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The evolution of light pulses and beams in a quasi-phase-matched (QPM) quadratic medium is usually
described by considering only the spatial harmonic of the QPM grating that minimizes the residual phase-
mismatch. I show that, for strongly phase-mismatched interactions (the cascading regime), several harmonics
need to be accounted for in order to obtain the correct value of the effective cubic nonlinearity, of which I find
a simple analytical expression. I discuss the effects of the higher order harmonics of the grating on solitary
wave propagation. c© 2018 Optical Society of America
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Second harmonic generation (SHG) was the first ob-
served nonlinear optical phenomenon, and it has been
extensively exploited for frequency conversion. When the
wave-number mismatch between the fundamental fre-
quency (FF) and the second harmonic (SH) fields is high,
consecutive energy exchanges between FF and SH take
place, giving rise to the phenomenon of cascading [1],
that produces an effective cubic nonlinearity. The magni-
tude and sing of the cascading nonlinearity is controlled
by the phase-mismatch and can sustain the propagation
of spatial or temporal solitons [2, 3], even in the normal
dispersion regime. Cascading is still attracting much in-
terest, in particular for time domain application, as pulse
compression [4] and ultrabroadband spectrum genera-
tion [5].
In the context of second-harmonic generation, quasi-

phase-matching (QPM) is a very well-known technique,
relying on the periodic modulation of the nonlinear sus-
ceptibility, that can compensate for the phase-mismatch
between the FF and SH wave-number, through and ad-
ditional grating wave-vector. Moreover, QPM structures
can be engineered by varying the period or duty cycle of
the grating, enabling several applications in the context
of pulse shaping [6–11], and supercontinuum generation
[12–14]. It has been shown that near first-order QPM
(provided by the fundamental harmonic of the grating),
the high order harmonics induce cubic nonlinear self-
phase-modulation and cross-phase-modulation terms in
the equations for the averaged fields [15]. These high-
order effects, that are unavoidable in physically realiz-
able gratings (typically square waves), can support pe-
culiar spatial solitons [15], can be exploited for all-optical
switching [16], and can be engineered to overwhelm the
intrinsic cubic nonlinearity of the medium [17]. The fun-
damental assumptions of these studies is that the grating
is designed to be very close to first order QPM.
In this letter I show that the high order harmonics

of the grating must be accounted for also in the cas-
cading regime. I find a simple analytical expression for
the induced self phase modulation coefficient, that may

differ drastically from the conventionally adopted value
−(χeff )

2/δk [7]. Moreover, the difference is bigger when
the cascading approximation is more accurate (i.e. for
high residual phase-mismatches). I discuss the effects on
propagation of temporal solitons in Lithium Niobate for
poling periods, pulse durations and wavelengths typi-
cally encountered in applications.
The coupled equations ruling the evolution of the FF

and SH electric field envelopes are:
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where β′′

1,2 are the group velocity dispersion (GVD) at
FF and SH, χ = ω0d33/(n0c) is the effective quadratic
nonlinear coefficient, ∆k = k2− 2k1 is the natural phase
mismatch, k1 = k(ω0), k2 = k(2ω0), δ is the group ve-
locity mismatch (GVM) between FF and SH, and

g(z) =

+∞
∑
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2

iπ(2n+ 1)
ei(2n+1)κz , κ =

2π

Λ
(3)

is the Fourier expansion of the QPM grating of period
Λ. The same equations rule the propagation of beams,
making the substitutions t → x, β′′

1,2 → −1/k1,2, δ → α,
being α the spatial walk-off.
In the cascading limit, FF can be considered as nearly

constant, and the equation (2) can be integrated to yield,
as first order approximation:

A2 ≈
2χ

iπ
A2

1

∑

m=odd

ei(κm−∆k)z − 1

m(κm−∆k)
. (4)

By substituting back the expression (4) into Eq. (1),
the nonlinear term NL of the resulting equation reads
as:

NL = −

(

2χ

π

)2

|A1|
2A1

∑

m,n=odd

ei(m+n)κz − ei(mκ+∆k)z
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(5)
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Fig. 1. (Color online) Effective cascading nonlinearity γ
normalized to the homogeneous medium nonlinearity γ0
(solid green line). Solid blue curve, exact value Eq. (7);
dashed red curve, standard first order QPM approxima-
tion [Eq. (10), m = 1]; dash-dotted black curve, third-
order QPM approximation [Eq. (10), m = 3].

In the cascading regime, the residual phase mismatch
must be high for all QPM orders (∆k + κm ≫ 1, ∀m);
moreover the nonlinear interaction can be efficient only
if NL does not contain rapidly oscillating terms. This
can be obtained only if one considers m = −n in the
double sum. In this case, Eq. (1) reduces to the nonlinear
Shrödinger equation (NLS):

i
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where the effective cubic coefficient γ reads as:
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The sum of the series in (7) can be calculated, to get:
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In a homogeneous medium κ = 0, and Eq. (7) turns
out to be

γ0 = −
χ2

∆k
, (9)

as expected from the standard analysis [2]. Interesingly
enough, it has been demonstrated very recently that,
despite the huge phase-mismatch, strong nonlinear in-
teractions can take place in bulk media, and they can be
exploited for pulse compression down to the single cycle
regime [4].
In a QPM medium, the series periodically diverges

when ∆k = mκ, i.e. for the m−th order quasi-phase
matching. In these cases there is a strong conversion to
SH and the cascading reduction breaks down.

Considering a single spatial harmonic m = 2n+1, we
get:

γm = −

(

2χ

mπ

)2
1

δk
, δk = ∆k −m

2π

Λ
. (10)

Formula (10) is the well-known expression of m−th
order QPM cascading nonlinearity. However, I show in
the following that this estimate turns out to be very
rough, and can be affected by significant error.
Figure 1 reports the exact value of the cascading non-

linearity γ together with its approximations γ1 and γ3,
as a function of QPM period Λ and residual mismatch
δk = ∆k − 2π/Λ . It is considered the relevant exam-
ple of a Lithium Niobate crystal, for a FF wavelength
λ0 = 1500nm. It is clear that the standard first order
QPM approximation holds only in a regime of moderate
phase-mismatch |δk| < 50mm−1. Generally speaking,
considering only a single QPM harmonic works well only
very close to phase-matching points, exactly where the
cascading approximation is poor. The single harmonic
approximation is affected by even more error for high
order QPM (see dashed-dotted curve for m = 3 QPM
order).
It is interesting to study the effects of QPM on cas-

cading solitons of NLS (6). In normal dispersion (β1 > 0,
typical of quadratic crystal in the visible and near-IR
range), solitons exist if the cubic nonlinearity is defo-
cusing (γ < 0). Soliton peak intensity is proportional
to |β′′

1 /γ|/T
2
0 , and an example reported in Fig. 2 con-

sidering a pulse duration T0 = 40fs. Of course the
errors on the cubic coefficients results in wrong esti-
mates of the soliton peak intensity. For first order QPM
grating (around 20µm < Λ < 40µm), error can be as
big as 30% (see Fig. 3), before diverging near phase-
matching points. A more accurate approximation in this
range can be obtained by considering both the posi-
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Fig. 2. (Color online) Soliton peak intensity for a du-
ration T0 = 40fs (λ0 = 1500nm) as a function of
QPM period. Solid blue curve, exact value; Dashed
red curve, first order QPM approximation; Dash-dotted
black curve, third order QPM approximation;
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tive and negative fundamental harmonics of the grating
[γ1,−1 = −2(2χ/π)2∆k/(∆k2−κ2), dotted curve in Fig.
3]. For longer periods (second order QPM) the estimates
is totally wrong (dashed-dotted curve in Fig. 2), heavily
overestimating the real peak intensity.
To confirm the theoretical results, Eqs. (1-2) have

been solved by standard split-step Fourier method, us-
ing as input condition the soliton profile A1(0, t) =
√

|β′′

1 /γ|/T0sech(t/T0), A2(0, t) = 0. For example, let us
consider a T0 = 40fs pulse at λ0 = 1500nm propagat-
ing in a 4cm-long Lithium Niobate crystals, poled with
a period Λ = 70µm. Figure 4 shows input and output
intensities (thick curves): after propagating for approxi-
mately three diffraction lengths, the pulse shape is nearly
undistorted. This fact also witnesses the robustness of
the solitons to secondary effects such as high-order dis-
persion, or GVM-induced self-steepening [7]. For com-
parison output intensity is reported for a pulse propa-
gating in a quasi linear regime (half the input intensity
needed to form the soliton).
It is worth to remind that quadratic media posses

an intrinsic positive cubic nonlinearity. It simply acts
as a bias, that adds itself to the total cubic coeffi-
cient. Moreover, for the wavelengths in the infrared (say
λ > 1200nm for Lithium Niobate [4]), it turns out to be
much smaller than bulk cascading term γ0.
In conclusion, I showed that high order harmonics of

a QPM grating must be accounted for in the cascad-
ing regime. An simple analytical expression is reported
for the induced self phase modulation coefficient, that
may differ significantly from the conventionally adopted
value. I discussed the effects on propagation of tempo-
ral solitons in Lithium Niobate for conventionally used
poling periods, pulse duration and wavelengths.
Funding from MIUR (Grants No. PRIN 2009P3K72Z

and No. PRIN 2012BFNWZ2) and ANR (grant TOP-
WAVE) is gratefully acknowledged.
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Fig. 3. (Color online) Relative error for the soliton peak
intensity: Solid blue curve, single-harmonic first order
QPM approximation; dashed red curve two-harmonic
first order QPM approximation.
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Fig. 4. (Color online) Input (dashed curves) and output
(solid curves) intensities for a sech pulse of duration T0 =
40fs and wavelength λ = 1500nm after propagation in
a 4cm long crystal (around 3 diffraction lengths) poled
with period Λ = 70µm. Thick curves, soliton case; thin
curves, quasi-linear regime (half input intensity).
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