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Abstract

We consider the linear Zakharov-Kuznetsov equation on a rectangle with a left Dirich-
let boundary control. Using the flatness approach, we prove the null controllability of this
equation and provide a space of analytic reachable states.
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1 Introduction
The Zakharov-Kuznetsov (ZK) equation
ug + aug + Aug + uug = 0, (1.1)

provides a model for the propagation of nonlinear ionic-sonic waves in a plasma. In (1.1),
r,t € R and y € R? (with d € {1,2}) are the independent variables, u = u(z,y,t) is the

d

unknown, u; = Ou/0t, u, = Ou/dzr, Au = 0*u/dz* + Z(‘?QU/@y?, and the constant a > 0
i=1

stands for the sound velocity. The ZK equation is, from the mathematical point of view, a

natural extension to R*! of the famous Korteweg-de Vries equation

2t + a2z + Zpgw + 22, = 0, (1.2)
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which has been extensively studied from the control point of view (see e.g. the surveys [2, 17]).
If we focus on the situation where (1.2) is supplemented with the following boundary conditions

200,t) = h(t), 2(L,t) = z(L,t) = 0, (1.3)

where L > 0 is a given number and h is the control input, then it was proved in [8, 16] that
(1.2)-(1.3) was null controllable on the domain (0, L). Due to the smoothing effect, with such
a control at the left endpoint the exact controllability can only hold in a space of analytic
functions.
More recently, a space of analytic reachable states was provided in [13] for the linearized
KdV equation
2t + 2z + Zzgx = 0

with the same boundary conditions as in (1.3). The method of proof was based on the flatness
approach, as introduced in [12] to study the reachable states of the heat equation. The aim of
the paper is to extend the results given in [13] to the ZK equation.

The wellposedness of various initial boundary value problems for ZK were studied in [6, 7,
10, 11, 18, 19]. Some unique continuation property for ZK derived with a Carleman estimate
was done in [3]. Exact controllability results for ZK in the same spirit as those for KdV in [15]
are given in [7, 14].

Here, we limit ourselves to the case d = 1, so that y € R. By a translation, we can assume
without loss of generality that € (—1,0) (this will be more convenient when using series to
represent the solutions). We set Q := (—1,0) x (0,1). The paper is concerned with the control
properties of the system:

Ut + Uggr + Ugyy + aty =0, (x,y) € Q, t € (0,T), (1.4)
u(0,y,t) = uy,(0,y,t) =0, ye(0,1), t € (0,7), (1.5)
u(=1,y,t) = h(y,t), y€(0,1), te(0,T), (1.6)
w(z,0,t) =u(z,1,t) =0, x€(-1,0), t€(0,T), (1.7)
u(z,y,0) =uo(z,y), (2,y) € (1.8)

where uy = ug(x,y) is the initial data and h = h(y,t) is the control input.

We shall address the following issues:

1. (Null controllability) Given any ug € L?*(92), can we find a control h such that the solution u
of (1.4)-(1.8) satisfies u(.,T") = 07
2. (Reachable states) Given any u; € R (a subspace of L%() defined thereafter), can we find a
control h such that the solution u of (1.4)-(1.8) with ug = 0 satisfies u(.,T) = u;?
We shall investigate both issues by the flatness approach and derive an exact controllability in
R by combining our results.

To state our result, we need introduce notations. A function u € C*([t1,t2]) is said to be
Gevrey of order s > 0 on [t1,t2] if there exist some constant C, R > 0 such that

1\s
|8{Lu(t)’ < C(Zr)z Vn €N, Vt € [tl,tg].



The set of functions Gevrey of order s on [t1,t2] is denoted by G*([t1,t2]). A function u €
C>™([x1,x2] X [y1,y2] X [t1,t2]) is said to be Gevrey of order s; in z, s in y and s3 in ¢ on
[x1, z2] X [y1,y2] X [t1,t2] if there exist some constants C, Ry, Re, R3 > 0 such that

(n1 !)81 (TLQ!)SQ (’I’Lg !)53
Ry Ry Ry’

|8218;28?3u(x7y7t)| < C vn17n27n3 € N) v(xvyvt) € [1:15$2]X[y1)y2]x[t17t2]-

The set of functions Gevrey of order s; in x, s in y and s3 in ¢t on [x1, x| X [y1,y2] X [t1,t2] is
denoted by G*1°2:%3 ([x1, x2] X [y1,y2] X [t1,t2]).

The first main result in this paper is a null controllability result with a control input in a
Gevrey class.

Theorem 1.1. Let ug € L*(Q) and s € [3,2). Then there exists a control input h € G25([0,1] x
[0,T]) such that the solution u of (1.4)-(1.8) satisfies u(-,-,T)=0. Furthermore, it holds that

we C([0,T]; L2(Q) NG22%([—1,0] x [0,1] x [,T]), Vee(0,T).
Introduce the differential operator
Pu = Auy + aug
and the following space
(P))5 (¢1)5
RIR;
and P"u(0,y) = 0,P"u(0,y) = P"u(z,0) = P"u(x,1) =0, VneN, Vx € [-1,0], Vy € [0,1]}.

RRy Ry = {u € C7([=1,0] x [0,1]); 3C >0, 070 u(z,y)| < C Vp,q €N, V(z,y) € Q,

Our second main result provides a set of reachable states for system (1.4)-(1.8).

Theorem 1.2. Let Ry := \3/9(a—|—2)e(3e)71, and let Ry, Ry € (Rg,+00). Then for any uy €
RRy.Ry, there exists a control input h € GY2([0,1] x [0,7T7]) such that the solution u of (1.4)-(1.8)
with ug = 0 satisfies u(-,-,T) = uy. Furthermore, u € G*12([—1,0] x [0,1] x [0,T)]), and the
trajectory uw = u(x,y,t) and the control h = h(y,t) can be expanded as series:

u(z,y,t) = 3 gii(@)2 (e (y), (1.9)

j=1 i=0

Wy, t) = D3 gii(~12" (0)es (). (1.10)

j=1i=0

We refer the reader to Section 2 for the definitions of the functions g;; (i > 0, j > 1) and
of the functions e; (j > 1).

Combining Theorem 1.1 and Theorem 1.2, we obtain the following result which implies the
exact controllability of (1.4)-(1.8) in R, g, for Ry > Ry and Ry > Ry.

Corollary 1.1. Let Ry := ¢/9(a + 2)e®) ™", and let R, Ry € (Ro,+00). Let ug € L2() and
u1 € Rp, r,- Then there exists h € GY2([0,1] x [0,T]) such that the solution of (1.4)-(1.8)
satisfies u(.,T) = uy.

The paper is outlined as follows. Section 2 introduces the eigenfunctions e;, the generating
functions g; j, and provide some estimates needed in the sequel. The null controllability of ZK
is established in Section 3, while the reachable states of ZK are investigated in Section 4.



2 Preliminaries
First we introduce the operator
Au = —Pu = —Au, — au,

with domain
D(A) = {u € L*(Q); Pu e L*(Q), u(—1,y) = u(0,y) = u,(0,y) = 0 for a.e. y € (0,1) and
u(z,0) = u(x,1) =0 for a.e. x € (—1,0)}.
It is well-known (see e.g. [19]) that the operator A generates a semigroup of contractions in

L?(£2). In what follows, we denote || fllpay = Ifll12(q) + 14 fll12(q) for all f € D(A).
It would be natural to expect, as for KdV, that the domain D(A) coincide with the set

{ue H3 Q)N HYQ); u(0,y) =0 for a.e. y € (0,1)},

but this is not the case. The best description (up to date) of D(A) is given in the following
lemma.

Lemma 2.1. We have the following inclusions:
{u e H* Q)N HYQ); u, € H*(Q) and u,(0,y) =0 for a.e. y € (0,1)} € D(A), (2.1)
D(A) € {u € H* Q)N HYQ); (x4 u, € HX(Q) N HH(Q)}.

Proof. The inclusion (2.1) is obvious. For (2.2), it follows from [19, Proposition 2] that D(A) C
H?(Q) N H(Q). If u € D(A), then f := Au, + au, € L*(Q) and hence

A((z 4 Dug) = (x4 1) Aug + 2upe = (. + 1)(f — auy) + 2upe € LA(Q).
On the other hand, we claim that (z + 1)u, € H}(2). Indeed, u, € H'(Q) and hence (z +
Du, € HY(Q). Moreover, u(.,0) = u(.,1) = 0 in H%(—l,O) gives uz(.,0) = ugz(.,1) = 0 in
H%(—l,()), and finally ((x + 1)ugz)(—1,.) = u-(0,.) =01in H%(O, 1). By the classical boundary

H? regularity result for the Dirichlet problem on a Lipschitz domain, we infer that (z + 1)u, €
H?(Q) N H(Q). O

Remark 2.1. It can be shown that the inclusion (2.1) is strict.
The following lemmas will be used several times thereafter.

Lemma 2.2. For any n € N* and any f € D(A™) with A'f € H>™=)(Q) fori=0,1,....,n, we
have
2 _ 92 _
0 f(x,0) =0, f(x,1) =0, Vxe[-1,0], Vpe{0,...,n—1}. (2.3)

Proof. We proceed by induction on n. For n = 1, the property (2.3) is obvious since f €
D(A). Assume now that (2.3) is true for n — 1 > 1. If f € D(A") with A'f € H*"9)(Q)
for i = 0,1,...,n, then Pf = —Af € D(A"') with A'Pf = —Atf ¢ H2==1(Q) for
i=0,1,....,m—1,, so that by (2.3) applied to Pf and p=n — 2

2P f(x,0) = 2" Pf(x,1) = 0.

4



This implies
02 f(@,0) + 0,072 f(2,0) + ade 07" f(x,0) = 0, (2.4)
RO f(w,1) + 0,072 f(w,1) + a0, 0" f(,1) = 0.

Since (2.3) is true for n — 1, we obtain that 8§pf(a:,0) = 85pf(x, 1)=0forp=0,1,...,n—2,
and hence (taking p = n — 2 and using (2.4)-(2.5))

2n—2 2n—2
020, f(z,0) = 020, f(z,1)=0.
This means that we have for some constants C; and Cy
2 f(x,0) =Cy, 0" *f(w,1) =Co Va €[-1,0].

Note that 85”_2f € H?(2) € C(Q). On the other hand, it follows from the assumption f € D(A)
that
2n—2 _
9," f(0,y) =0 Vye[0,1].

Taking y = 0 and next y = 1, we see that Cy = Cy = 0. The proof of Lemma 2.2 is complete. [

Remark 2.2. It will be proved in Proposition 2.1 (see below) that D(A™) C H**(Q) for alln € N,
so that the conclusion of Lemma 2.2 will be still valid when assuming solely that f € D(A™).

The following lemma is classical. Its proof is omitted.

Lemma 2.3. Let A" = 97 with domain D(A") = H?*(0,1) N H3}(0,1). Then for any m € N*, it
holds

DA'F) = {g e H™(0,1); ¢®)(0) = ¢®)(1) =0 for 0 < p< 2

}.

Let h € L?(0,1) be decomposed as h(y) = Z cjej(y), and let m € N*. Then

J=1

oo
heD(A'2) <= > A\ ¢l < oo
j=1

Furthermore, for any h € D(A’%), we have
[ee]

1D 2o = S Nej2 Vg € {0, ... m).
j=1

We are in a position to state the main result in this section.

Proposition 2.1. For any n € N, it holds D(A™) C H?*(Q)). Furthermore, there exists a
constant B > 1 such that

lullgroniy < B* S IIPull 20y, Vn €N, Vu € D(A™). (2.6)
=0



Proof. Let {e;};>1 be an orthonormal basis in L?(0,1) such that e; is an eigenfunction for the
Dirichlet Laplacian on (0,1), A; being the corresponding eigenvalue; that is

"

_%%(y)::AkQKy%
ej(O) = Ej(l) = 0.

A classical choice is e;(y) = v2sin(jmy) and \; = (jr)? for j > 1. Following [19], we decompose
any function u € L?(Q) as

ulz,y) =Y as(w)e;(y).
j=1

Note that HUH%Z(Q) = Z [|@;]|?, where we denote ||h|| = |All2(=1,0) for all h € L?(—1,0) for the
j=1
sake of simplicity. If u € D(A) and g := Auy, + au,, then for any j > 1

~

@' + (a — \j)i; = g; in L*(—1,0) (2.7)

where ' = d/dx. For n = 0, (2.6) is obvious if we pick Cyp > 1. Let us assume first that n = 1.
Note that 4; € H3(—1,0) by (2.7). Multiplying (2.7) by A;(z + 1)4;, we obtain

3 0 112 A ([ 2 0
2)\j/1 ﬁj‘ da:—(a—)\j);/llﬁj] dac:)\j/l(x—l—l)ﬁjgjda;.

Let jo := [@] Then for j > jo, we have a < \;/2 and hence |a — A\j|\;/2 > )\?/4. Using

A0 e O
< 8]/ |11 d$+2/ |95]°dz,
1 —1

0
)\j/ (.T-i- 1)’&j§jd$
-1

we infer that for j > jg

3 o /\? o, 0 2
2Aj/ A dm+8/ 1| *dz < 2/ 1951 de,
-1 —1 -1

and that for 1 < j < jg

3 0 112 )\JZ 0 2 ° 2 ’ 2
2>\j/_1 |5 al:n—l—g/_1 | deA/_l |4 diﬂ+2/_1 951" d, (2.8)

A2 s
where A := max |- + (a — \;)=Z|. Obviously, (2.8) is valid for any j > 1. Summing in j, we
1<j<jo | 8 2
obtain 5 )
2/ |ty | ddy + 8/ gy Pdady < Allul® + 2|9/ (2.9)
Q Q

Dividing in (2.8) by A; > 7? and summing in j, we obtain
3 2 1 2 Ao 200
3 [ usPdedy+ 5 [ uyPdady < Sl + o (2.10)
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It remains to estimate / gz |*d2zdy. Multiplying in (2.7) by ﬂ;, we obtain
Q

0
A Al
gju;dz,
1

0 0
/_1 | Pda + a0l +(aAj)/_1m; de:/
and hence 0 0
[ tadide <1y —al [ 1P+ L)+ -1

We are let to estimate 4}(—1) and @7(—1). Multiplying in (2.7) by A;i; results in
o (—1)2 0
Ajij( ) = )\]/ ﬁ]g]d:c
-1

Combined with (2.8), this yields

A o Lo X 5 X
S (=12 < IAzagll - 1950 < S lIAas07 + 1311 < 51195017 + 2A a1 (2.11)
2 4

Multiplying in (2.7) by x, we obtain

0 0 ’
_/ Wldr + 2t + (a — \)) (—/ ﬁjdﬂf+xﬂj\01> _/15”%‘6””

1 1 B
which yields
0 0
a(=1) = —aj(—1) + (a - /\j)/lﬂjdﬂer /lfcgﬂ‘d“”

so that

@ (=1 < 3 (Ja5(=1)* +2(a® + [N ) a1 + 195117) -

Using (2.8) and (2.11), we conclude that |a/(—1)|* = O([|d;||* + [|g;]|*). The same is true for

@} |2. Gathering together the above estimates, we arrive at

lull3re) < Cr 3z + I Pull3a))

for some constant C1 = C1(a) > 0.

Let us check that D(A™) C H?*(2) for n > 2. We proceed by induction on n. Assume
that D(AP) C H?(Q) for p = 0,1,...,n — 1 (with n — 1 > 1), and pick any u € D(A"). Then
g=Au € D(A" ) ¢ H*»1)(Q). Let h := (—1)”’185(71_1)9 € L?(Q). Then, using Lemmas 2.2
and 2.3, we have that for all j > 1

XA 4 (a = Mj)if) = hy. (2.12)

Multiplying in (2.12) by A7(z + 1), we obtain

2n—1

5 0 ‘ 0 0 A
2)\?n—1/1 ‘ﬁ9|2d1‘ — (a— )\j)ﬂT / 1 |aj|2dx = )\?/_l(x + 1)ajh;dx.



This yields R
X IR 4+ X3 as11* = OClag 1 + 1Ay 1), (2.13)

Multiplying in (2.12) by A7d; gives

. (—1)2 o
A§n13(2):)\;}/ t;hjdx
-1

and
Xl (~1)* = Olasll* + 1Ay ).
From 0 0
)\?,1@;{(_1) _ _)\?71@;(_1) + (a— )\j))\?*l /lﬂjdx +/1 xﬁjdaz,
we infer that
X2l (=) = O(llag|1* + 1s)1%).-

It follows from
on—z [° 2 2n—2 0 on—z [° 2 A
— ~11 —2 Al Al — ~/ — ~/
A" /_1 @5 |“de + A" a5 [+ (a— A)AT" /_1 ;" dr = N} /_1 hja;dz,
that R
X2 ag )12 = olag )1 + 1 1?)- (2.14)

So far, we have proved that
o0
7 (g 12+ X2 a2 + 422 ) < +oo.
j=1

Using Lemma 2.3, this gives that E)gnu, 85”_1835% and 85”_28£u belong to L?(f2). For the other
derivatives of order 2n, we apply the operator 92* (for k € N with 2k + 3 < 2n) to each term in

(2.7) to obtain
A | )\j)a(?k—o—l) _ ~(2K)
J J i
This yields

2n—3—2k ~(2k+3 ~ 2 n—3— ~(2k
Al NP2 = O(llag)|? + 1Ay |12 + 220320 g0 )2

On the other hand, (2.7) gives by differentiation with respect to x that

al + (a — Nl = gl

and we obtain in a similar way that
2n—4—2k) || ~(2k+4 A 5 42k A(2k41
AP = O | + g 1P + A5,
for k € N with 2k + 4 < 2n. Thus we conclude that

2n oo
STOSTAPTTO )2 < oo,

q=0 j=1



Using Lemma 2.3, we infer that for ¢ € {0, ...,2n}, d%u € L*(—1,0, H>"~9(0, 1)), and hence that
agnfqagu € L%(Q). We also have that aznflfqﬁgu € L*(Q) for q € {0, ...,2n — 1}. Taking into
account the fact that u € D(A" ') ¢ H2 1 (Q), we conclude that u € H?>"(R2). The proof of
the inclusion D(A™) C H?**(Q) is complete.

It remains to prove that the constant in the r.h.s. of (2.6) is indeed of the form B™. This
will require a series of lemmas.

Lemma 2.4. For any ey > 0, there exists a constant K = K (g9) > 0 such that for all € € (0,¢q)
and all f € H*(—1,0),

0 0 0
/ |f'(t)|2dt < Ke/ |7 () 2dt + Ks—l/ |£()|?dt. (2.15)

-1 -1 -1

Lemma 2.4 is a direct consequence of [1, Lemma 4.10] (which is concerned with twice
continuously functions) by density of C?([—1,0]) in H?(—1,0).
For any j € N*, we define the operator P; by

Pif ="~ (\—a)f,  VfeHY-1,0).

Lemma 2.5. There exists a constant C7 > 1 such that

£ Frn 10y S CF D N H|PIfI?, VneN, VjeN, Vfe H™(-1,0). (2.16)
=0

Proof. For n =0, (2.16) is obvious. For n = 1, it follows from the definition of P; and Lemma
2.4 that

11210y =IFI 4 111 + 11712
<C(IFIP + 111%)

<C(IfI* + /\ljllf’"ll2 +X1111%)
<C(IfI* + Aljllpjfll2 +X[11%)
<C(IfI* + 1B £1I?) + %Hf”\l2 +OXS|IfI1?
<CORAIP + 1P 1) + 51571

This shows that we can find a constant Cy > 1 such that

112210y < C2O2NFI% + 1P 1112,

Let us prove (2.16) for n > 2 by induction on n. Assume (2.16) to be true for n —1 > 0. It



follows that

1 I Frn - 1.0) =1 Wrzn—2(1,0) + P12+ F 32
SHfHJ%I?“—Q(—l,O) + ”f(%fz)H%ﬂ(—l,O)
<[ FlFen-2( 1.0y + CoOF NS 22 + || B 2 2))1%)
<2Co X} (1 f 1 3r20-2( 1.0 + Coll Py f 1 Fr2n—2(_1 )

n—1 n—1
<2C,NICTT S AR PIF|R 4 CoCp Y AT Pt 2
i=0 1=0
n—1 ) ) n . .
20PN AR PLE|2 4 o0 Y A2 Pl
i=0 i=1

<3CHCP Y N PSR,
=0

If we pick C; = 3C%, (2.16) is true for n. O
Lemma 2.6. There exists a positive constant Cs such that
n m
ullFzn oy < Cs > > 10250, ull72),  ¥n €N, Yu € D(A™).
m=0 k=0

Proof. For any p € N, we set

b
L= Y [050yul7z )
a,beN, a+b=p

Decompose u as

u(w,y) = 3 a;(@)e;(y). (2.17)
j=1

Let us go back to the proof of Lemma 2.6. Pick any u € D(A"), for some n € N. Using
Lemma 2.2 and applying Lemma 2.3 to the functions 92™*+'=*y(x,.) for 0 < m < n — 1,

10



0<k<2m+1, and z € (—1,0), we obtain that

2m—+1
D1 = Y 107" b ul 720
k=0
2m+1 oo ( ”
- k) ~(2m+1—k) |2
=D 3 BTl
k=0 j=1
2m+1 oo ( )
2 +1) k 2m+1-k
ZZH TS TS ARal)
7j=1 k=1 j=1
e} 2m+1 e’} 2m+1 00
Sz:)\j||ﬂ§2m+1)‘|2 Z Z)‘k 1” 2m+1 k) ||2+ Z Z)‘kJrlH (2m+1 k)Hz
j=1 k=1 j=1 k=1 j=1

12m+1 12m+1
_Ha2m+1a UHLQ(Q 4= Z ||82m+1 kak Ly HL2 4= Z ”82m+1 kak+1u”L2(Q)

3
§§I2m+2 + 5127717

where we used Young’s estimate. Thus, we have

ull 72 0 Z Iom + Z Lot

3 1
< Z Iom + Z(§I2m+2 + §I2m> (2.18)
m=0 m=0
n
<3 Iom.
m=0
Next, we consider Iay,. For m =0, Iy = HuH%Q(m. For m > 1, we have

Topm = Z H82k82m 2ku||L2 @ + Z H82k+182m 2k— 1u||L2(Q)7 (2'19)

k=0

and it remains to estimate the second term in the r.h.s. of (2.19). Applying Lemma 2.4, we

11



obtain

m—1 m—1 oo .
||a§k+la?3m_2k_lu||%2(g) _ Z Z/\ m—2k— 1” (2k+1) ||2
k=0 k=0 j=1
m—1 oo m—1 oo
k-2 ~(2k+2 ok ~(2k
§C< Z)‘im 2k 2”u§ >||2+ ZZ)\JZWL 2k||u§ )Hz)
k=0 j=1 k=0 j=1
m 0o m—1 oo
—2k ~ (2K —2k ~(2k
=C( L XX+ 30 N
k=1 j=1 k=0 j=1
m oo
<C3 3 NI
k=0 j=1
=C Z Haikasz%u\&z(ﬂ)
k=0
(2.20)
Combining (2.18)-(2.20), the conclusion of Lemma 2.6 follows. O
Lemma 2.7. There exists a constant C4y > 1 such that
. m .
X Pl < Cp ) ( ) |Pia,)%,  Vm,i € N,Vj € N*,Vu € D(A™), (2.21)
1=0
where U; is the Fourier coefficients of u as in (2.17).
Proof. The proof is by induction on m. For m = 0, (2.21) is obvious for any C4 > 1.
For m = 1 and u € D(A'*?), we have that Piu € D(A) and, by [19, Lemma 4.1],
(Pu)(z,y) = Y (Pja;)(x)e;(y),
j=1
where the function PJ’ﬁ] satisfies for each j € N*
(Pyuz)(—1) = (Pji;)(0) = (P“ )(0) =0. '

Multiplying the first equation in (2.22) by Aj(z + 1)P @ and integrating over (—1,0) results in

3 0 i~ Aj [0 i 0 i i+1
N [ ) P+ 0y =0 [ 1P Pde = [ @+ (PP e,

After some elementary calculations, we can find a constant Cy = C4(a) > 1 such that

MBI+ X1IPyas 1 < CalllPiagll + 1Py %)

12



Therefore, (2.21) holds for m = 1. Pick now any m > 2, and assume that (2.21) is true for
m — 1> 0. For any u € D(A™"), we have

m—1
. = _ m—1 il o
A2 Pl 2 = 2N 2||P;uj|QSA§Cf12< l )|P;“uj|2.
1=0

Since u € D(A™T), for any [ = 0,1, ..

., m—1, system (2.22) is satisfied with P;Haj substituted
to P;ﬂj, and it follows as above that

NPyl < CalllPagl* + [P ).

We infer that

m
- —1 I~ 141 ~
X2 Pia|? < 1"2( ) (P |2 + P 2)
1=0

m—1
o (|| + < ) 1P| + Z < ) 1P |2 1 | Py )
=1

m—1

_ PRIP m i+~ 112 i+m )12
R UTEDY (7 )etae  1ema)
—or - (1) Ieae
1=0
where we used Pascal’s Rule. The proof of Lemma 2.7 is achieved. O

We are in a position to complete the proof of Proposition 2.1. The estimate (2.6) is obvious
for n = 0. Let n > 1. Using Lemmas 2.5, 2.6, and 2.7, we obtain that

n m
ke n2m—2k
HUH%T%(Q) <C3 Z Z |o2Foam—2 UH%2(9)
=0 k=0

SR MLl

m=0 k=0 j=1

<03 zn: ZZAQm 2k01 Z/\Qk QzHPz AJHQ

m=0 k=0 j=1

<0307y Z Z Z A g ).

m=0 k=0 j=1 i=0

13



Using the fact that ¢ < k < m < n in the sum above, we obtain

n n o0 n
lullfon@) <CsCT 3 3> > A I
m=0 k=0 j=1 i=0
o n

<C5CT(n+1)2 Y Y A2 Play|?
j=1i=0
o0 n n ’L
<t e S () ietale
7j=1 =0 =0
<C3CY(n+1)°Cy2" ZZZHP”]H?
j=11i=0 I=i
o0 n n
<C5CT(n+1)2CT2" > > N || Pl
jflifOl*O
<C3CH (n+1 0"2"2211131 a2
=0 j=1

n
<B" Y|Pl 72
1=0

with B := 1601C3Cy. Indeed, it is easy to see that (n + 1)3 < 8" for all n € N. The proof of
Proposition 2.1 is achieved. ]

Recall that \; = (jm)? for j > 1. For any j > 1, we consider a sequence of generating
functions g; ; (¢ > 0), where g ; is the solution of the Cauchy problem

90, () — (Aj — a)gp ;(x) = 0, 2 € (—1,0),
{ 90,;(0) = g5 ;(0) =0, gg,;(0) =1, (2.23)

while g; ; for ¢ > 1 is defined inductively as the solution of the Cauchy problem

gzl (@) = (& — a)ga-(x) =—gi—1,j(z), xe(-1,0),
{ gz,j (0) = gé;(o) = gffj(o) =0. (2.24)

Proposition 2.2. For anyi > 0,7 > 1 and x € [-1,0], we have

19i5(2)] < e\m@;’fz)' (2.25)

Proof. 1t follows from (2.23) and (2.24) that
(@ 9 §)gi-1,;(§)d€

90; /05(/; gi—l,j(ff)dff)dC)df, i,j > 1.

N%
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(1) if \j < a, it is not difficult to obtain that

1
- )\'(1 —cos(v/a —\jx)), A <a
§$27 )\] = a,
this implies
2
0 < go,(z) < %, Viji>1, xe[-1,0]

Then it follows from [13, Lemma 2.1] that

’ ‘3@+2 oy 3ZZ| . '
l9i,j(x)| < m <e Jm, Vi >0, Vj>1, Vx € [-1,0].

(2) if \j > a, we claim that
(—$)3i+23ii!
917](37) S COSh(\/)\j — CL./L')W’ Vi 2 0, VJ Z 1, YV S [_1,0]

which implies (2.25).
Let us prove (2.26) by induction on i. For i =0,

— a(cosh(mm) -1)

(A —a)7 ta?

f (29)!

(A — )i~ 12202 52
2¢—2) 2

2

=cosh(y/\j — am)a;' ,

0 < goj(x) =

A

.

M

q

M

1

q

so that (2.26) is true for i = 0.

Assume now that (2.26) is true for i — 1 > 0. We can deduce that for x € [—1, 0]

915(0)] < - /xgoj( o[ ([ oo |do)dc)d£

/ (\j —a) (x;—&)Qp(/of(/O 31 ,f: (\j —a) 3@_)311')-1+2qu

9=

i1 (Aj —a) (x—§)2p (\j — a)d (_€)3l+1+2q
- / Z( )N

p)!

31 1 '/:p e8] oo )\ _a)p+q(x_€)2p(_§)3i+l+2q d&_

0 s “ (2p)!1(29)!(3i — D!(3i + 2¢)(3i +2¢ + 1)

15

0)'(3i — 1)!(3i +2¢)(3i + 2¢ + 1)

(2.26)

)d¢ ) de

dg



Then, integrating by parts 2p times, we obtain

/x O X )\. — a)p+q(_£)3i+1+2q+2p(32' +2q—1)!

9)!(3i — 1)!(3i + 1+ 2¢ + 2p)! d

lgij(x)] < =37
p= Oq 0

()\ — a)p+q( )3i+2+2q+2p(3i +2q — 1)!
(2¢)!1(3i — 1)!(3i + 2+ 2q + 2p)!

=3""1(i - 1)!
p=0 ¢q=0

Next, we will show that
3716 — 1)1(3i +2¢g — 1)! 3! 1
(- DM3i+2 D! 34 Vp,g>0,i>1  (2.27)
C)NBi—D)IBi+2+2¢+2p)! ~ p+qg+1(2p+2¢)(3i+2)!
It is easy to see that (2.27) is equivalent to
(3i +2q — 1)! - 3i  (3i+24+2q+2p)!
2g)Bi—1)! “Tp+qg+1(2p+2¢9)(3i+2)! (2.98)
(2p+29+1)(2p+2¢+3)(2p+2¢+4)---(2p+2¢+3i+2) '
(3i + 2)!

Since the left hand side of (2.28) is independent of p and the right hand side of (2.28) is increasing
in p, we only need to prove (2.27) for p = 0, namely, we need to show that

(Bi+2q—1)! _ 3i (3i+2+2q)

=61

Vg >0, Vi>1
Bi—1)! ~g+1 @Bit2l 1= =
this is obvious due to the fact that
(3i4+2)!(3i +2¢ — 1)! (3i +1)(3i +2)
3i(3i — DI(3i +2+2q)! (3 +2¢)(3i +2¢ + 1)(3i +2¢ + 2)
1
3+ 2q
L
“qg+1

Applying (2.27), we infer that
(—z)3iH231;) el (A — a)Ptagp2rt2a

191, (@)] SW pard q:z;) (p+q+1)(2p +2¢)!

(_$)3i+23ii! > ()\j _ a)km%
; | |
Bi+2)! &= (2k)
(—$)3i+23i’i!
(Bi+2)!

where we have used the fact that for any function f: N — R, it holds

D fot+a) =) (k+1)f(k).

p=0 ¢q=0 k=0

=cosh(\/\j — ax)

This ends the proof of Proposition 2.2.
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Remark 2.3. Compared with the result in [13, Lemma 2.1], it seems that a more natural
estimate of g; ; 1s
Ri(_$)3z‘+2

(3i +2)!
for some constant R > 0. According to the proof of Proposition 2.2, to prove this result, we need
to obtain that

|9:.5(2)| < cosh(y/Aj — a)

(Bi+2-1)! _ R (3i+2+2)
Bi—1) “g+1 (3i+2)

Vg >0, Vi > 1.

This is equivalent to

(¢4 1)(31)(3i + 1)(3i + 2)
(3i + 2q)(3i +2q + 1)(3i + 2¢ + 2)

Howewver, this is impossible if we pick q = 3i.

<R VYg>0, Vi>1.

Using Proposition 2.2, we can obtain the following corollary which will be used in the proof
of the main results.
Corollary 2.1. For any i > 0,7 > 1 and x € [—1,0], we have
1963 (z)] < 06\/73'(211.)!, (2.29)
where the constant C' is independent of ¢ and j.
Proof. By Stirling’s formula 4! ~ (i/e)*y/2mi, and it follows from (2.25) that for i > 1 and j > 1
we have

344!
o <eVN_ 7
‘g%](l‘” e (32 + 2)|
<CeV™ AL
(3i +1)(3i + 2)%%(2@!@'!
<CeVXi L
- (24)!
O
3 Null controllability
Proposition 3.1. Let s € [0,2), 0 < t; <ty <T and z; € G*([t1,t2]) satisfy
27 (0] < My
where R is a positive constant and the positive constants M; are such that
[e.e]
ZMje\/)‘»j < 0. (3.1)
j=1

Then the function u defined by (1.9) solves system (1.4)-(1.8) and u € G2°2%([—1,0] x [0,1] x
[t1, t2]).

17



Proof. As the proof is similar to that of [13, Proposition 2.1], it is only sketched.
Let m,p,q € N. By applying Proposition 2.1 and (1.9), we obtain that

|0, R 0du(z, y, t)| <CNO u(-, -, )| ro+are(q)

pta+274 ¢ [p+g+2]+1
<CBIEHIF N 1 Propul 1) e
n=0
p+q+2 [p+(21+2]+1
<cBlF5 I+t sup 9" P"u(z,y,1)]

[p+<21+2]+1

ptq+2 m n 7
<CBPET S s 3O3R (020 ey )

n=0 (’yer 14=0

By the definitions of g; ; and e;, it is clear that

. Z(i-i—m) \n, (e P>
" P (g:5(x)z “><t>ez<y>>={oa O gimnj(@)es (), i >m;

3 1 < n.

Setting k = i —n and N = n + m, arguing as in [13, Proposition 2.1], we infer from Corollary
2.1 that

D108 P (g5 (w)=" (Deatw)] = D2 312 (i (2)e; w)

e (kN 1
SCZZMJ' Rk+N e\ﬁ@k)!

where R} = Ry = R/4%.
Gathering the above estimates together, we obtain that

[p+g+2]+1

+q+2 i
O RO u(x, y, 1) <CBET LN (supQZZIG’”P" g13(0)2\" (Dei(y))]
n=0 )€ 7=111=0

[p+g+2]+
pigis e ()’
<CBIFF2H (n)*(ml)*
2 RiRy
@) ()3 (ml)’
" RIR3Ry

for some positive constants Ry, Ry, R3. Finally, it is easily seen that u is indeed a solution of
the ZK system. O
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Let @ denote the solution of the free evolution for the ZK system:

Uy + atg + Ay = 0, (z,y) € (—1,0) x (0,1), t € (0,T),
u(—1,y,t) =u(0,y,t) = u,(0,y,t) =0, €(0,1), t € (0,7), (3.2)
u(x,0,t) =u(z,1,t) =0, € (-1,0), t € (0,7), '
u(z,y,0) = uo(z,y), (—=1,0), y € (0,1).

As for KdV, we have a Kato smoothing effect.
Proposition 3.2. Let ug € L?*(Q).
1. System (3.2) admits a unique solution @ € C([0,T); L?(Q)) N L*(0,T; HY()) and we have

T
sup [[a(-,-,t)[1Z2q) +/ (-, -, )7yt < Clluol|?2(q)- (3.3)
te[0,1] 0

2. If, in addition, ug € D(A) N H3(Q), then @ € C([0,T); H*(Q)) N L*(0,T; HX(Q)) and we
have

T
sup ||u('7'7t>||%{3(9)+/ (s )10y dt < ClluollFaq)- (3.4)
te[0.7] 0

Proof. (i) comes from [19]. Let us proceed with the proof of (ii). For any ug € D(A)NH3(), we
have that @ € C([0, T]; D(A)) by the semigroup theory, and hence @ € C([0, T); H*(Q) N H(Q)).
Let wg = Aug and w = Au. It is well known that w is the solution of (3.2) with initial value
wo € L?(Q). According to (i), we have

— Ny, — ati, = At = w € C([0,T); L*(Q)) N L2(0, T; Hy ().

Therefore A, € C([0,T); L>()) N L*(0,T; H'(Q)). Assume finally that ug € D(A) N H3(Q),
and let us prove that v € C([0,7], H*(Q)) N L?(0,T, H*(Q)). Decompose u as u(z,y,t) =

Zﬁj(a:,t)ej(y). Then for j > 1, 4; solves

dA.

Ll 4 (0= X)) =0, (3.5
aj(—1,t) = 1;(0,t) = @}(0,t) = 0, (3.6)
a(.,0) = a9,

7j=1
over (—1,0); x (0,T)¢, we obtain respectively

T 0
/ (2,7)| 2dx—|—/ (1, 8)dt = / a0(x)|2dz, (3.8)
1
T 0
/ (x+1)|a;(x,T) 2d1:—|—3/ / |t |dxdt—|—()\j—a)/ / |2 dzdt
0 —1
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0
=/ (x + 1)[a0(x) [2dz. (3.9)

-1

It follows from (3.8) that for any k € N
SONa; Gl < Y O MAd)P, veeRy (3.10)
j=1 j=1

(that is, Hé)'y“u(, .,t)H%Q(Q) < ||8§UOH%2(Q) for all t € Ry ), and from (3.9) that

T 00
/0 SOOHI )2 + A ()t < (1+aT) SN2, V>0 (311)
j=1 j=1

T

(that is, / ||V8§u(., . t)||%2(9)dt <(1+ aT)||85u0H%2(Q) for all ' > 0). We need the following
0

lemma.

Lemma 3.1. Let a > 0 and A > 0 be given. Let H* (k € N) denote the Sobolev space H*(—1,0),
and let H? := {u € H*(—1,0); u(—-1) = u(0) = u/(0) = 0}. Let||-|| denote the norm ||-|| 2(_1 ).
1. There exists a constant C' > 0 such that

3
DN YR < O (ly" + (a =Ny 1P+ Nlyl?)  Vy e HP VA= N, (3.12)
k=0

2. There exists a constant C' > 0 such that

4
> Ia 2 < ¢ (Il + (@ = NI+ " + (@ = Ny I+ X yl?)
k=0
Yy e 3N H YA > )\ (3.13)

Proof of Lemma 3.1: 1. Pick any y € H? and any A > 0. By the Interpolation Theorem and
Young inequality, we have that

Ny 12 < CX2|yll3 1" 15 < elly” > + C-X3|y|l?,
2 4
M”12 < CAllylI3 19" 15 < elly™|1% + CLA3y].

We infer that if A > X g >0

"II? 2lly" + (a = Ny'lI* +2(a — A)[|y'[I”

<
< 2y + (a = Nyl + 2elly” 1 + 2Cela = APyl
< 20"+ (a = Ny'lIP + 2]y |* + CIN |y |)?

ly

and (3.12) follows by picking € < 1/4.
2. Pick now any y € H?> N H* and any A > 0. Then we have

3 1
MY 1P < CXllylz Il Fs < eUly™@ 11 + lly™1I%) + CXlyll?,
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Ny 1? < CXlyl lyllas < ey 17 + v 11%) + CENlyll?,
.3
My™1* < Cllyl 1yl 7a < ey @1 + lly™ 1) + C2X |y )1,
On the other hand, we have that for A > \g > 0
@2 2y ™ + (a = N)y"|* + 2(a = 2?1y
2/ly™ + (@ = Ny I1” + 2(ly ™11 + 1y 1) + C2X |y )%,

ly <
<

and (3.13) follows by picking € < 1/4 and by using (3.12).
Assuming that ug € D(A) N H*(Q) and using (3.10) and (3.12), we obtain that for any
€ [0,T] (with a constant C' that may vary from line to line)

||u(aat)||?-[3(§l) = ||u('aa ||H2 +2H8k83 Fu 7t)”%2(§2)
k=0
< Clluolipa +ZZA’“H@3 “a ()]
k= 0] 1
< Clluollpa +CZZ (lla5"C. = )i (17 + Nl (- 6)])
k=0 j=1
< Clluollpay + Cligguolizq)

IN

cuuoan(m

4
On the other hand ||u(., .,t)||§{4(9) = ||u(., "t)H%f‘"’(Q) + kz H@fj@;ﬁ*ku(., "t)H%Q(Q) and it is clear
=0

T
that /0 s 8) g5yt < Clluoll3sgcy- Using (3.13), we obtain

2H8k84 k .y >t)||%2(Q)dt
0
/ ZZA’“HC?“ by (., 1))t

0 k=0 j=1

T o0
~(4 ~ ~ ~
<C / = (5 + @ = AP + 15 + (@ = X)) | + Ay 1) e
j=1

T
<C [ (14Ol + 105 Ol ey )
< Clluollyys g

where we used (3.11) with & = 3. This completes the proof of the proposition. O
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Interpolating between (3.3) and (3.4), we obtain

T
swnwﬁw§@+/nwﬁw;®ﬁémw%my
te[0,T] 0

T
sup ”ﬂ(a '7t)||%{2(ﬂ) + / Hﬂ(v 'at)”%ii”(Q)dt < CHUOHEﬂ(Q)
te[0,T] 0

This gives

_ C
(s Ol @) < %HUOHH"(Qy for n € {0,1,2,3}.

Proceeding as in [13, Proposition 2.2], we can show that if ug € L?(f2), then wu(t) € D(A")
for any ¢t € (0,7] and n € N, and it holds

no C"  sn
[A™G(-, - )] L2(0) < o [uoll2()- (3.14)
2

Without loss of generality, we assume that 7" = 1. Then for any p,q € N, we infer from
Proposition 2.1 that

|05 05u(x, y, )| <[[ul- -, )| gr+ara(o)

[p+g+2}+1
+q+2
<CoBI" #7111 Z [P (-, - )] L2 (o)
n=0
[P+g+2}+1
+q+2 C" 3n
n=0 2

3 3

_srexa)_3(p)1(g!)1

Sct 2[ B) ] 3 T \" 7
R{R;

for some Ry, Ry > 0. This means that u(-,-,t) € G%’%([—l,O] x [0,1]) for any ¢ € (0, 7).
Let

1
FO= [ & wdn.pd
Lemma 3.2. For any j > 1 and n > 0, there exist positive constants Ry, Re and C' such that

3, .\3
£ ) < —C sty (DY
TGy Ry}

Proof. Without loss of generality, we can assume that 7" = 1. Since u(-,-,t) € D(A") for any
t € (0,7] and n € N, it follows from Lemma 2.2 that

207" u(x,0,t) = 920, u(w,1,6) =0, Va €[-1,0], Vt € (0,T], Vn €N,
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Then, integrating by parts j—times, we deduce that

1

£(t) =V3 / sin(jmy) 02 (0, y, £)dy
1

—f ; cos(jmy) 930, (0, y, t)dy
V2o [t _
:UW)Q/O sin(jmy)0505u(0, y, t)dy (3.15)

1
V2 / sin(jwy)&i@iﬁ(O,y,t)dy, if j is even;
0

1
_(]}gj/o cos(jwy)@%@éﬁ(o,y,t)dy, if j is odd.

To estimate |f;") (t)](n € N), it remains to estimate |02828u(0,y,t)|. Let

j+4

=15

]+ 1.

Taking (2.6) (with u = P'w) and (3.14) into account, we obtain that

<ClP"u(-, -, )| gi+va()

l
<CB"> [Pl 1) 2o
k=0
n+l
<CB'Y |PYa(- ) 120
= (3.16)
n+l ~k; 3k
CFk2
<CB'Y  ~——luoll2(@)
k—0 12

CrHl(n + 1+ 1)(n +1)3 ()
t%(n+l)

<CB' luoll L2

3 3

—3(n42]43) (RD2 (D1
ot (D20
< RUR] [uollz2(0)

for some Ry, Ry > 0.
Combining (3.15) and (3.16), we obtain

n c n i
|f]( )(t)\ <—— sup |0 8§8§U(0,y7t)|

(]7?)3 y€[0,1]
3, .3
< ¢ P IS IGOLIDES
~ () R'R),
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Now, we can prove the first main result in this paper.

Proof of Theorem 1.1. Pick any 7 € (0,T), s € [3/2,2) and let

5() = 65 (=) fi(0), 0<t<T,
where
1 if p <0,
0 if p>1
¢S(p) = M ! p =7
e P it pe(0,1)

e_PT+67 (1-p)°

with M > 0 and o = (s — 1)71. As ¢ is Gevrey of order s, there exist R, > 0 such that

s
6 <8 vpen,er
@

Then, applying Lemma 3.2, for any ¢ € (0,7) and ¢ € [¢,T], we have

|<Z( ) —D)iE

PN GE=m) 1 1 s (n)2 (4)
< - 2 T on )
_C,;)< n ) R;™ Ao R}R}

01047

3

1 sy (NI =/ i\ (i—n)s 1 s, (n))?
<ot sy Ut ( ) A imn_—3n (n1)2
- (jw)]8 R) 7;) n Ry (T—T) c Ry

7

1 L (GDT (@)® i 1 ., s
<C— ([ 1+3) J i—n n
B (jW)]g R) m1n{R¢,R1}’ Z n (T — 7') ©

where M; satisfies (3.1). Let
,Y) if x € [-1,0],y € [0,1],t =0,

uo (@
w9, %) ZZ O (t)e;(y) ifz e [~1,00,y € [0,1],¢ € (0,T].

Then, it is easy to see that u(-,-,T) = 0. By Proposition 3.1, u € G2'3*([—1,0] x [0, 1] x [¢,T])
for any € € (0,T). Furthermore, we have

ug + aug + Auy, = 0 =17 + atiy + Au,  in Q x (0,7),

u(0,y,t) =0=1u(0,y,t), Vye][0,1], Vt € (0,7),

o0

u(0,y,t :Zz] au(() y,t), VYye€[0,1], Vt € (0,7).
7=1
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It follows from Holmgren theorem that w(z,y,t) = u(x,y,t) for any (x,y,t) € [ 1,0] x [0,1] x
(0,7). In particular, u € C([0,T]; L*(2)) and h = 0 for ¢ € [0, 7), so that h € G2°([0,1] x [0, T]).
The proof of Theorem 1.1 is complete. O

4 Reachable states

Proposition 4.1. For any j > 1, assume that z; € G*([0,T)) is such that
289 (t)] < Mj(;?i!, Vi>0,tel0,T)
where R > 1 and M; satisfies (3.1). Then the function u defined by (1.9) solves system (1.4)-
(1.8) and u € GH12([-1,0] x [0,1] x [0,T]).
Proof. According to the proof of Proposition 3.1, for any m,p,q € N, we have
[FH2)+1

+a+2 i+m
O Ok Ou(x,y, 1) < CBITETIHL N sup ZZW £)gi—ni(x)e; (y)].

n=>0 (7yEQ] 1i=n

Let k = 2i—2n and N = 2n+ 2m. We can obtain by the same arguments as in [13, Proposition
3.1] that

1+m 2 +2 ' ¢ \/E
ZZ]z(+ ) (t)gi—n.j(®)e;(y ’<ZZM ;:52z+2: (22'6_2”)!

j=11=n jlzn

(k+ N)!
_ZCM \FZ RkHNEI

(k+ N)!
<CZ RE+N [

(k+1)---(k+N)
_CZ sz+N

C(ﬁ)NN!\/N

<C(2n) (2m)! ,
- RYRY

IN

where Rj, Ro are two positive constants, o € (0,1) and

. k+2
X =SuUp————75—-
szo’ (R1—o)k+1

It follows from the above estimates that
[p+q+2]+

O AP u(x, y, 1) <CBIEEEIH ZZ @n)t@2m)!
VoGl S 2 Ry

<cPlam))”

RYRIRY
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for some positive constants ﬁl, }/%2 and ﬁg. This ends the proof of Proposition 4.1. O

As a particular case of [12, Proposition 3.6] (with ag = 1,a, = [2p(2p —1)]7! for p > 1), we
have the following result.

Proposition 4.2. Let {d,},>0 be a sequence of real numbers such that
dy| < CH(29)! ¥ q >0

for some H > 0 and C' > 0. Then for all H > eeilH, there exists a function f € C°(R) such
that

f90)=d, Vq>0,
|f(q)(x)‘ Scf]q(gq)g Vqg>0, R

Let

X = {ueC™(-1,0] x [0,1]);
P"u(0,y) = 0P"u(0,y) = P"u(x,0) = P"u(z,1) =0, VneN, Vx € [-1,0], Vy € [0,1]}.

A result similar to Lemma 2.2 can be derived.
Lemma 4.1. For any n € N, we have
" f(x,0)=0"f(x,1) =0, VfeX, Vael[-1,0]. (4.1)

Proof. We proceed by induction on n. For n = 0, (4.1) is obvious since f € X. Assume now
that (4.1) is true for n — 1 > 0. If f € X, then Pf € X, so that by the induction hypothesis

2n—2 2n—2
9," “Pf(z,0) =9, "Pf(z,1) = 0.
This implies

O f(,0) + 8,07" f(,0) + adp 0, f(2,0) = 0,
RO f(w,1) + 007" f(,1) + a0, 0" > f(w,1) = 0.

Since (4.1) is true for n — 1, we obtain that
2n 2n
0:0," f(x,0) = 0.0, f(z,1) = 0.
This means that for some constants C; and Cs,
" f(x,0) =Cy, 97" f(x,1) =Cy V€ [-1,0].
On the other hand, we infer from the assumption f € X that
2n _

Taking y = 0 and next y = 1, we see that Cy = Cy = 0. The proof of Lemma 4.1 is complete. [J
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Lemma 4.2. If f € X is such that

1 1 1
/ez(y)P"f(O,y)dyzf ez(y)ﬁxP”f(O,y)dyz/ el(y)02P" f(0,y)dy = 0 (4.2)
0 0 0

foranyl > 1 and any n > 0, then

1
/0 (1) (0, y)dy = 0 (4.3)

holds for any 1 > 1 and any m > 0.

Proof. To prove that (4.3) holds for any [ > 1 and any m > 0, it is sufficient to show that for
any M € N, (4.3) holds for any [ > 1 and any m < 3M + 2. We proceed by induction on M.
For M =0, we can take n = 0 in (4.2) to see that (4.3) holds for any [ > 1 and m < 2.
Assume that (4.3) is true for any | > 1 and any m < 3M — 1. We claim that (4.3) holds
for any { > 1 and m = 3M,3M + 1,3M + 2. Indeed, taking n = M in (4.2), we have

1
0 = ()M /0 ex(y) PM £(0, ) dy

1
el(y) (02 + 92 + a)M0Y £(0,y)dy

er(y)03M £(0,y)dy

/01
i

1 Mol g\ Mok oy
- M—k—i q2k+M 2i
> ()X (M) a0, @
k=0 =0
Since f € X, it follows from Lemma 4.1 that

02" f(x,0) = 92" f(w,1) =0, Yz €[-1,0], ¥neN.

Then, we obtain by integrations by parts that for k£ € {0,...,M — 1} and i € {0,..., M — k}

1

1
/0 (40P M 92 (0, y)dy = (— 1) (i) /0 en(y)32 M £(0,y)dy = 0.

In the last step, we used the fact that 2k + M < 3M — 1. Thus, we infer from (4.4) that
1
| e so.pay =0, viz1
0
We can show in the same way that (4.3) is true for m = 3M + 1,3M + 2 by using the fact that

1 1
/0 e1()0. PV (0, y)dy = /0 e(y)O2PM F(0,y)dy = 0, Wi> 1.

The proof of Lemma 4.2 is complete. O

Now, we are in a position to prove the second main result in this paper.
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Proof of Theorem 1.2. Assume that R := min{R1, Ro} > Ry = /9(a + 2)6(36)71 and pick any
u1 € RR,,r,- We intend to expand u; in the following form:

o0 o0
Z Z 1,7 91,5 (2)ej (y),

7j=11=0
where

1
bij = (—1)’/0 e;(y)02 P uy (0, y)dy.

Since u1 € Rg,,r, C X, we have that Piu; € X for any i € N. By Lemma 4.1, we infer
that ‘ ‘
(")S”P’ul(az,O) = agnplul(a;, 1)=0, Vxel[-1,0].

Then, by integration by parts, we have

C o
b —/ ()02 Piuy (0,9)dy| < —— sup [0207 Pluy(x,y)|.
il = | Ol < 55 s (0P )

Next, we estimate [928) Piuy (x, y)|.

020) Pus (o) =020 ( V) (@2 4 0t (e

n=0

:|8i+2
xr

M
7 N
3 .

)o@ )

i i 1—n - n m 92n—2m
10529, z ( 2 )e s ()t
SZ Z < 711 > 77; >ain,aﬁm+i+28§n2m+jul(x’y)‘

n=0m=0 <
% n . 2 2
i n n(2m 41+ 2)13(2n —2m + j)!3
<Y () ()t S
n=0m=0 1 2
% n . 2 N2
i n o (2m+i+2)15(2n —2m 4+ j)!s
<CZ Z ( n ) < m )al ! R2ntitjt2 ’
n=0m=0

We notice that

(2m i+ 2)!(2n — 2m + j)!

<2m+i+2 > ( 2n —2m+j >21] (2m +1)!(2n — 2m)!

2 J
S<2m—|—22—i—2 ) < 2n—§m+] )2!].!(2”_’_@.)!,

where we used the fact that

2n+1 (2n +1)!
<2m—|—i> @+ )(2n —2m)l = -
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According to [9, Lemma A.1], we have

2m + 1 + 2 2n —2m+j < n+i+5+2
2 J - j+2 ‘

This implies

2n +j2j2] 2 ) 20j1(2n + i)
(2n +i+ 7+ 2)1251(2n + 9)!
(5 +2)!(2n +i)!
<(2n+i+j+2)L.

2m+i+2)!(2n—2m+ j)! < (

Combining the above estimates, we infer that

C == (i n\ s @nti++2)3
’bi,j\SWZZ(n><m>a R2Zn+itit2

n=0m=0
C Z i 2nai_n(3i+j+2)!§
= (jm)J n R3i+5+2
n=0

C (Bi+j+2)5 ;
T
_ O3B (35 1 2)15(2 + a)'
= (jm )i R3i+i+2
023U (j + 2)15 2%(3)15 (2 + a)'
(jm)I Rt R
C250+2)(j + 2)15 3% (67i) 3 (47i) 2 (20)1(2 + a)’
Gy R I
C23U+D(j + 2)15 [9(2 + a)](2i)!
(GryiRi+2 e
[9(2 + a)]*(2i)!

where M; satisfies (3.1).

By Proposition 4.2, for any j > 1, there exists a function h; € G*([0,T)) and a number
R > 1 such that

W(T) = by ¥i>0,

(4.5)

; (2i)! ,
K1) < M; = Viz 0 te0T)
Pick any 7 € (0,7), s € (1,2) and let
t—T
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Setting
zj(t) = h;(t)g(t) Vte(0,T],

following the method developed in [12, Theorem 3.2], and taking into account the fact that
s < 2, we see that z; satisfies

](z)( )=bi; Vj=11i=0,
(
%)

200)=0 Vji>1,i>0, (4.6)

|
129 (8)] < OM(R?ZJ Vji>1i>0,te[0,T],

where R is the same as in (4.5) and C'is a positive constant independent of i and j.
Let u be as in (1.9). According to (4.6), we have uyp = 0 and

u(a,y, T) => > gij(x Z bijgij(z)e;(y).
j=1i=0 j=1i=0
By Proposition 4.1, u solves system (1.4)-(1.8) and u € G%V2([—1,0] x [0,1] x [0,7]). Let
h(y,t) = u(—-1,y,t) Vyel0,1],Vt e [0,T].
Then h € G*2([0,1] x [0,T).

Finally, for any [ > 1 and n > 0, we have

1
/Oel<y>P”u<o,y7T>dy= / D5 by (1) e (0 (y)dy = 0

j=11i=n

1
:/0 el(y)P"u1(0,y)dy,
1 1 oo 00
/Oez(y)(?xP”u(O,y,T)dy:/O a(y) > bii(=1)"gi_, ;(0)e;(y)dy =0

j=1 i=n

1
_ / e1(y)0. Pur 0, y)dy,
0
1 1 oo 00
/O e1(y) 03 P u(0,y, T)dy = /0 er(y) Y Y big(—1)"gi, ;(0)e;(y)dy = by

j=1i=n

1
= / er(y) 03P u (0, y)dy.

0

Since u(-,+,T),u; € X, it follows from Lemma 4.2 that

1
| ) oru0.5,7) = 7 (0,p)ldy =0 =1, vim >0,
0

and hence
u(0,y,T) — 07u1(0,y) =0 Vm >0, Vy € [0,1].
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Since the map = — u(x,y,T) — uy(x,y) is in G*([—1,0]) (i.e. is analytic) for any y € [0, 1], we
infer that
U(%‘,y,T):ul(.T},y) V(m,y) S [_170] X [071]

The proof of Theorem 1.2 is complete. O
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