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Negative refraction of Lamb modes: A theoretical study

François Legrand, Benôıt Gérardin, Jérôme Laurent, Claire Prada, Alexandre Aubry1, ∗

1ESPCI ParisTech, PSL Research University, CNRS,
Institut Langevin, UMR 7587, 1 rue Jussieu, F-75005 Paris, France

(Dated: August 31, 2018)

This paper provides a theoretical investigation of negative refraction and focusing of elastic guided
waves in a free-standing plate with a step-like thickness change. Under certain conditions, a positive
phase velocity (forward) Lamb mode can be converted into a negative phase velocity (backward)
mode at such interface, giving rise to negative refraction. A semi-analytical model is developed in
order to study the influence of various parameters such as the material Poisson’s coefficient, the step-
like thickness, the frequency and the incidence angle. To this end, all the Lamb and shear horizontal
propagating modes, but also a large number of their inhomogeneous and evanescent counterpart,s
are taken into account. The boundary conditions applied to the stress-displacement fields at the
thickness step yields an equation system. Its inversion provides the transmission and reflection
coefficients between each mode at the interface. The step-like thickness and Poisson’s ratio are shown
to be key parameters to optimize the negative refraction process. In terms of material, Duralumin
is found to be optimal as it leads to a nearly perfect conversion between forward and backward
modes over broad frequency and angular ranges. An excellent focusing ability is thus predicted for
a flat lens made of two symmetric thickness steps. Theoretical results are confirmed by a numerical
FDTD simulation and experimental measurements made on an optimized Duralumin flat lens by
means of laser interferometry. This theoretical study paves the way towards the optimization of
elastic devices based on negative refraction, in particular for cloaking or super-focusing purposes.

I. INTRODUCTION

Negative refraction has drawn a considerable attention
for the last twenty years whether it be for wave focusing1,
lensing2, imaging3, or cloaking4 purposes. In a negative
index material, the energy flow as dictated by the Poynt-
ing vector is in the opposite direction to the wave vector.2

This peculiar property implies that, at an interface be-
tween positive and negative index material, waves are
bent the unusual way relative to the normal. Any nega-
tive refracting slab thus forms a flat lens which does not
suffer from any spherical aberration1. Negative refraction
has also given rise to the notion of complementary media
and the ability to cancel the propagation of waves by ad-
joining two mirror regions of opposite refractive indices5.

Most experiments on negative refraction of elas-
tic waves have been achieved either using phononic
crystals,6–9 or meta-materials,10 an arrangement of tai-
lored sub-wavelength building blocks from which the ma-
terial gains unusual macroscopic properties. Neverthe-
less, these man made materials often rely on resonat-
ing structures, a feature that induces strong energy dis-
sipation losses. More recently, an alternative way has
been explored for elastic guided waves. An elastic plate
actually supports an ensemble of modes, the so-called
Lamb waves, which exhibit complex dispersion proper-
ties. Interestingly, some Lamb modes, often referred to as
backward modes, display a negative phase velocity.11–14

This particularity comes from the repulsion between two
dispersion branches with close cut-off frequencies, cor-
responding to a longitudinal and a transverse thickness
mode of the same symmetry. The lowest branch exhibits
a minimum corresponding to a zero-group velocity (ZGV)
point.15,16 This peculiar property has been taken advan-
tage of to achieve negative refraction17,18 through mode
conversion between forward and backward propagating
modes (or vice versa) at a step-like thickness discontinu-
ity.

In this paper, we investigate theoretically, the con-

version of propagating modes at a thickness step in
order to optimize the negative refraction effect. This
problem has already been studied for normal19,20 and
oblique incidence21 at frequencies that only imply low-
order modes and do not involve any backward mode.
Following the approach of a recent study on negative re-
flection of Lamb waves at a free plate edge,22 we develop
a semi-analytical model to calculate the reflection and
transmission coefficients between Lamb modes at a sym-
metric step discontinuity. The optimal parameters (Pois-
son’s ratio, material, thickness ratio) to reach an efficient
negative refraction effect over a broad angular range and
a wide frequency bandwidth are then determined using
this model. Theoretical results are ultimately confirmed
by means of both an FDTD numerical simulation and an
ultrasound laser experiment performed on a plate whose
design has been priorly optimized.

II. DETERMINATION OF THE PLATES
MODES

Let us consider a homogeneous isotropic plate of thick-
ness d = 2h. We first derive the plate modes in the right-
handed system (x1, x2, x3) whose x1-axis is the propaga-
tion direction of the wave and x2-axis is the normal to
the plate. The displacement field u = (u1, u2, u3)

T and
the stress tensor σ = [σij] obeys the elasticity equations
given by :

− ρω2u = ∇ ⋅σ, (1)

where ρ is the density of the material, and ω is the pulsa-
tion. The boundary conditions correspond to the cancel-
lation of the stress tensor on the plate surfaces, σ ⋅n = 0,
where n is the normal to the surface boundary. Consid-
ering the geometry of the problem as shown on Fig 2.a,
solutions are in the form

{ui(x1, x2), σij(x1, x2)} = {ui(x2), σij(x2)} ⋅ e
(ikx1).
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Two sets of solutions satisfy these equations : shear hor-
izontal (SH) modes that are polarized orthogonally to
the propagation plane (u1 = u2 = 0) and Lamb modes,
polarized in the propagation plane (u3 = 0). Both fami-
lies are composed of an infinite number of modes, called
propagating, evanescent or inhomogeneous for a real,
pure imaginary or complex wave number k respectively.
Both Lamb and SH modes can be separated in two in-
dependent families of symmetrical and antisymmetrical
modes. Symmetric/antisymmetric SH modes correspond
to an even/odd u3(x2) polarization along the plate thick-
ness. Symmetric/antisymmetric Lamb modes have an
even/odd in-plane component u1(x2) combined with an
odd/even transverse component u2(x2).

We briefly recall the equations for SH and Lamb modes
that are fully described in various textbooks23,24.

A. SH modes

The well known SH mode dispersion is

ω2

c2T
− k2 = (

nπ

2h
)
2

, (2)

with cT the shear wave velocity and n = 0,1,2.... The
corresponding displacement field is:

u3(x2) = cos(
nπ

2h
(x2 + h)) .

The stress field is then expressed from the displacement
field using Eq. (1).

B. Lamb modes

Symmetrical Lamb modes are solutions of the follow-
ing dispersion relation, often referred to as the Rayleigh-
Lamb equation23,25

ω4

c4T
= 4k2q2 {1 −

p

q

tan(ph)

tan(qh)
} , (3)

with ω the pulsation, p2 = ω2/c2L −k
2, q2 = ω2/c2T −k

2, cL
the longitudinal wave velocity, cT the shear wave velocity.

At a fixed pulsation ω, a discrete set of wave numbers
kn satisfy Eq. (3), and only a finite number of propagat-
ing modes are supported by the plate, whereas it exists an
infinite number of evanescent or inhomogeneous modes.
The components of the displacement field for each mode
can be expressed as follows23 :

u
(n)
1 (x2) = − [kn cos(pnx2) −Rnqn cos(qnx2)] ,

u
(n)
2 (x2) = i [pn sin(pnx2) +Rnkn sin(qnx2)] ,

with

Rn =
(k2n − q

2
n) cos(pnh)

2knqn cos(qnh)
.

Again, the stress field can be deduced from u using
Eq.(1).

C. Dispersion Curves

As the thickness step is symmetrical with respect to
the x2 = 0 plane, the scattering at a free edge preserves
the mode’s symmetry. As a consequence, a symmetri-
cal Lamb mode is reflected and transmitted into sym-
metrical Lamb and SH modes. In the following we will
only consider symmetrical modes. Figure 1 displays the
dispersion curves of the SH and Lamb modes deduced
from Eqs.[(2),(3)] for a duralumin plate (ρ = 2790 kg/m3,
cL = 6.4 mm/µs, cT = 3.1 mm/µs). The symmetric zero-
order Lamb mode S0 is the extensional mode of the plate.
It exhibits free propagation to zero frequency, whereas
the higher order modes admit a cut-off frequency. In par-
ticular, the S1 and S2 modes have cut-off frequencies at
f = VT /d and f = VL/2d, corresponding to shear and lon-
gitudinal thickness resonances, respectively. One pecu-
liar property of Lamb waves is the existence of branches
for which phase velocity ω/k and group velocity ∂ω/∂k
are of opposite sign. The corresponding modes, often
referred to as backward modes, naturally display a neg-
ative phase velocity. They originate from the repulsion
between two dispersion branches having close cut-off fre-
quencies, corresponding to a longitudinal and a trans-
verse thickness mode of the same symmetry. This is the
case for S1 and S2 modes displayed in Fig. 1 in the case
of a Duralumin plate. The lowest branch (S1) exhibits a
minimum corresponding to a zero-group velocity (ZGV)
point15,16. Above this resonance, there is a coexistence
of a negative phase velocity (backward) S2b-mode and a
positive phase velocity (forward) S1-mode.

III. PROBLEM’S GEOMETRY AND EQUATION
SYSTEM

As shown in previous studies17,18, negative refraction
of Lamb waves can be achieved by conversion of a forward
mode into a backward mode at a thickness step. For the
sake of simplicity, we will here consider the conversion
between the forward and backward modes S2 and S2b at
a symmetric step (Fig. 2a). Such a geometry is actually
optimal for symmetric modes.

To study the interaction of a mode of oblique incidence,
a second right-handed system (x′1, x2, x

′
3) is introduced

[see Fig. 2(a)]. The axis x′1 is oriented along the step
interface while the axis x′3 is normal to this step. The
thickness is supposed to be d1 = 2h1 for x′1 < 0 and d2 =
2h2 for x′1 > 0 with h1 > h2. We then consider an incident
wave coming from the thick part.

Figure 2(b) displays the dispersion curves of the Lamb
and SH modes in each part of the plate. Right-going (re-
spectively, left-going) propagating modes correspond to
a positive (respectively, negative) group velocity ∂ω/∂k,
whereas the evanescent and inhomogeneous right-going
(respectively,left-going) modes correspond to wave num-
bers with strictly positive (respectively, negative) imagi-
nary parts. Because the dispersion curves scale with the
plate thickness [Eqs. (2) and (3)], the forward propagat-
ing mode S2 in the thick part (x′1 < 0) crosses the back-
ward propagating mode S2b in the thin part of the plate.
As already observed experimentally17,18, this crossing
point gives rise to negative refraction though an efficient
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FIG. 1. Dispersion curves of elastic guided modes in a 1 mm thick Duraluminium plate computed from Eqs. (2)-(3):
propagating and evanescent SH modes (red), propagating and evanescent Lamb modes (blue) and inhomogeneous Lamb modes
(green).

conversion between these two modes at a thickness step.
This conversion is now investigated in details.

Let us consider an incident right-going S2 mode,
of wave number kI , carrying an unit energy flux to-
wards the step with an angle of incidence θI , with re-
spect to the axis (x′1), as depicted in Fig. 2(a). The
corresponding stress displacement field is denoted as

{u′
I
i , σ

′I
i,j}. In order to satisfy the stress-free condi-

tion at the interface, this incident Lamb mode is re-
flected/transmitted into an infinite combination of left-
going/right-going Lamb and SH modes of wave numbers
kr,n and kt,n, respectively. It is necessary to consider
not only the propagating modes but also the different
evanescent and inhomogeneous Lamb and SH modes.
For a given mode n, the reflection and transmission an-
gles, θr,n and θt,n, are determined by the conservation of
the component of the wave vector along x′3, kI sin(θI) =
kr,n sin(θr,n) = kt,n sin(θr,n). The displacement-stress

fields,{ũ
′
(n)
i , σ̃

′
(n)
i,j } and {u

′
(n)
i , σ

′
(n)
i,j }, of respectively re-

flected and transmitted modes expressed in the coor-
dinate system (x′1, x2, x

′
3), can be obtained from the

displacement-stress fields {u
(m)
i , σ

(m)
i,j } expressed in the

coordinate system (x1, x2, x3) using the following equa-

tions:

u
′(m)

= R(θm) ⋅u(m),

σ
′(m)

= R(θm) ⋅σ(m) ⋅R(θm)
T ,

where R(θ) is the rotation matrix,

R(θ) =

⎡
⎢
⎢
⎢
⎢
⎣

cos(θ) 0 − sin(θ)
0 1 0

sin(θ) 0 cos(θ)

⎤
⎥
⎥
⎥
⎥
⎦

.

In order to define transmission and reflection coeffi-
cients, it is necessary to normalize each mode so that it
carries unit energy flow through the interface:

u(n) =
u(n)

Cn
and σ(n) =

σ(n)

Cn
,

Cn being the normalization coefficient. To determine this
coefficient, we use the bi-orthogonality relation estab-
lished by Auld25, Fraser26 and generalized by Gunawan27
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FIG. 2. (a) Geometry of the problem that shows the in-
teraction of a Lamb mode with a step interface. To satisfy
the continuity equations at the interface the incident wave
is transmitted and reflected into an infinite combination of
Lamb and SH modes.(b) Lamb and SH propagating modes
dispersion curves in both parts of the plate (green for d1 = 1
mm and red for d2 = 0.9 mm). The forward propagating mode
S2 in the thick part intersects the backward propagating mode
S2b in the thin part.

that involves the bi-orthogonality coefficient Pmn :

Pmn =
iω

4
∫

+h

−h
[u

′(m)
j (σ

′(n)
1j )

∗
− (u

′(p)
j )

∗σ
′(m)
1j ]dx2.

For propagating modes the coefficient Pmn is non zero
only when m = n. The real part of this coefficient cor-
responds to the energy flow passing through the inter-
face. The coefficient Cn for each propagating mode is
thus given by :

Cn = Re{Pn} , (4)

For a non-propagating mode m, the normalization co-
efficient cannot be expressed using Eq. (4), because the

energy flow of this mode is by definition zero through
the interface (Re{Pmm} = 0). However, following Auld’s
work25, it exists for each non-propagating mode m with
a wavenumber km a conjugate non-propagating mode p,
associated with a wavenumber kp = k

∗
m. the combination

of this modes gives rise to an energy flow given by the
real part of Pmp. Each non-propagating mode m can be
normalized by this coefficient

Cm = Re{Pmp} ,

In the following, u and σ will be written as u and σ to
lighten the expressions.

The boundary conditions at the interface are the stress
cancellation on the risers and the displacement and stress
continuity on the central part. They can be written as:

u
(I)
j +

∞

∑
n1=1

r(I ∣n1)ũ
(n1)

j =
∞

∑
n2=1

t(I ∣n2)u
(n2)

j , ∣x2∣ < h2, (5)

σ
(I)
1j +

∞

∑
n1=1

r(I ∣n1)σ̃
(n1)

1j =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 , h2 < ∣x2∣ < h1
∞

∑
n2=1

t(I ∣n2)σ
(n2)

1j , ∣x2∣ < h2
, (6)

with j = 1,2,3. r(I ∣n) and t(I ∣n) represent the reflexion
and transmission coefficients of the incident mode in the
nth mode in the corresponding part of the plate. This
system of equations cannot be solved analytically and
it is necessary to truncate the series and discretize the
displacement and stress fields.

IV. INVERSION OF THE PROBLEM

To solve numerically Eqs. (5)-(6), the stress and dis-
placement fields need to be discretized along the normal
to the plate with a thickness sampling pitch ∆x2. A
maximum number of considered modes is then set by the
following spatial Shannon criterion indicating that it is
necessary to have at least two points by period:

kx2 <
2π

∆x2

with kx2 =
√

(ω/cT )2 − k2. The number N of selected
modes is lower than the number of discrete points along
the thickness. This discretization of the stress and dis-
placement fields allows to write Eqs.(5)-(6) in a matrix
form :
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⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

r1
⋮

ri
⋮

rN1

t1
⋮

ti
⋮

tN2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
C

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−ũ
(1)
1 −ũ

(n)
1 −ũ

(N1)

1 u
(1)
1 u

(n)
1 u

(N2)

1

−ũ
(1)
2 −ũ

(n)
2 −ũ

(N1)

2 u
(1)
2 u

(n)
2 u

(N2)

2

−ũ
(1)
3 −ũ

(n)
3 −ũ

(N1)

3 u
(1)
3 u

(n)
3 u

(N2)

3
⋯ ⋯ ⋯ ⋯

−σ̃
(1)
11 −σ̃

(n)
11 −σ̃

(N1)

11 σ
(1)
11 σ

(n)
11 σ

(N2)

11

−σ̃
(1)
12 −σ̃

(n)
12 −σ̃

(N1)

12 σ
(1)
12 σ

(n)
12 σ

(2,N2)

12

−σ̃
(1)
13 −σ̃

(n)
13 −σ̃

(N1)

13 σ
(1)
13 σ

(n)
13 σ

(N2)

13

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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M

−1

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

u
(I)
1

u
(I)
2

u
(I)
3

σ
(I)
11

σ
(I)
12

σ
(I)
13

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Y

. (7)

C is the vector of all the reflection and transmission co-
efficients, M is the matrix containing the displacement-
stress field of each mode, and Y is the displacement-
stress field of the incident mode. The rectangular matrix
M is inverted using a Moore-Penrose pseudo-inversion.
The chosen sampling interval ∆x2 = 2 ⋅ 10−4 mm im-
plies the consideration of NL = 241 Lamb modes and
NSH = 120 SH modes in each part of the plate. This
choice is made in order to fulfill the energy conserva-
tion condition with a reasonable precision such that :

1 − (
N

∑
i=1

∣ri∣
2 + ∣ti∣

2) < 10−3.

V. OPTIMIZATION OF THE NEGATIVE
REFRACTION PHENOMENON

This semi-analytical model is first used to determine
the thickness ratio that maximizes the conversion be-
tween the forward mode S2 and the backward one S2b

at normal incidence. Figure 3(a) displays the transmis-
sion coefficient ∣tS2→S2b∣ at normal incidence for various
materials as a function of the thickness ratio d2/d1. For
each thickness ratio, the amplitude transmission coeffi-
cient is calculated at the crossing frequency, intersection
of S2-mode in the thick part and S2b-mode in the thin
part [see Fig. 2(b)]. Interestingly, the amplitude trans-
mission coefficient can be close to unity for materials such
as Duralumin or Copper. This can be explained by the
close displacement profiles of the two modes at the cross-
ing frequency [see Fig. 4(b)]. However, for each mate-
rial, the amplitude transmission coefficient strongly de-
creases when the thickness ratio tends towards unity. In
that asymptotic case, the crossing frequency approaches
the cut-off frequencies where the S2-mode tends to be
purely longitudinal while the S2b-mode becomes purely
shear. An important mode mismatch is thus found when
d2/d1 → 1 [see Fig. (4).(a)]. Figure 3(b) displays ∣tS2→S2b∣

and the optimum thickness ratio as a function of the Pois-
son’s ratio ν. Interestingly, when ν tends to the value
1/3, the amplitude transmission coefficient reaches unity
with an optimum thickness ratio of 1. This critical value
of ν indeed implies the coincidence of S2 and S2b cut-off
frequencies. S2 and S2b modes are thus strictly identi-
cal in that case, which means a full mode overlap and
a perfect conversion between them (see Fig. 4.c). Such
case has been recently investigated by Stobbe et al28 as
it also gives rise to a Dirac cone in the dispersion curves.

This means that the group velocity remains finite while
the wave number tends to zero. However, in the present
case, an infinite wavelength limits the experimental inter-
est for this ideal case. A compromise has thus to be found
between the transmission coefficient and the mode wave-
length and in that respect, the choice of Duralumin ap-
pears to be optimal: the transmission coefficient reaches
∣tS2→S2b∣ = 0.94 for a thickness ratio d2/d1 of 0.92 and
a reasonable wavelength λ = 15d1. Moreover, Duralumin
has a much lower absorption coefficient than Copper (∼ 1
dB/m for Duralumin and in that respect, ∼ 20 dB/m for
Copper29).

Now that the Duralumin has been chosen, we investi-
gate the bandwidth over which the conversion between
S2 and S2b remains efficient. The frequency dependence
of ∣tS2→S2b∣ is displayed in Fig. 5(a). The negative re-
fraction of Lamb waves appears to be broadband: for
d1 = 1mm, the transmission coefficient is above 0.9 over
a frequency bandwidth ∆f ∼ 0.15 MHz. The negative
refraction phenomenon can thus be observed in the time
domain for wave-packets of length ∆t ∼ 1/∆f ∼ 6 µs.
This important feature will be confirmed experimentally
in the next section.

The angular dependence of the negative refraction phe-
nomenon is also particularly important for the implemen-
tation of a negative refraction flat lens. Figure 5(b) dis-
plays the reflection and transmission coefficients for the
various propagating modes supported by each part of the
plate for an incident S2 mode. It appears that ∣tS2−>S2b∣

remains above 0.8 over an angular range of 45○. Note
that, for large angles of incidence, the S2-mode is mainly
reflected into itself and the SH2-mode. As we will see
now, this angular robustness of the S2 → S2b conversion
ensures a large aperture angle for the negative refraction
flat lens.

VI. NEGATIVE REFRACTION LENS

Now that the angular and temporal stability of the neg-
ative refraction phenomenon has been investigated, the
negative refraction flat lens is investigated theoretically,
numerically and experimentally. A negative refraction
lens for Lamb waves consists in a plate with the associ-
ation of a downward step and an upward step. In the
last section, only the conversion at a downward step has
been considered. According to the reciprocity principle,
the transmission coefficient from S2b to S2 at an upward
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FIG. 3. Transmission of the S2 mode at normal incidence:
(a) Transmission coefficient ∣tS2→S2b ∣ as a function of the
thickness ratio d2/d1 for different materials. (b) Amplitude
transmission coefficient (continuous line) and the associated
best thickness ratio (dotted line) as a function of the Poisson’s
ratio. The coefficient reaches 1 for ν = 1/3, that is to say when
S2 and S2b share the same cut off frequency. (c) Evolution of
the crossing wavelength as a function of the Poisson’s ratio.

step is strictly identical to the transmission coefficient
from S2 to S2b at a downward step. Hence, the wave-field
generated by a point source at the input of a negative re-
fraction lens [Fig. 6(b)] can be easily predicted. The
angular stability of the negative refraction phenomenon
at a thickness step previously observed in Fig. 5(b) give
rise to excellent focusing properties for the negative re-
fraction flat lens, at least theoretically. These theoretical
predictions are confirmed in Fig. 6(c) that shows the
result of a numerical simulation performed with a finite-
difference time domain software on the same device30.
A close agreement is found between the semi-analytical
result and the numerical simulation, which confirms the
validity of our approach.
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line) of S2 (black) and S2b (red) in a 1 mm thick Duralumin
plate : (a) at the cut-off frequency. (b) At the crossing point.
(c) At the coincidence when ν = 1/3

The optimized negative refraction lens is now imple-
mented experimentally. It consists of a 1-mm-thick Du-
ralumin plate that has been engraved by chemical ero-
sion using iron chloride to obtain a 0.9 mm thick thin
part. The plate dimensions are chosen such that the re-
flections on the free edges of the plate are limited during
the recording. The excitation of the plate is achieved
by a piezoelectric transducer (Olympus V183-RM) of 10
mm-diameter glued (with salol or phenyl salicylate) on
the thick part at a distance D = 25 mm from the step.
A 5 µs chirp signal spanning the frequency range 3.05-
3.65 MHz is sent to the transducer which generates a
cylindrical incident wavefront in the plate. The out-of-
plane displacement is measured with a photorefractive
interferometer (from BossaNova, Tempo1D) over a grid
of points that maps 150 × 50 mm2 of the plate surface,
with 1 mm-pitch across the thin part. Signals detected
by the optical probe are fed into a high speed usb os-
cilloscope (TiePie HS5) and transferred to a computer.
A spatio-temporal discrete Fourier transform (DFT) of
the recorded wavefronts is then performed from 3.22 to
3.52 MHz and for spatial frequencies k/(2π) ranging from
−0.15 to 0.15 mm−1. Figure 6(d) shows the normal dis-
placement field measured on the plate filtered at the fre-
quency f = 3.33 MHz. In order to avoid the reflections
on the free edges of the plates, the DFT is calculated for
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FIG. 5. (a) Variation of the amplitude transmission coefficient
at the optimum thickness ratio as a function of frequency. (b)
Reflection and transmission coefficients as a function of the
S2-mode incident angle at frequency f = 3.33 MHz. (The S2

to SH0 reflection coefficient and the transmission ones to S0

and SH0 are not shown here because smaller than 10−3)

adapted time windows in each part of the lens : 0 − 20
µs for the first thick part, 10 − 70 µs for the thin part
and 40 − 100 µs for the second thick part. Despite the
inherent imperfections to the experimental realization,
the measured wave field is quite remarkably congruent
with the theoretical prediction and the numerical simu-
lation. The angular spectrum of the negative refraction
observed on Fig. 6.d is really alike the one theoretically
predicted (45○, cf Fig. 5.b). The ultrasound laser experi-
ments also allows to investigate the behavior of the plate
lens in the time domain18. Due to the spectral robust-
ness of the S2 → S2b conversion [Fig. 5.(a)], the plate
lens also operates in the time domain for wave packets
of finite duration (6 µs). The result is displayed in the
Supplementary movie31.

VII. CONCLUSION

A semi-analytical study of the interaction of Lamb
waves with a thickness step-like and more specifically
the conversion between forward and backward Lamb
modes, associated with negative refraction was pro-
posed. The semi-analytical model allows to investigate
this phenomenon by computing the transmission and
reflection coefficient as a function of Poisson’s ratio,
thickness ratio, angle of incidence and frequency. Then
find the optimal design to achieve negative refraction.
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FIG. 6. (a) Experimental Setup. Wave-field associated with
the S2 and S2b modes supported by the NR lens made of
a Duralumin plate with a thickness ratio d1/d2 of 0.9. (b)
Semi-analytical result. (c) FDTD numerical result. (d) Ex-
perimental result obtained with laser interferometry.

This semi-analytical model predicts the frequency and
angular robustness of the negative refraction process and
shows that a Duraluminium plate as used in previous
works15,18 was an excellent compromise to observe
negative refraction. Relying on these results, we have
designed and tested a negative refraction lens acting in
the time domain. The wave-field recorded by means of
laser ultrasound techniques is in excellent agreement
with theoretical predictions and FDTD numerical
simulations. The perspective of this work will be to
investigate negative refraction related phenomena such
as the notion of complementary media32 and the ability
to cancel the propagation of waves by adjoining two
mirror regions of opposite refractive indices. Beyond
negative refraction, the proposed theoretical model is
much more general and can be applied to all kind of
discontinuity and Lamb modes. The consideration of
evanescent or inhomogeneous Lamb modes in the model
also paves the way towards the implementation of a
superlens for Lamb waves.
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solides: propagation libre et guidée, Masson (1996).

24 J. Achenbach, Wave propagation in elastic solids, vol-
ume 16, Elsevier (2012).

25 B. A. Auld, Acoustic fields and waves in solids, John Wiley
and Sons (1973).

26 W. Fraser, “Orthogonality relation for the Rayleigh–Lamb
modes of vibration of a plate”, J. Acoust. Soc. Am. 59,
215–216 (1976).

27 A. Gunawan and S. Hirose, “Reflection of obliquely inci-
dent guided waves by an edge of a plate”, Mater. Tran. 48,
1236–1243 (2007).

28 D. M. Stobbe and T. W. Murray, “Conical dispersion of
Lamb waves in elastic plates”, Phys. Rev. B 96, 144101
(2017).

29 C. Prada, D. Clorennec, and D. Royer, “Power law decay
of zero group velocity Lamb modes”, Wave Motion 45,
723–728 (2008).

30 E. Bossy, M. Talmant, and P. Laugier, “Three-dimensional
simulations of ultrasonic axial transmission velocity mea-
surement on cortical bone models”, J. Acoust. Soc. Am.
115, 2314–2324 (2004).

31 See supplemental material at [url will be inserted by pub-
lisher] for videos of the negative refraction in time domain
for numerical and experimental results.

32 J. Pendry and S. A. Ramakrishna, “Focusing light using
negative refraction”, J. Physics-Condens. Mat. 15, 6345
(2003).


	Negative refraction of Lamb modes: A theoretical study
	I Introduction
	II Determination of the Plates Modes
	A SH modes
	B Lamb modes
	C Dispersion Curves

	III Problem's geometry and equation system
	IV Inversion of the problem
	V Optimization of the negative refraction phenomenon
	VI Negative refraction lens
	VII Conclusion
	 Acknowledgments
	 References


