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We investigate the frequency comb spectrum produced in an optical fiber via multiple four-wave mixing
pumped in the normal group-velocity region close to the zero-dispersion wavelength. We show that the
dynamics is strongly affected by shock formation. In this regime, the resonant radiation emitted by the shock
waves correctly explains the enhanced spectral peaks in the comb. The resonant frequencies found by means
of perturbation theory accurately fit those observed from the numerical simulation based on the generalised
nonlinear Schrödinger equation. c© 2019 Optical Society of America
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Frequency combs generated via multiple four-wave
mixing (mFWM) are attracting strong interest. The
most extended combs have been produced by exploiting
the excitation of an extremely wide set of modes of mi-
crocavities via mFWM pumped in the regime of anoma-
lous group-velocity dispersion (GVD) [1]. However, the
combs can be produced also in cavity-less configura-
tions, e.g. in a fiber or Kerr photonic wire. Although
their extension is not comparable, they offer the pos-
sibility to tune the comb repetition through the choice
of pump frequencies Ω±1 = Ω0 ± Ω/2 equally detuned
central frequency Ω0. Multiple orders are produced at
Ω±m = Ω0 ± mΩ/2, m = 3, 5, 7, ... through cascaded
mFWM [2, 3] (note that for strong pump power im-
balance, first-order FWM can be viewed essentially as
the idler generation, followed by cascaded signal-idler
multiple pairs). In both the balanced and the imbal-
anced cases, the mismatch induced by GVD sets fun-
damental limitations to the generation efficiency of mul-
tiple orders. This can be overcome in fibers by oper-
ating sufficiently close to the zero-dispersion wavelength
(ZDW), which allows for generating tens of FWM or-
ders [4–8]. Pumping in the normal (modulationally sta-
ble [9]) GVD regime appears to be particularly intriguing
since strong spectral broadening is intimately linked to
the recently demonstrated excitation of dispersive shock
waves (DSWs) via wave-breaking in mFWM [8,10]. Tem-
poral DSWs or undular bores, i.e. trains of fast oscilla-
tions emitted beyond points of breaking (gradient catas-
trophies), are indeed responsible, in frequency domain,
for enhanced comb broadening.

In this Letter, our aim is to assess the effect of higher-
order dispersion on such phenomenon. In particular we
show that the DSWs have deep impact on the spec-
tral features of the comb since they are responsible for
spectral peaks associated with the growth of dispersive
waves at resonant frequencies where phase-matching can
be achieved. In this respect, the phenomenon has the
same physical origin of soliton radiation [11, 12] (see
also [13,14] and references therein, for recent advances).
However, when the radiation is shed by a shock wave
(instead of a soliton), a major difference arises from the
impact that the velocity of the shock front has on phase

matching [15–17]. Here we show that such conclusion
holds true for combs due to mFWM as well. We show
that, in order to predict the enhanced spectral peaks
in the discrete spectrum, one can successfully use the
phase-matching formula employed in Ref. [16] for pulses,
though we propose a different derivation of the equation
based on perturbation theory [18]. Although such for-
mula works at all orders of dispersion, we specifically
focus on the effect of third-order dispersion (TOD, also
recently considered for cavity combs [19]), discussing in
details different possible regimes.

Let us start from the following generalised nonlinear
Schrödinger equation (NLSE) written by adopting the
so-called semiclassical dimensionless scaling [8, 10,16]

iε∂u∂z + d(∂t)u+ |u|2 u = 0,
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where the sum is over n ≥ 2, and we adopted the same
normalization as in Ref. [8], i.e. |u(z, t)|2, z and t stand
for the instantaneous power, distance, and retarded time
in units of injected power Pt, characteristic length and
time L =

√
LnlLd and T0 = π/Ω [Lnl = (γPt)

−1 and
Ld = T 2

0 /∂
2
Ωk are nonlinear and dispersion lengths, re-

spectively, γ being the standard fiber nonlinear coeffi-
cient). We are interested in the evolution ruled by Eq.
(1) subject to the dual-frequency initial condition

u0(t) =
√
η exp(iωpt/2) +

√
1− η exp(−iωpt/2), (2)

with fixed normalized frequency ωp ≡ |Ω±1|T0 = π,
whereas η accounts for the possible imbalance of the in-
put spectral lines. The weakness of dispersion is meas-
ured by the key parameter ε ≡

√
Lnl/Ld, which allows

to express the dispersion operator d(∂t) in Eq. (1) as an
asymptotic power series of ε by introducing the normal-
ized coefficients βn = ∂nΩk/

√
(Lnl)n−2|∂2

Ωk|n (we keep
the symbol β2 to highlight the contribution due to GVD,
though our normalization implies |β2| = 1).

When pumped in the regime of weak normal disper-
sion (β2 = 1), mFWM is characterized by the formation
of DSWs [8, 10]. When DSWs are excited sufficiently
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close to a ZDW, they are expected to radiate, owing
to phase-matching with linear waves induced by higher-
order dispersion [15,16]. An example of this resonant ra-
diation (RR) ruled by TOD (we set β3 = 0.3) is shown in
Fig. 1 for an imbalanced input [η = 0.3 in Eq. (2)]. The
colormap evolution in Fig. 1(a) clearly shows that the ini-
tial waveform undergoes wavebreaking around z ∼ 0.4.
The mechanism of breaking has been analyzed in details
in Ref. [8,10] and involves two gradient catastrophes oc-
curring across each minimum of the injected modulation
envelope. The GVD regularizes the catastrophes lead-
ing to the formation of two DSWs, i.e. fast wavetrains
that expand inside characteristic shock fans delimited
by the deepest oscillation (DSW leading edge) and the
most shallow one (DSW trailing edge) in (t, z) plane.
The individual oscillations in the trains exhibits dark
soliton features, moving with nearly constant darkness
and velocity inversely proportional to it. Importantly
the breaking scenario is weakly affected by TOD, ex-
cept for a major difference which is clear from the com-
parison of the snapshots displayed in Fig. 1(b). In the
presence of TOD, one can notice indeed that the dark-
est soliton-like oscillation emits RR. This radiation has
much higher frequency than the comb spacing and turns
out to be generated over the CW plateau of the lead-
ing edge labeled u0. This is clear from Fig. 1(c), which
shows the enhancement of such frequency at the distance
of breaking where the strong spectral broadening associ-
ated with the shock acts as a seed for the phase-matched
(resonant) frequency. In order to show the origin of the
spectral peak shown in Fig. 1(c), we compare in Fig. 1(d)
the spectra at z = 0.7 in the presence and in the absence
of TOD, respectively. In the latter case it is evident that
the comb does not exhibit any resonant enhancement of
high frequencies.

The frequency of the RR shown in Fig. 1(d) can be
predicted by applying a perturbation approach which
accounts for dispersion at all orders [13, 18]. We start
by assuming a radiating shock front us which travels
with invariant profile at definite velocity V = dt/dz
In other words we consider the local edge of a solu-
tion u(z, t) = us(τ) exp(iksz) of Eq. (1) with disper-
sion truncated at second-order, where τ = t − V z and
ks is the nonlinear wavenumber of the shock. We ac-
count for perturbations to this front due to higher-order
dispersion by assuming a perturbed field of the form
u = [us(τ) + p(z, τ)] exp(iksz). By substituting u in Eq.
(1), we obtain, after linearization (|p| � |us|), the fol-
lowing evolution equation for p

iε
∂p

∂z
+ d̂(∂τ )p+ 2|us|2p+ u2

sp
∗ = F (3)

where F = −
[
d(∂τ )− β2(iε∂τ )2/2

]
us is a forcing term

with zero wavenumber, and d̂(∂τ ) ≡ d(∂τ )− iV ε∂τ . Set-
ting p(z, τ) = A(z) exp[i(kz − ωτ)] +B∗(z) exp[−i(kz −
ωτ)], we find that Eq. (3) for F = 0 (i.e. for free-running
waves) reduces to the following system for the Stokes-
antiStokes amplitudes a(z) = [A(z) B(z)]T

iε
da

dz
+ Ca = 0, (4)

C =

(
D(ω)− εk u2

s
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2 −D(−ω)− εk

)
, (5)
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Fig. 1. RR emitted by shock with asymmetric pumping
η = 0.3, and ε = 0.04: (a) temporal and (c) spectral
colormap evolution for β3 = 0.3; (b) temporal snapshots
(β3 = 0 dashed; β3 = 0.3, solid); (d) Comparison be-
tween spectral output with/without β3 (blue solid line is
the input). Dashed line in (a) highlights the DSW edge
velocity V = −0.4. Vertical dashed line in (c,d) indi-
cates ωRR from Eq. (8). A/N in (d) stands for anoma-
lous/normal GVD domains.

where D(ω) = d̃(εω) + 2|us|2 − εks, and d̃(εω) =∑ βn

n! (εω)n − (εω)V is the Fourier transform of d̂(∂t).
The dispersion relation κ = κ(εω) of such waves is found
by imposing det(C) = 0, which yields the following two
branches κ = κ±(εω)

εκ± =
dodd

2
± 1

2

√
deven[deven + 4|u0|2], (6)

where dodd ≡ d̃(εω) − d̃(−εω) and deven ≡ d̃(εω) +

d̃(−εω), and we have considered that ks = |u0|2 is
the Kerr wavenumber shift over the CW plateau (up-
per state of the shock front) with power |u0|2 where RR
is emitted [see Fig. 1(b)]. Frequencies ω = ωRR such
that κ± = κ(εωRR) = 0 can grow because they become
resonant with the forcing F in Eq. (3). They arise in
pairs (ω = ±|ωRR|) due to symmetry of the problem.
Note, however, that the wave amplitude that grows at
such frequencies is generally very different [see Fig. 1(d)],
being related to the eigenvectors of the matrix.

A sufficiently accurate estimate for ωRR can be ob-
tained by expanding the square root in Eq. (6) under
the hypothesis |u0|2 � |deven|, which yields

d̃(±εωRR) + |u0|2 = 0. (7)

While this approach permits to treat dispersion at all
orders, we continue to analyze the effect of the usually
dominant term, i.e. TOD (β3 6= 0, βn = 0, n ≥ 4).
In this case Eq. (7) explicitly reads as (we consider the
upper sign in Eq. (7), the other case can be derived with
obvious symmetry arguments)[
β3

(εωRR)3

6
+ β2

(εωRR)2

2
− V (εωRR)

]
+|u0|2 = 0. (8)
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Equation (8) coincides with the condition derived in
Ref. [16] on simple physical ground. The square bracket
represents the wavenumber of linear waves while the re-
maining term stands for the nonlinear correction induced
through cross-phase modulation from the u0 plateau over
which radiation is emitted [see Fig. 1(b)].

In the limit V = 0, also neglecting the nonlinear
correction |u0|2, Eq. (8) gives the approximated result
εωRR = −3β2/β3, or ΩRR = ωRR/T0 = −3∂2

Ωk/∂
3
Ωk in

physical units. This is equivalent to the original result
derived for bright soliton [11, 12] and shown to corre-
spond to phase-matching of a cascaded mixing process
in Ref. [6]. For mFWM the latter estimate can be con-
sidered accurate enough when the nonlinear effects do
not dominate over dispersive ones (ε ∼ 1), or in other
words when relatively few FWM orders are generated.
Viceversa in the weakly dispersive regime (ε� 1) which
involves wave-breaking and efficient generation of ex-
tended combs, one needs to resort to Eq. (7) in order
to account for the spectral features observed in the nu-
merics. A comparison between the two regimes is carried
out in Fig. 2 for symmetric pumping [η = 0.5 in Eq. (2)].
Figure 2(a-b) are obtained in the moderately nonlinear
regime with ε = 0.4. In this case the modulation prop-
agates without exhibiting any breaking phenomenon. In
frequency domain, the mFWM orders decay monotoni-
cally towards high frequencies, while crossing the ZDW
over the low frequency side, the m = −5 order turns out
to be resonantly enhanced. The frequency of this line is
well described by the approximation εωRR = −3β2/β3

[vertical dash-dotted line in Fig. 2(b)]. Viceversa in the
strongly nonlinear regime (ε = 0.04) the wavebreaking
qualitatively alters the previous scenario, as shown in
Fig. 2(c-d). In the case β3 = 0, the symmetric pump is
a degenerate case [8,10], where the two points of break-
ing coalesce in time over the modulation minima and a
black soliton-like pulse (with V = 0) emerge, separating
two perfectly symmetric DSW [see also Fig. 4(c)]. The
presence of TOD breaks the symmetry in time and in-
duces the central filament to acquire a non-zero velocity
(V ∼ 0.05). The latter is small enough for the approxi-
mation εωRR = −3β2/β3 to retain its validity. However
the spectrum shown in Fig. 2(d) exhibits also an addi-
tional peak of the comparable amplitude which is reso-
nantly enhanced by the front of the DSW traveling with
velocity V = −0.59 [see Fig. 2(c), where two radiating
edges (solitons) are highlighted by dashed lines, whose
slopes fix V ].

When a considerable imbalance is introduced in the
initial beat, the DSW leading edges which are respon-
sible for the RR travel at higher absolute velocities V
as shown in Fig. 3(a) for η = 0.8. The RR peaks are
due indeed to solitons traveling with opposite velocities
[highlighted in Fig. 3(a)] and comparable darkness [see
snapshots in Fig. 3(b)]. In this case, the RR become
stronger since the resonant frequencies move at lower fre-
quencies [Fig. 3(c,d)]. In order to correctly predict both
peaks one must employ Eq. (8), while the approximation
εωRR = −3β2/β3 introduces a considerable error.

Finally we point out that so far we have considered a
perturbative role of TOD (|β3| < 0.5). Larger perturba-
tions in the generalized NLSE can qualitatively alter the
shock dynamics [20]. This turns out to be the case also
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Fig. 2. Comparison of mFWM spectra in the non-shock
(a-b) and shock (c-d) regime for symmetric pumping η =
0.5. Parameters: (a-b) β3 = 0.53, ε = 0.4; (c-d) β3 =
0.2, ε = 0.04. The blue dash-dotted line stands for the
approximation εωRR = −3β2/β3 [6] valid for V ' 0.
The other RR peak (black dashed line) is given by Eq.
(8) with V = −0.59.
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Fig. 3. RR emitted by shock with asymmetric pumping
η = 0.8 (a) temporal and (c) spectral colormap evolu-
tion for β3 = 0.3; (b) temporal snapshots (β3 = 0 and
β3 = 0.3); (d) spectral output with/without β3. Dashed
lines in (a) highlight shock velocities V = −0.77 and
V = 0.435. Vertical dashed and dash-dotted lines in (d)
indicates ωRR calculated from Eq. (8), whereas solid line
stands for εωRR = −3β2/β3 [6]. Here ε = 0.04.

for mFWM under stronger TOD, as illustrated in Fig.
4, which report novel regimes bearing no similarity with
the case of the GVD-dominated dispersion.

First, we show that a higher TOD allows for the forma-
tion of radiating classical shock waves, i.e. a disturbance
which propagates as a non-oscillatory jump. Indeed, in
the presence of two shock fans, the effect of TOD is to
open up one of the fan and to induce narrowing of the
other one, until the latter eventually reduces to a pure

3



Fig. 4. Non perturbative regimes: (a-c) Temporal col-
ormap for β3 = 0 and (b-d) β3 6= 0. (b) RR from a
quasi-classical shock wave, with β3 = 0.6. Here η = 0.1,
ε = 0.02. Snapshot at z = 1 superimposed. (d) Mixed-
type catastrophe for β3 = 1.5. Here η = 0.5, ε = 0.04.

front for sufficiently large β3. This situation is illustrated
in Fig. 4(a,b), where we contrast the DSW temporal pat-
tern generated in the absence of TOD with the one gener-
ated for β3 = 0.6. The fan of the DSW which is propagat-
ing leftwards in Fig. 4(a) shrinks completely for β3 = 0.6
[see Fig. 4(b)], leaving a jump which propagates nearly
unchanged. This front is still efficiently radiating at a res-
onant frequency well described by Eq. (8) with a velocity
V which is entirely determined by the jumps in intensity
and chirp (this follows from so-called Rankine-Hugoniot
condition for classical shock waves, whose discussion is
beyond the scope of this paper. We refer the reader to
Ref. [16] for a detailed discussion of this point). Such a
velocity remains nearly unaffected by the collisions with
the DSW arising from the neighbor period.

Second, when TOD is even larger (|β3| > 1), it can
deeply alter the breaking scenario, as shown in Fig.
4(c,d) for symmetric pumping (η = 0.5). For β3 = 0
breaking occurs at z ∼ 0.4 and gives rise to two sym-
metric DSWs separated by a central filament as shown in
Fig. 4(c). For β3 = 1.5 [see Fig. 4(d)] the primary break-
ing, still occurring at z ∼ 0.4, is followed by a secondary
catastrophe at z ∼ 0.5, t ∼ 1 ± 0.5, beyond which the
system exhibits the emission of localized breather-like
excitations with large velocity. The secondary breaking
is reminiscent of that occurring for the focusing semi-
classical NLS [21] (since locally the eigenvelocities of the
hydrodynamic limit become complex conjugate as out-
lined in Ref. [16]). This allows us to conclude that the
system exhibits, for |β3| ∼ 1, a coexistence of locally dif-
ferent wavebreaking mechanisms that are characteristic
of both the defocusing and focusing NLSE.

Finally, we emphasize that the shock-induced reso-
nances (as in Figs. 1-3) should be readily seen experi-
mentally by exploiting the set-up of Ref. [8], where at
the largest power of 37 dBm, one obtains ε ' 0.04 and
Lnl ' 115 m. In this regime β3 = 0.3 corresponds to
a realistic physical TOD ∂3

Ωk = β3

√
Lnl|∂2

Ωk|3 = 0.6

ps3/km (∂2
Ωk = 3.2 ps2/km).

In summary, we have predicted that mFWM broad-
band combs produced in the regime of wave-breaking
exhibit one or more marked spectral peaks that are due
to the resonant radiation shed by DSWs. The resonant
frequencies observed in the numerics can be accurately
predicted on the basis of phase-matching arguments that
involve the determination of the shock edge velocity.
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