations with wavenumber q, in this case
pm(z, x) = am(z) exp[iqx] + bm(z) exp[−iqx], m = 1, 2,
grow exponentially like exp(gz) at the expense of the
pump beams. The gain g(q) and its bandwidth are ob-
tained from the most unstable eigenvalue of the standard
linearized problem for the perturbation. The outcome of
such analysis [10] (see also review papers [13, 14]) re-
mains valid under the semiclassical scaling of Eqs. (1-
2) provided the rescaling g(q) → ε−1g(εq) is adopted.
Here we show that such analysis quantitatively explains
the competition mechanism, even though we apply it to
slowly evolving fields instead of strict plane-wave eigen-
modes. The argument is as follows: the gradient catastro-
phe is accompanied by a dramatic spectral broadening
which is stabilized when the DSW starts to develop. Un-
der this condition a good measure of the spectral peak
edge associated with the modulated periodic wave at SH
turns out to be qSH ≈ 2/ε. The onset of MI is expected
whenever qSH falls under the MI gain bandwidth, shown
in Fig. 4(a) as a function of δk for µ = 1. Overlap be-

tween qSH and g(q) clearly occurs at δk = 0. By studying
how this overlap behaves with µ (MI bandwidth shifts
at lower q for decreasing amplitude µ), we end up with
a critical δkc = δkc(µ) reported as a curve in Fig. 3(b).
In order to avoid the overlap (and hence MI) for the
whole beam (range of values µ = 0.1 − 1), one has to
operate below the whole curve, i.e. at δk < −3 [shaded
region in Fig. 4(b)], as confirmed by our numerics [see
Fig. 2]. The evolution of the spectra reported in Fig. 4
further confirm this interpretation. When DSW are sta-
ble, no spectral components are generated in the vicinity
of the spectral peak of g(q) [see Fig. 4(a-b)]. Viceversa,
as shown in Fig. 4(c-d) for δk = 0, the onset of MI is
clearly due to the spectral SH wavenumbers (estimated
by qSH , and reported as a double arrow) which hit the
MI gain peak (dashed line), thus leading such compo-
nents to be strongly amplified simultaneously in both
FF and SH modes, as clearly visible in Fig. 4(c-d). Fi-
nally we point out that, for smaller values of ε (∼ 0.01),
the MI can build up from noise even at distances shorter
than the characteristic shock distance, thus dominating
the dynamics.
In summary, SHG supports a novel dynamical scenario

where two-color DSW formed via gradient catastrophes
are deeply affected by MI. This suggests that the con-
comitance of two wave-breaking mechanisms is a general
feature for modes which are nonlinearly coupled [16].
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