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We show that the use of a dispersion oscillating fiber in passive cavities significantly extend modulational
instability to novel high-frequency bands, which also destabilize the branches of the steady response which are
stable with homogeneous dispersion. By means of Floquet theory, we obtain exact explicit expression for the
sideband gain, and a simple analytical estimate for the frequencies of maximum gain. Numerical simulations
show that stable stationary trains of pulses can be excited in the cavity. c© 2018 Optical Society of America

OCIS codes: (060.4370) Nonlinear optics, fibers; (230.5750) Resonators; (190.5530) Pulse propagation and temporal

solitons; (190.4380) Nonlinear optics, four-wave mixing

Modulational instability (MI) refers to a process where
a weak periodic perturbation of an intense continuous
wave (CW) grows exponentially as a result of the inter-
play between dispersion and nonlinearity. The underly-
ing mechanism is nonlinear phase matching of four-wave
mixing between the CW pump and the sidebands, which
requires, for the scalar process in a homogeneous opti-
cal fiber, anomalous group-velocity dispersion (GVD).
In the normal GVD regime, MI can occur in detuned
cavities, thanks to the constructive interference between
the input pulse and the attenuated pulse that returns
after a round-trip [1–5]. Alternatively it can arise in
systems with built-in periodic dispersion [6–11], among
which dispersion oscillating fibers (DOFs) have recently
attracted a lot of attention [12–15]. In this case, phase
matching relies on the additional momentum carried by
the periodic dispersion grating (quasi-phase-matching).
In this letter, we investigate the combination of the

two mechnisms, namely a passive fiber cavity with built-
in DOF, showing that, despite the simplicity of imple-
mentation, this type of structures exhibit novel interest-
ing features. The additional periodicity introduced by
the DOF not only extends MI to the branches of the
bistable response which are stable when GVD is homo-
geneous, but also induces higher-frequency MI branches
which could be conveniently exploited for pulse train
generation at high repetition rate. Moreover, MI can rise
in the monostable regime of the cavity even in normal
dispersion. Importantly, after the stage of exponential
growth of weak sidebands, DOF-induced MI can gener-
ate stable pulse trains with large contrast ratio at fre-
quencies which are comparatively higher than those of
the homogeneous GVD case. Theoretical analysis based
on Floquet theory is supported by numerical simulations
of the Lugiato-Lefever Equation (LLE) [1,16,17] and the
cavity map.
We consider a fiber ring modeled by cavity boundary

conditions for the n−th round-trip, coupled to Nonlinear
Schrödinger Equation (NLSE), that rules the propaga-
tion of the intracavity field un along the ring:

un+1(z = 0, t) = θuin(t) + ρe−iδun(z = 1, t), (1)

i
∂un

∂z
− β(z)

2

∂2un

∂t2
+ |un|2un = 0, (2)

where subscript n indicates n−th circulation, ρ, θ (ρ2 +
θ2 = 1) are the reflection and transmission coefficients, δ

is the cavity detuning and we define dimensionless units
as follows: z = Z/L, t = T/T0, u(z, t) = E(Z, T )

√
γL,

T0 =
√

|k′′|L, β(z) = k′′(z)/|k′′| where L is the cavity
length, k′′ = d2k/dω2 the average second order disper-
sion and γ the fiber nonlinearity. Quantities in capital
letters Z, T , E denotes real world distance, retarded
time in the frame traveling at group velocity, and in-
tracavity electric field envelope, respectively. In a mean-
field approach, the map (1-2) can be averaged to give
the following LLE [1, 2]

i
∂u

∂z
− β(z)

2

∂2u

∂t2
+ |u|2u = (δ − iα) u+ iS, (3)

where we drop the subscript for the field and set S =√
P = θuin, where uin =

√
γLEin is the normalized in-

put external field, and α = 1−ρ ≈ θ2/2 describes cavity
losses (generally dominated by output coupling). While
Eq. (3) is equivalent to unfold the cavity, its round-
trip periodicity constrains z to be accessible at integer
values. Consistently we consider a normalized DOF pe-
riod Λ = 1/N , N = 1, 2, . . ., where N represents the
number of periods of the DOF over a single round-trip.
It is well known that Eq. (3) shows bistability with

two coexisting stable branches of CW solutions u = u0,
whenever δ2 > 3α2 [2, 16]. This follows from the inverse
steady-state response P = P (Pu)

P = Pu[(Pu − δ)2 + α2], (4)

where P = |S|2 and and Pu = |u0|2 are driving
and intracavity powers, respectively. The values Pu =
(

2δ ±
√
δ2 − 3α2

)

/2 mark the bistable knees [2, 16].
Cavity steady-states can destabilize according to MI,

entailing the exponential growth ∝ exp[g(ω)z] of peri-
odic modulations with proper frequency ω. MI can be
characterized by means of the linear stability analysis
of the steady solution u0. We consider the evolution of
a perturbed solution u(z, t) = u0 + η(z, t), with |η| ≪
|u0| and express the perturbation as the combination
of two symmetric sidebands η(z, t) = εs(z) exp[iωt] +
εa(z) exp[−iωt]. We obtain a linear ODE system for the
perturbations dε/dz = M(z)ε, ε = [εs, ε

∗
a]

T , where the
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matrix M = M(z), reads:

M =

[

iΩ2(z)− α iu2
0

−iu2∗
0 −iΩ2(z)− α

]

, (5)

with Ω2(z) ≡ β(z)
2 ω2+2Pu− δ. Whenever β is constant,

we recover the MI gain in closed form as [1, 2]

g(ω) = −α+
√

4Puδω − δ2ω − 3P 2
u , δω = δ − β

2
ω2, (6)

which yields the most unstable frequency and its gain,

ωmax =

√

2

β
(δ − 2Pu), g(ωmax) = Pu − α. (7)

If we consider a periodic dispersion β(z) = β(z + Λ),
we can analyze MI by applying Floquet theory [8, 18].
The stability depends on the so-called Floquet multipli-
ers or characteristic exponents. These are obtained by
constructing the 2×2 fundamental matrix solution eval-
uated at z = Λ, U = [y1(Λ), y2(Λ)], whose columns are
the solutions y1,2(z) to dε/dz = M(z)ε, for the two ini-
tial values ε(0) = [1, 0]T , [0, 1]T . MI occurs when one of
the eigenvalues λ of U is such that |λ| > 1. In this case
the (amplitude) growth rate of the instability is given by
the characteristic exponent g(ω) = ln |λ|/Λ.
For a generic profile of GVD (e.g. sinusoidal) the prob-

lem cannot be solved analytically and some approxi-
mated results can be found by exploiting the method
of averaging [12]; otherwise we need to resort to numer-
ical methods. However, if β(z) is piecewise constant, i.e.
we have two sections of length L1,2 (L1 + L2 = Λ) with
dispersion β = β1,2 [Fig. 1(e)], we can find an exact
solution. In this case, the eigenvalues of U , i.e. the char-
acteristic exponents, are given by

λ1,2 =
∆

2
±
√

∆2

4
−W, (8)

where ∆ = y11 + y22 and the Wronskian W = y11y22 −
y12y21 is easily calculated as W = e−2αΛ [ymn is the
n−th component of the solution ym(Λ)]. We have MI if
|∆| > (1+W ), with gain g(ω) = ln(max |λ1,2|)/Λ, where
∆ is the Floquet discriminant

∆ = e−αL[2 cos(k1L1) cos(k2L2)−σ sin(k1L1) sin(k2L2)],
(9)

where σ = [β1β2ω
4 + 2(Pu − δ)(β1 + β2)ω

2 +
4(3Pu − δ)(Pu − δ)]/(2k1k2), and k1,2 =
√

(β1,2ω2/2 + 2Pu − δ)2 − P 2
u . From Eq. (9) it is

possible to extract some useful analytical estimates.
In particular, in the limit of small modulation depth
(β1 ≈ β2, βm ≈ 0), we can easily show that σ ≈ 2.
Moreover, if we consider L1 = L2 = Λ/2, it is possible
to obtain a very simple expression of the frequencies
of the peak MI gain. This is given by the relation
(βavω

2/2 + 2Pu − δ)2 − P 2
u = (mπ/Λ)2, m = 1, 2, . . .,

where one can recognize the condition of parametric
resonance, i.e. the natural frequency of the unperturbed
oscillator (5) (kav) is a multiple of half the forcing
frequency (π/Λ) [12]. We get explicitly

ωmax =

√

√

√

√±
[

2

βav

√

(mπ

Λ

)2

+ P 2
u

]

+
2

βav

(δ − 2Pu),

(10)
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Fig. 1. Level plot of MI gain in the plane (ω, Pu) with
normal (a,c) and anomalous (b,d) average GVD. (a,b)
Sinusoidal dispersion β(z) = ±1 + sin(2πz); (c,d) Piece-
wise constant dispersion L1 = L2 = 1/2, β1 = ±1 + 0.8,
β2 = ±1− 0.8. Dash-dotted black curves, MI peak gain
frequencies from Eq. (10). Horizontal dashed lines stand
for P±

u (P−
u < P < P+

u correspond to the negative
slope branch of the bistable response). Number 1 denotes
the MI branch of the homogeneous cavity. Parameters:
δ = π/5, α = θ2/2 = 0.05. (e) Sketch of periodic dis-
persion profiles over one period: sinusoidal (blue curve)
and piecewise constant (red curve). Average dispersion
βav = (β1 + β2)/2, modulation depth βm = (β1 − β2)/2.

where the contribution of the DOF appears in the term
in square brackets [cfr. Eqs. (10) and (7)].
Figure 1 shows relevant examples of MI gain domains

for a bistable response (δ = π/5, α = 0.05), in both
the normal and anomalous GVD regimes, with DOF pe-
riod Λ = 1 (henceforth, we show results for this case
that entails a GVD period exactly equal to the cavity
length; as a general remark, shorter periods give quali-
tatively similar results, with MI tongues shifting towards
higher frequencies). Figure 1(a) refers to a sinusoidal
GVD with average value βav = 1 (normal GVD) and
modulation depth βm = 1. The low frequency branch (la-
beled 1) in Fig. 1(a) is characteristic of the average value
of GVD. Indeed, similarly to the homogeneous case [1],
this branch entails MI of the lower branch of the steady
response (0 ≤ Pu ≤ P−

u ), which extends over the neg-
ative slope of the response (P−

u < Pu < P+
u ), where

also CW perturbations (ω = 0) are unstable. However,
additional birth of new high-frequency MI tongues can
be clearly seen. Importantly, these narrowband branches
of MI are responsible for destabilizing the upper branch
of the response (P+

u ≤ Pu). Figure 1(b) refers to the
same parameters (bistable response) as in Fig. 1(a), but
anomalous average GVD, βav = −1. In this regime the
cavity imposes a power threshold for MI to develop (even
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Fig. 2. (a,b) Intracavity power |u|2 at integer z (round-
trips) from numerical solution of LLE: (a) even round-
trips; (b) odd round-trips. (c) Stationary pulse trains
at even (blue curves) and odd (red curves) round-trips.
Dashed curves are numerical solution of the map [Eqs.
(1-2)]. (d) Power |u(z, t0)|2 evaluated at t = t0 corre-
sponding to a maximum of the pulse train; Solid blue
curve, LLE; dashed red curve, map. Dots correspond
to observable field at the output coupler. Parameters:
β(z) = −1 + sin(2πz/Λ) (average anomalous GVD),
Λ = 1, δ = π/5, α = θ2/2 = 0.05, Pu = 0.15 (lower
branch of steady state), which yield ωmax = 2.37 [red
cross in Fig. 1(b)] with gain g(ωmax) = 0.01.

.

when α = 0) [1, 2], resulting in the opposite situation
(stable lower branch, unstable upper branch), as shown
by the low-frequency tongue (label 1) in Fig. 1(b), remi-
niscent of the homogeneous case. The oscillating disper-
sion induces additional MI tongues to appear in this case
too. Remarkably, in this case they destabilize the lower
branch of the steady state response. The MI tongues
have different power thresholds (that exists, due to the
losses), with the lowest one arising, in this case, for the
first tongue.
Figure 1(c) shows the MI gain for a piecewise constant

dispersion [β1 = 0.2, β2 = 1.2, L1 = L2 = 1/2], where
we can exploit the analytical expressions (8,9). The re-
sults are very similar to the case of sinusoidal variation
(provided we consider the same period and a 50-50 duty
cycle). More precisely, MI tongues appear at the same
frequencies, though we observe a slight variation of the
gain. The same analogy holds also in the anomalous dis-
persion regime [compare Fig. 1(b) and Fig. 1(d)], show-
ing that the analytical formulas [Eqs. (8, 9)] give insight
for general dispersion profiles.
In all the examples reported in Fig. 1, we note that the

peak gain position analytically predicted from Eq. (10)
accurately reproduces the numerical results, despite we
are considering either relatively strong dispersion mod-
ulation or sinusoidal dispersion profiles.
We have verified the result of linear stability analy-

sis through extensive simulations of LLE (3). In a rel-
atively large range of parameters, MI induced by DOF
generates, beyond the stage of exponential growth, sta-
ble pulse trains with large and fixed contrast ratio which

survives indefinitely. Figure 2(a,b) shows the develop-
ment of a pulse train from a weak seed at the peak MI
gain frequency of the first tongue [see red cross in Fig.
1(b)]. Here we considered anomalous average GVD and a
sinusoidal DOF with an input power just above thresh-
old for the MI over the first tongue. In contrast with
what reported for homogeneous fiber cavities [1,2], here
the cavity stabilizes over a period-2 (P2) attractor [19],
such that the pulse train is reproduced identical after
two round-trips. Between two successive round-trips the
pulse train turns out to be simply out-of-phase [20],
which makes this P2-state peculiar and different from
those developing from self-pulsing instabilities [19]. Out
of phase pulse train attractors have already pointed out
to exist in the LLE [16,20], being ultimately linked to the
symmetry of the periodic eigenstates of the NLSE [21].
This behavior is well described in Figs. 2(a) and (b),
that show the intracavity field sampled at even (a) and
odd (b) round-trips. A physical explanation of this phe-
nomenon is that the MI sidebands generated by means
of DOF are not in-phase with the pump [14], and ac-
quires a phase shift at each period, that corresponds in
our case to the fiber length. This evolving phase between
the pump and the sidebands, makes the field fluctuate
over the length-scale of the cavity, as depicted in Fig.
2(d). This fact can shed some doubts on the validity of
the LLE model, which is derived assuming that the field
evolves slowly over several round-trips. However direct
simulations of the map [Eqs. (1-2)] confirm the validity
of the analysis based on LLE, as shown in Figs. 2(c-
d). The extended validity of LLE can be understood if
we consider that the field is not evolving freely: in fact
the power of the spectrum is evolving slowly, and only
the spectral phase can change rapidly. Moreover the cav-
ity boundary conditions modifies slightly and slowly the
field (which is the true requirement for applicability of
mean-field model), whereas the rapid variations during
each round-trip are given by the propagation ruled by
NLSE.
DOF-induced MI can appear even in the monostable

and normal dispersion regime of the cavity, where stan-
dard cavity MI is forbidden. Figure 3(a) shows the MI
gain for a piecewise constant dispersion β1,2 = 1±0.9: we
can see that the homogeneous cavity MI band is absent,
whereas DOF induced tongues are still present. Interest-
ingly enough, for this value of modulation, the second
tongue has higher gain than the first one [see Fig. 3(b)],
so one can envisage the cavity dynamics to be driven by
the higher frequency band. Numerical simulation of the
LLE (3) shows again attractive behavior towards a peri-
odic solution that represents a stable pulse train. How-
ever, in this case, we observe a period-1 solution [see Fig.
3(c)]. The intracavity field displayed in Fig. 3(d) exhibits
fast oscillations in this case too, with the round-trip peri-
odicity. Good agreement is found between the LLE [Eq.
(3)] and the map [Eqs. (1-2)].
Let us consider physical parameters for a typical fiber

ring cavity [5]. We can take a fiber of length L = 100 m,
average dispersion k′′ = 1 ps2/km and nonlinear coeffi-
cient γ = 2.5 W−1km−1 . Characteristic power and time
units are Pc = (γL)−1 = 4 W, Tc =

√
k′′L = 316 fs. The

example reported in Fig. 2 corresponds to input power
of 1.4 W, with MI frequency of 1.6 THz.
In summary, we have shown that a dispersion oscil-

lating fiber ring cavity develops new forms of MI. By
exploiting Floquet theory we calculated numerically MI
gain for different dispersion profiles. Quite remarkably,

3
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Fig. 3. (a) Level plot of MI gain in monostable regime
with piecewise-constant average normal GVD. Dash-
dotted black curves, MI peak gain frequencies from Eq.
(10). (b) Section at Pu = 0.15 [horizontal black line in
panel (a)], showing the first two MI tongues. (c) Intra-
cavity field power at each roundrip z = 1, 2, . . ., calcu-
lated from numerical solution of LLE Eq. (3). (d) In-
tracavity field power evolution evaluated at the time t0,
corresponding to a maximum of the pulse train; Solid
blue curve, LLE; dashed red curve, map. Dots corre-
spond to observable field at the output coupler. Param-
eters: β1,2 = 1 ± 0.9, L1 = L2 = Λ/2 = 0.5, δ = 0,
α = θ2/2 = 0.05, Pu = 0.15.

we were able to find analytical expressions for the rel-
evant case of piecewise constant dispersion. Moreover,
this analytical expression can give insight also for other
dispersion profiles (e.g. sinusoidal) of the same period-
icity. We numerically showed that the nonlinear devel-
opment of MI give birth to stable pulse trains pumped
both in the normal and anomalous dispersion regimes.
These pulse trains can exhibit periodicity over multiple
round-trips, depending on the MI tongue that excites
them. We have also observed that, despite the field does
not change slowly over the scale of several round-trips,
the evolution is correctly captured by the LLE, witness-
ing once more the power of this simple model for the
description of even complex physical set-up [17].
Funding from French National Research Agency

(grant TOPWAVE) and Italian Ministry of Research
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