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We study field-driven domain wall (DW) velocities in asymmetric multilayer stacks with perpendicular
magnetic anisotropy and Dzyaloshinskii-Moriya interaction (DMI), both experimentally and by micromagnetic
simulations. Using magneto-optical Kerr microscopy under intense and nanoseconds-long magnetic field pulses,
we show that DWs in these films propagate at velocities up to hundreds of meters per second and that, instead of
the expected decrease in velocity after the Walker field, a long plateau with constant velocity is observed, before
breakdown. Both the maximum speed and the field extent of the velocity plateau strongly depend on the values
of the spontaneous magnetization and the DMI strength, as well as on the magnetic anisotropy. Micromagnetic
simulations reproduce these features in sufficiently wide strips, even for perfect samples. A physical model
explaining the microscopic origin of the velocity plateau is proposed.

DOI: 10.1103/PhysRevB.100.214404

I. INTRODUCTION

The interfacial Dzyaloshinskii-Moriya interaction
(DMI) [1,2] in ultrathin magnetic films with perpendicular
magnetic anisotropy (PMA) has undergone intensive studies
in recent years due to the peculiar field- and current-driven
dynamics of noncollinear magnetic textures such as chiral
domain walls (DWs) and magnetic skyrmions, which this
interaction can stabilize [3–5]. The most important attribute
of the DWs gained by the effect of this DMI is their fixed
chirality together with the Néel internal structure [6]. The
first consequence of this is the shift of the Walker field to
larger values, enabling the DWs to reach higher velocity
with respect to systems with vanishing DMI [6]. These DWs
can also be moved efficiently by an electrical current via
the spin-orbit torque associated with the spin Hall effect,
reaching higher velocities compared to most systems without
DMI [7–10]. Successive DWs move along the same direction
as required for racetrack applications [11], making these
so-called Dzyaloshinskii DWs attractive for applications in
spintronics.

As is well known, one-dimensional (1D) micromagnetics
predicts that the velocity of field-driven DWs increases with
the applied magnetic field in a steady-state flow regime until
it reaches a maximum at a certain threshold, called the Walker
field HW [12–15]. Above it, a sharp decrease in the velocity,
called Walker breakdown, occurs, down to the regime of pre-
cessional motion where the DW magnetization continuously
rotates [13,15], with a constant and lower mobility (the ratio
of velocity to field). The breakdown region in which the DW
differential mobility is negative is anticipated to be unstable
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when the sample is two- or three-dimensional [13]. Indeed,
in the negative mobility regime, any deformation with respect
to a straight DW is amplified. Experimentally, a plateau of
velocity beyond the Walker field has often been reported,
instead of a negative mobility regime. For bubble garnet
films, it was called limiting [16], asymptote [17], or saturation
velocity [15,18,19]. A simple two-dimensional (2D) model
based on the periodic creation and annihilation of horizontal
Bloch lines [20] moving along the sample thickness provided
a first analytic expression for this velocity. To describe the
experimental results, empirical formulas for this velocity were
also proposed [18,19], but without physical justification. More
recent experiments have also reported the phenomenon, some-
times more complex than just a plateau. For example, for
(Ga,Mn)As films with perpendicular magnetization, a plateau
and velocity oscillations were observed [21]. These phenom-
ena could be physically explained by the coupling of the DW
global motion to its flexural modes across the thickness, the
latter involving both DW position and magnetization [22].
Thus, it appears that the DW dynamics above the Walker field
is controlled by processes within the wall, the nature of which
depends on the sample characteristics.

In ultrathin films with PMA, the presence of interfacial
DMI also strongly modifies the DW dynamics above the
Walker field, as shown experimentally [23–25] and repro-
duced by micromagnetic large-scale simulations [23,24,26].
For sufficiently large DMI, the abrupt DW velocity decrease
after the Walker field, expected from 1D theory, is replaced
by a velocity plateau before the DW enters the precessional
regime for larger fields. This holds provided that the DW
is sufficiently long; for narrow strips, up to two breakdowns
were observed before reaching the plateau [26]. As ultrathin
samples have a thickness well below the micromagnetic ex-
change length, neither the creation and motion of horizontal
Bloch lines seen in bubble garnet films nor the excitation
of perpendicular standing spin waves in the DW [22] can
be invoked to explain the phenomenon. On the other hand,
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TABLE I. Measured magnetic parameters for the samples whose velocity curves are shown in Fig. 1 and comparison of the measured
maximum velocity vmax and the end of the velocity plateau Bbreak with simulation results using these parameters, together with α = 0.15, with
exchange being Aex = 16 pJ/m for samples (i) and (ii) and Aex = 4 pJ/m for samples (iii) and (iv). The last two columns show the Slonczewski
field μ0HS estimated with Eq. (8) and the Walker field μ0HW estimated by the 1D model.

Ms D Keff D/Ms vexp
max vsim

max Bexp
break Bsim

break μ0HS μ0HW

Sample (105 A/m) (mJ/m2) (MJ/m3) [nJ/(A m)] (m/s) (m/s) (mT) (mT) (mT) (mT)

(i) Pt/Co(1 nm)/Gd 6.4 1.45 0.26 2.3 640 600 >275 265 325 68
(ii) Pt/Co(1 nm)/GdOx 12.6 1.5 0.44 1.2 300 280 >175 200 225 47
(iii) Pt/GdCo(4 nm)/Ta 2.3 0.2 0.08 0.9 250 230 130 125 140 29
(iv) Pt/GdCo(4.8 nm)/Ta 3.5 0.2 0.06 0.6 160 140 60 35 80 17

micromagnetic simulations highlight the presence of vertical
Bloch lines (VBLs) beyond the Walker field. Their creation
and annihilation have been claimed to explain the presence
of the velocity plateau [23]. In this paper, motivated by
experimental observations, we have studied this phenomenon
in detail by analyzing the DW structure, the VBLs, and their
dynamics for samples presenting different magnetic proper-
ties. This allows us to explain the correlation of the velocity
plateau with the number of VBLs and, quite surprisingly, to
link the field marking the end of the plateau to the DMI field
stabilizing the DWs in the Néel structure.

II. EXPERIMENTS

Domain wall velocity versus easy-axis magnetic fields
Bz were measured for four samples characterized by very
different values of spontaneous magnetization Ms and DMI
strength D, which, as we will show, are at the origin of the
different behaviors of the domain wall dynamics: (i) Pt/Co(1
nm)/Gd/Al, (ii) Pt/Co(1 nm)/GdOx/Al, (iii) Pt/GdCo(4
nm)/Ta, and (iv) Pt/GdCo(4.8 nm)/Ta (layers are listed from
bottom to top). The first two multilayer stacks were studied in
detail in Ref. [24]. The samples were prepared by magnetron
sputtering on Si/SiO2 substrates [24]. The GdxCo1−x layers
with composition gradient x ∼ 0.21–0.23 were prepared by
cosputtering of Gd and Co targets [27]. Because of the vicinity
of the composition compensation at room temperature (RT),
the magnetization is strongly reduced in these two samples.
Moreover, since the compensation temperature in these alloys
is very sensitive to the composition, their RT magnetizations
differ. The material parameters of the four samples are sum-
marized in Table I. Magnetization Ms and effective anisotropy
Keff were measured by magnetometry, whereas the DMI pa-
rameter D was estimated from the in-plane field dependence
of the DW velocity in the flow regime. The details of the Kerr
microscopy experiments allowing the measurement of DW
velocities as a function of Bz and of the DMI strength are also
described in Ref. [24]. In that work, we showed that the field-
driven domain wall velocity after the Walker field is tuned by
the ratio D/Ms between the DMI strength [D ∼ 1.5 mJ/m2

for samples (i) and (ii)] and the spontaneous magnetization
Ms. While, for Pt/Co/GdOx, Ms at RT is close to the bulk
value (1.26 MA/m), a strong reduction of Ms is observed
in Pt/Co/Gd, where an interfacial ferrimagnetic alloy forms
at the top Co interface. The saturation DW velocity at high
field, of the order of 300 m/s in Pt/Co/GdOx , increases up
to 600 m/s in Pt/Co/Gd due to the lower magnetization. In

both samples, the velocity plateau extends up to the largest
fields for which the speeds could be measured (Fig. 1, left
panel). The situation is different for the Pt/GdCo/Ta trilayers
where the magnetization Ms as well as the DMI are reduced
(see Table I). The maximum velocities are smaller than in the
previous samples, and moreover, while in sample (iii) a drop
in the velocity is observed around 100 mT, in sample (iv) the
velocity drops soon after the Walker field, at around 60 mT.
The saturation velocity and the velocity breakdown field for
the four samples are reported in Table I. In the following, we
show that 2D numerical simulations reproduce quantitatively
the different behaviors of the DW velocity in the four samples
and propose a physical understanding of all the results.

III. CALCULATION METHODS

Micromagnetic simulations were realized using the MU-
MAX3 software [28], which solves the Landau-Lifshitz-
Gilbert equation in finite-difference discretization. The ini-
tial material parameters Ms = 1.26 MA/m, D = 1.5 mJ/m2,
Keff = 0.44 mJ/m3, Aex = 16 pJ/m, and magnetic damping
constant α = 0.15 were selected to imitate the magnetic prop-
erties of sample (ii). Although disorder is absent in the simula-
tions presented here, we have verified that it does not affect the
main results of this work. Subsequently, Ms, Keff, and D were
varied in order to cover the range of values obtained experi-
mentally for the other trilayers. In the simulations, a Néel wall
introduced into the strip-shaped sample is displaced by the
action of a magnetic field normal to the plane, as sketched in
Fig. 2, within a (1 × 1) μm2 moving-frame window (to keep
the domain wall in its center). The lateral mesh is chosen to

FIG. 1. Domain wall velocity versus easy-axis field Bz measured
for (i) Pt/Co(1 nm)/Gd, (ii) Pt/Co(1 nm)/GdOx , (iii) Pt/GdCo(4
nm)/Ta, and (iv) Pt/GdCo(4.8 nm)/Ta.

214404-2



STUDY OF THE VELOCITY PLATEAU OF … PHYSICAL REVIEW B 100, 214404 (2019)

FIG. 2. Scheme of simulation geometry with the depicted micro-
magnetic spin configuration. White (black) corresponds to magne-
tization upward (downward), and the color wheel shows the orien-
tation of the in-plane magnetization component. The framed region
depicts the moving calculation window.

be ≈(2 × 2) nm2, which is sufficiently accurate with respect
to the DW width parameter � = √

Aex/Keff, equal to 5–10 nm
in the cases examined here.

The dynamics of a DW in perpendicularly magnetized
nanostrips of different widths was first studied to explore the
transition between the 1D and 2D behaviors. For widths larger
than 500 nm the DW dynamics displayed the characteristics
observed experimentally, i.e., large DW speeds with a plateau
of maximum velocity. Consequently, the strip width of 1 μm
was selected for all computations.

The micromagnetic configurations were analyzed by first
finding the precise DW path. Having located the DW at the
bottom edge of the calculation box, the DW was followed as
it crossed successive horizontal or vertical mesh lines between
the mesh points. To analyze the DW magnetic structure,
the tangential and normal components of the DW (in-plane)
magnetization were then computed. In addition, the local
in-plane angle ϕ of the DW magnetization, counted from the
DW tangent and, for continuity, not restricted to the [0, 2π ]
interval, was evaluated starting from the strip y bottom (see
axis definitions in Fig. 2). Thus, ϕ = 0 is a left-handed Bloch
wall, ϕ = π/2 is a left-handed Néel wall, etc. VBLs were
identified by processing the profile of ϕ versus curvilinear
abscissa s along the DW. The statistics shown below (num-
ber and density of 2π VBLs, DW length, etc.) were ob-
tained on 500 snapshots from 10 DW configurations, obtained
by running a single calculation for 500 ns and collecting
50 snapshots at a 1 − ps interval, with a 50-ns interval
between two configurations. Indeed, as the DW configura-
tion does not change enough on the nanosecond timescale,
measurements on a single DW configuration show excessive
scatter.

IV. SIMULATION RESULTS AND ANALYSIS

Figures 3(a) and 3(b) show the simulated velocity vs field
curves for different D or Ms values while keeping the other
parameters constant. The DW velocity vW at the Walker field
HW is seen to increase linearly with the DMI strength D and
to decrease as the magnetization Ms increases. These results
agree with the previously derived analytic formula (the last
equality holds when the DMI field is much larger than the
internal demagnetizing field of the Néel wall):

vW = γ0
�

α
HW ≈ π

2
γ0�HDMI = π

2
γ

D

Ms
, (1)

where γ is the gyromagnetic ratio, γ0 = μ0γ , and HDMI =
D/(μ0MS�) is the DMI field that stabilizes the DW in the

FIG. 3. Simulated field-driven DW velocity for (a) Ms =
1.01 MA/m and Ku = 1.44 mJ/m3 so that Keff = 0.80 mJ/m3 and
different values of DMI strength and (b) fixed D = 1.5 mJ/m2,
Keff = 0.44 mJ/m3 and varying spontaneous magnetization. The dif-
ferent lengths of the velocity plateau for D = 1.5 mJ/m2 and Ms =
1.01 MA/m in (a) and (b) result from the different Keff values
(see discussion later in the text). The vertical segments mark the
computed Slonczewski fields according to Eq. (8).

Néel configuration. They also agree with the results of domain
wall velocity measurements [24].

The simulations also show that, in agreement with experi-
ments, the velocity is nearly constant for a certain field range
above the Walker field and that the length (in field scale) of
this velocity plateau is also dependent on D and Ms. In the case
of strong DMI [e.g., D = 1.5 mJ/m2 as in Fig. 3(b)], one sees
that the plateau length decreases as Ms increases. On the other
hand, Fig. 3(a) shows that for a constant Ms = 1.01 MA/m,
the length of the plateau decreases as D decreases, with the
plateau even disappearing for low DMI values (e.g., D �
0.5 mJ/m2). Therefore, a first parameter determining both the
saturation speed and the field extension of the velocity plateau
appears to be the ratio between the DMI strength and the
spontaneous magnetization. Experimentally, both the satura-
tion velocity and the plateau extension indeed decrease as this
ratio decreases (see Fig. 1 and Table I). Figure 3, in addition,
shows that the plateau length is also related to the domain wall
width π

√
Aex/Keff. To understand the microscopic mechanism

leading to the velocity plateau and its breakdown, the DWs
need to be examined more closely by following the evolution
of their magnetic structure and shape in different applied fields
and as a function of time.
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FIG. 4. Sequence of images of the normalized magnetization components mx and my (along and perpendicular to the strip direction) in
(1 × 1) μm2 moving windows for different driving fields. The orientation of the magnetization vector in both domains is indicated in the
first frame. The displayed magnetization component is indicated by an arrow (white = parallel, black = antiparallel to the arrow). Each
frame is captured more than 50 ns after field application, when the DW has reached a stable configuration. Simulation parameters are Ms =
0.756 MA/m, D = 1.5 mJ/m2, Ku = 0.80 mJ/m3, Aex = 16 pJ/m.

Figure 4 shows, for increasing magnitude of the applied
field Bz, images of the magnetization components in the
x and y directions in the case of a strip with Ms = 0.756
MA/m, Ku = 0.80 mJ/m3, so that Keff = 0.44 mJ/m3 and
D = 1.5 mJ/m2. Several trends can be identified, correspond-
ing to the different dynamical regimes shown by the corre-
sponding velocity curve [Fig. 3(b), middle curve]. For low
fields and up to the Walker field (�77 mT), the domain wall
is straight and tilted with respect to the stripe direction, with
the tilt angle initially increasing with field [29]. Also, the
DW magnetization rotates from the (left-handed) Néel wall
orientation and becomes close to a (right-handed) Bloch wall
orientation as the Walker field is approached, as expected [6]
(see image at 80 mT). Above the Walker field, a sudden
transition to a turbulent regime occurs. The domain wall
length increases with respect to the low-field case and acquires
a meander shape, with an increasing number of curls, up to the
end of the velocity plateau at around 350 mT. This behavior
has already been observed in Refs. [23,24,26]. After reaching
the maximum length, at the end of the plateau, the DW rapidly
shortens but remains meandering. With increasing field, it
slowly straightens, and its magnetization reaches a coherent
precessional regime at around 0.5 T. In parallel, the in-plane
magnetization images reveal a multiplication of sign changes.
When the DW is straight, this directly means that the DW
magnetization spatially rotates between the Bloch and Néel
orientations. On the other hand, when the DW is strongly
meandering, the local magnetization orientation, i.e., its angle
ϕ relative to the DW tangent, should be scrutinized in order to
determine if the DW is Néel or Bloch and if a VBL is present.
This analysis is detailed in the Appendix.

In order to have a global view of the DW magnetic
structure, the histograms of local DW magnetization angles
are shown in Fig. 5 separately for the plateau region (80–
350 mT) and beyond the plateau. Just above the Walker field,
the distribution has a strong peak close to ϕ = π , the right-
handed Bloch wall derived from the left-handed Néel wall
by π/2 precession. It is therefore justified to describe the
DW as a chiral Bloch wall, as proposed previously [23,26].
As the field increases, the intensity of this peak diminishes,
whereas the background intensity increases, with a prefer-
ence for the energetically favored left-handed Néel wall. On

the other hand, at large fields the histogram is increasingly
flat.

From the profiles of local DW magnetization angle ϕ(s),
the processes involving the vertical Bloch lines were investi-
gated. As known from bubble physics [15], in achiral Bloch
walls four types of VBLs exist, degenerate in energy and
grouped into two senses of winding [30], corresponding to
±π rotations of ϕ, the stable orientations for the DW moment
being ϕ = 0, π . In the presence of interfacial DMI, it was
proposed [23] that these four VBL types separate into those
that are favored, with a core magnetization parallel to the
DMI effective field, and those that are unfavored. This scheme
implicitly rests on the concept of an underlying achiral Bloch
wall. This is, however, not the static state, which due to an
interfacial DMI is a chiral Néel wall. Dynamically, just before
the Walker breakdown, this DW does transform into a Bloch
wall, but it is chiral as it derives from the rest structure by π/2
precession around the applied field [6,23]. Hence, when DMI
dominates over DW internal magnetostatics, only a 2π VBL
is a relevant object. In static conditions it separates two chiral
Néel walls with ±2π difference in ϕ [Figs. 6(a) and 6(b)],
while just below the Walker threshold it separates two chiral
Bloch walls [Figs. 6(c) and 6(d)]; this conclusion was also
reached by Ref. [31]. Note that, in the latter situation, if one
fictively decomposes the 2π VBL into two 1π VBLs, a slower
magnetization rotation (larger width) is indeed observed for
the VBL favored by DMI compared to the unfavored one
(Fig. 9), in accordance with the arguments of Ref. [23].
Therefore, we used as the operational 2π VBL definition the
fact that ϕ changes by 2π , the sense of variation giving the
VBL winding. This procedure, starting from the y bottom of
the DW where the DW magnetization also varies with time,
cannot be used to locate precisely the VBLs but, at least,
is accurate for determining the number of VBLs and their
winding.

Figure 7 summarizes the results of the detailed analysis
of the shape and magnetic profile of the moving DWs. It
appears that the variation of the DW velocity is correlated
to the DW length, to the total number of 2π VBLs, and, but
less clearly, to the density ρ of 2π VBLs. Below the Walker
field, the domain wall is straight and without VBLs. Above the
Walker field but within the velocity plateau, the domain wall
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FIG. 5. Distribution of the local DW magnetization angle ϕ for several applied fields, (a) within the velocity plateau and (b) above
it. Parameters are Ms = 0.756 MA/m, Keff = 0.44 mJ/m3, and D = 1.5 mJ/m2. For each field, the 10 × 50 acquired DW snapshots were
processed, realizing a space and time average of the DW magnetization angle. The histogram binning is 1◦, and the vertical scale is for 1000
counts in total. In (b), curves are vertically offset (by 4 units) for clarity.

length and the number of 2π VBLs increase. Both decrease
abruptly, like the velocity, when the plateau ends. On the
other hand, the 2π VBL density increases inside the plateau
but peaks after it has terminated and then slowly decreases.
After the plateau, the velocity progressively merges into the
precessional velocity regime with low mobility, as predicted
by the one-dimensional (q, �) model.

In order to see if the maximum 2π VBL density accom-
modated by the DW is a relevant parameter, we compare it
to the value deduced from the estimated 2π VBL size. An
approximate calculation of its extent can be made under the
assumptions that the domain wall remains straight and that
the DMI dominates the domain wall internal demagnetizing
effect. The resulting energy takes the same form as that of the
classical Bloch wall profile, only with an angle scaled by a
factor of 2. We thus find that the 2π VBL width S (using the
conventional Lilley definition in terms of the tangent to the

(a) (b) (c) (d)

x

y

FIG. 6. Scheme of 2π VBLs in Dzyaloshinskii domain walls
(a) and (b) in statics and (c) and (d) around the Walker field under
positive z field drive. The winding of the 2π VBL is opposite
between (a) and (b), and between (c) and (d).

angle profile at the central point [32]) reads

S = 2π
√

Aex�/(πD). (2)

Compared to these analytical models, full numerical calcu-
lations show that the domain wall bends at the 2π VBL
for magnetostatic reasons, a feature noticed long ago [33,34]
and analytically obtained recently [31]. One gets that the
maximum 2π VBL density is about a quarter of the inverse
size. This means that the end of the velocity plateau is not
given by the uniform rotation model [15] in which VBLs are
densely packed.

V. DISCUSSION

A framework to analyze the DW dynamics above
the Walker field is provided by the Slonczewski equa-
tions [13,35]. For the present situation, their variables are
the local DW x position q(y, t ), a function of the y position
across the strip and time t , and the angle of DW magnetization
�(y, t ) in the absolute frame. For large corrugations of the
DW, one should rather use q(s, t ) and �(s, t ), where s is
the curvilinear abscissa and the DW local displacement q is
measured along the normal to the DW [15,36], but we ignore
this subtlety in this qualitative analysis. When the DW is not
straight, the equations indicate that the DW surface energy
induces an additional field Hq parallel to the applied field,
proportional to the DW curvature (in magnitude and sign)

Hq = σ

2μ0MS

∂2q

∂y2
, (3)

where σ = 4
√

AexKeff − πD is the DW surface energy den-
sity. Note that this field also appears in the creep theory of
magnetic domain walls [37]. As shown in Fig. 8, Hq decreases
the drive field at the places that are ahead of the average
DW position and increases it at the places that lag behind.
The typical value of this field is not at all negligible: for the
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FIG. 7. Field dependency of DW parameters: velocity, length,
number of 2π VBLs inside the DW, and 2π VBL density ρ in a
1-μm-wide strip, with Ms = 0.756 MA/m, Keff = 0.44 mJ/m3, and
D = 1.5 mJ/m2. The red velocity curve expresses the analytical
1D model (in the limit where the DMI field is much larger than
the demagnetizing field of the Néel wall) for the corresponding
micromagnetic parameters, with the computed Slonczewski field
according to Eq. (8) indicated by a vertical line.

parameters of Fig. 7 one has σ = 5.9 mJ/m2, so that a sine
modulation with an amplitude of ±50 nm and wavelength of
200 nm produces μ0Hq = 192 mT.

Based on these ideas, a heuristic “corrugated wall” regime
was proposed by Slonczewski [13] for the DW dynamics
above the Walker field in the negative mobility region, in
which H + Hq � HW for the DW parts which are ahead,
whereas in the lagging parts H + Hq � HW. The increased
field in the lagging parts causes a faster precession of DW
magnetization, hence driving the nucleation of VBLs, corre-
sponding to the observations. As a corrugated DW is longer,
the increase of both DW length and VBL number seen in
Fig. 7 is consistent with this mechanism. The corrugated wall
picture also corresponds well to the DW images shown in
Fig. 4 for μ0Hz = 100 and 200 mT. In Ref. [13] Slonczewski
then looked for a steady-state DW corrugation and associated
velocity. The numerical simulations show, however, that the
situation is more complex, so Slonczewski’s model cannot be
directly applied. Nevertheless, despite the complexity of the
DW shape and magnetization profile, some integral relations
hold that help us understand this regime.

The first is the “momentum conservation,” i.e., the spatial
and temporal average of the first Slonczewski equation, given

q

y

H

Hq< 0

Hq> 0
Hq< 0

Hq’ > 0

(a) (b)

FIG. 8. Sketch of corrugated domain walls. (a) For a sinusoidal
profile, the curvature-induced fields [Eq. (3)] are equal and opposite
at the two extremities of the DW, and a larger total field is applied to
the part of the DW lagging behind. (b) For a corrugated profile with
smaller zones lagging behind, these experience a yet larger field. This
last configuration resembles the images of Fig. 4. Magnetizations are
drawn in black, and fields are in red.

by 〈〈
∂�

∂t

〉〉
+ α

�

〈〈
∂q

∂t

〉〉
= γ0H, (4)

where the double brackets indicate the two averages. This is
the version of the DW dynamics model under the assump-
tion of a constant DW width parameter �, but it has been
shown that this equation can be generalized to arbitrary spin
textures [38], upon definition of a generalized � angle and
DW position. In the present case, if H > HW and the DW
moves at an average velocity v ≈ vW, one gets 〈〈∂�/∂t〉〉 ≈
γ0(H − HW). This means that DW magnetization precession
is required for fast DW motion above the Walker field, con-
trary to a naive expectation that DW magnetization precession
equals velocity breakdown. In the corrugated DW model,
this precession is localized in the lagging DW parts, and
the momentum conservation is satisfied if the length fraction
f of these parts and the curvature-induced field Hq satisfy
f
√

(H + Hq)2 − H2
W ≈ H − HW, a relation that can be ap-

proximated to (H + Hq) f ≈ H − HW for large H . Inspection
of Fig. 4 for μ0Hz = 100 and 200 mT reveals that f indeed
increases with H .

The second relation is simply the energy balance [13]:
by the DW motion the total energy of the sample decreases
at a rate −2μ0MSHv per unit cross section of the strip.
In the micromagnetic dynamics equation, energy decreases
only by the damping term, with a volumetric dissipative
power given by −α(μ0MS/γ0)(∂ 
m/∂t )2. The obvious source
of magnetization time variation is the DW, and the two DW
mobility regimes can be obtained by evaluating this energy
dissipation. But in addition, the DW can emit spin waves that
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disappear inside the domains, dissipating energy as well. As
detailed in the Appendix, spin waves are emitted when a 2π

VBL disappears, releasing its energy. At rest, still neglecting
deformation of the DW profile in its vicinity, the energy of a
2π VBL is analytically evaluated as

λ = 16
√

Aex�πD (5)

per unit length (the thickness of the film). The number of
2π VBLs disappearing per unit time can be estimated from
the time evolution of the profiles of the local angle ϕ (see
the Appendix). We find that the energy dissipated by this
process amounts to about one third of the required additional
energy dissipation compared to that of a 1D DW moving at
the Walker velocity, namely, −2μ0MS(H − HW)vW. In fact,
the energy dissipated by the destruction of the 2π VBLs is at
least twice as large as this estimation, as the comparison of
numerical and analytical ϕ(s) profiles shows that the dynami-
cal 2π VBLs are compressed by a factor larger than 4, leading
to a larger dissipation upon annihilation. This shows that the
VBL-based energy loss mechanism is quantitatively dominant
in the velocity plateau at the Walker velocity.

We finally discuss the end of this plateau. A first remark is
that the field where the plateau ends is close to the field where
the 1D model predicts the velocity to be the minimum (see
Fig. 7). This field was considered apparently only by Slon-
czewski [13,20] and may therefore be called the Slonczewski
field HS. In the 1D model with purely second-degree DW
effective anisotropy KDW leading to a DW internal anisotropy
field HKDW = 2KDW /(μ0MS), which is analytically solvable,
one has HW = αHKDW /2 and vW = γ0�HKDW /2 for the Walker
threshold, whereas for the Slonczewski minimum the quanti-
ties are [13]

HS = HKDW

1 + α2

2
√

2 + α2
≈ HKDW /(2

√
2), (6)

vS = γ0�HKDW

α
√

2 + α2

2(1 + α2)
≈ γ0�HKDW

α

2
, (7)

with the approximations holding for α � 1.
In our case, when the DMI-induced field satisfies HD �

HKDW , this 1D model applies (just consider �/2 to be the
angular variable), and one has [6] HW ≈ αHD, so that

HS = 1 + α2

√
2 + α2

HD = π (1 + α2)

2
√

2 + α2

D

μ0MS�
, (8)

where the numerical factor is 1.11 in the small-α limit, so that
HS ≈ HDMI [remember that HD = (π/2)HDMI].

One sees that the dependence of HS on the micromagnetic
parameters D and Ms is exactly that found in the experiments
and the simulations and, moreover, that the agreement with
both is quantitatively very good. It also confirms that the
length of the velocity plateau is related to the DW width, as
already found in the simulations. This can be taken as a hint
that the corrugated wall model is relevant for the dynamics
above the Walker field, with the plateau lasting at most up to
the field where the driving force for the corrugation instability
disappears.

Regarding the value of the plateau velocity, we have only
qualitative arguments. Within the corrugated wall model, the

corrugation instability cannot grow beyond reaching H +
Hq = HW in the leading edge parts, so that one has v � vW.
We have also seen that the momentum and energy conser-
vation relations can be satisfied in this model by localized
precession in the lagging behind parts and 2π VBL destruc-
tion, respectively, when the DW moves close to the Walker
velocity. This shows that v ≈ vW is an admissible solution in
the negative mobility regime. The specificity of large DMI
values is that, on top of a large Walker field and Walker
velocity, the DMI forces the formation of 2π VBLs, which
can store a large amount of energy which can be released upon
annihilation. A large DMI also leads to a large Slonczewski
field, the apparent end of the velocity plateau, which therefore
becomes easier to observe.

VI. CONCLUSION

We have experimentally shown that, for chiral Néel walls
stabilized by the interfacial Dzyaloshinskii-Moriya interac-
tion (Dzyaloshinskii domain walls), the maximum velocity
and the end of the high-velocity plateau are controlled mainly
by the ratio D/Ms of DMI to spontaneous magnetization. This
observation has been confirmed by systematic 2D micromag-
netic simulations. These additionally revealed that the domain
wall width also impacts the end of the high-velocity plateau
and that the moving domain wall is strongly corrugated in
the plateau region. A detailed analysis of the domain wall
in-plane magnetization variation along its length has shown
the key role of 2π vertical Bloch lines, textures that are
topologically stable and therefore disappear through a Bloch
point, dissipating a large energy through the emission of
spin waves. We propose that this plateau corresponds to the
negative mobility regime of the one-dimensional domain wall
dynamics, as qualitatively described by the corrugated domain
wall model of Slonczewski. As a result, the end of the high-
velocity plateau is simply proportional to the effective DMI
field, with a numerical factor independent of damping in the
low-damping limit.
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APPENDIX: ANALYSIS OF THE MAGNETIC STRUCTURE
OF THE DOMAIN WALLS

The profiles of the local magnetization angle ϕ for the DWs
presented in Fig. 4 at zero relative time, together with their
time evolution, are plotted in Fig. 9 for selected field values.
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FIG. 9. Time evolution of the profiles of the local magnetization angle ϕ for the DWs presented in Fig. 4. The applied fields are (a) Bz =
100, (b) 200, (c) 300, and (d) 500 mT. The relative times (ps) are indicated, and the profiles are successively offset by (multiples of) 2π for
clarity. The dashed horizontal lines indicate the dynamically favored chiral Bloch wall orientations. Profiles are colored to highlight changes
or help differentiate them. The origin of the curvilinear abscissa (s) is at the bottom of the images.

The local DW magnetization angles are counted relative to
the DW tangent direction (globally along +y as the DW is
followed from bottom to top) in the trigonometric sense so
that ϕ = π/2 is the left-handed Néel wall and ϕ = π is the
right-handed Bloch wall. One notices that for all profiles ϕ

globally decreases with increasing curvilinear abscissa s. Tak-
ing into account that, in the presence of DMI, the DW magne-
tization precession starts at a given edge of the strip [26] (here
the bottom edge; see the image at 80 mT in Fig. 4) and that
the applied field is positive, this can be rationalized.

In Fig. 9(a), corresponding to Bz = 100 mT, the progres-
sive precession of DW magnetization is shown: a precession
from �0.3π to �1.5π takes place at s ≈ 150 nm, and a
precession from �1π to 2π is observed at s ≈ 600 nm. In

the latter case, the two 2π VBLs that have formed disappear
(at a 1-ps interval) between the last two profiles. The last
curve shows a signature of the spin-wave wake emitted after
the 2π VBLs destruction. This corresponds to the main mode
observed. More rarely, especially just above the Walker field,
the conversion of one VBL of the pair into another one, with
thus opposite winding and core magnetization, is seen. These
two lines, having opposite winding senses, merge back into a
2π VBL, which eventually disappears, as shown above. Such
a process is observed at s ≈ 800 nm.

Figure 9(b), corresponding to Bz = 200 mT, shows that
the 2π VBL destruction is extremely fast. In fact, the pro-
cess is instantaneous as the annihilation of the topologically
stable 2π VBL involves a Bloch point crossing the sample
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thickness [15,39]. As the sample is described by one layer
of cells, this Bloch point is numerically virtual (there is no
interval between layers of mesh points where it could sit).
One 2π VBL disappears between times 30 and 31 ps, at
s ≈ 1250 nm, and another one disappears between times 31
and 32 ps, at s ≈ 750 nm. The propagation of the spin-wave
wake is also observed on the ϕ(s) profiles.

For a larger field Bz = 300 mT [Fig. 9(c)], still within the
velocity plateau, the same processes are seen. The VBLs are,
however, less visible as the overall slope of ϕ(s) has increased.

Finally, for Bz = 500 mT [Fig. 9(d)], beyond the velocity
plateau, the dominant time evolution is the global precession
of the DW magnetization, but 2π VBL destructions occur
from time to time. We thus have a global picture of the
time evolution of the angles ϕ: they increase with time in a
nonuniform way by the formation of unwinding VBL pairs,
with the continued precession transforming these pairs into
2 × 2π “pairs of pairs.” Each 2π VBL can disappear through
the passage of a Bloch point, releasing its energy by spin-wave
emission.
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Sanchez, M. Bonfim, D. S. Chaves, F. Choueikani, P. Ohresser,
E. Otero, A. Thiaville, and S. Pizzini, Europhys. Lett. 113,
67001 (2016).

[25] F. Ajejas, V. Krizakova, D. de Souza Chaves, J. Vogel, P. Perna,
R. Guerrero, A. Gudin, J. Camaraero, and S. Pizzini, Appl.
Phys. Lett. 111, 202402 (2017).

[26] K. Yamada and Y. Nakatani, Appl. Phys. Express 8, 093004
(2015).

[27] D. de Souza Chaves, Ph.D. thesis, Université Grenoble Alpes,
2018.

[28] A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-
Sanchez, and B. Van Waeyenberge, AIP Adv. 4, 107133 (2014).

[29] O. Boulle, S. Rohart, L. D. Buda-Prejbeanu, É. Jué, I. M. Miron,
S. Pizzini, J. Vogel, G. Gaudin, and A. Thiaville, Phys. Rev.
Lett. 111, 217203 (2013).

[30] To define a winding sense, the DW needs to be oriented. For
the magnetic bubbles, there is a natural way to do it [15] as the
bubble has an interior.

[31] R. Cheng, M. Li, A. Sapkota, A. Rai, A. Pokhrel, T. Mewes, C.
Mewes, D. Xiao, M. De Graef, and V. Sokalski, Phys. Rev. B
99, 184412 (2019).

[32] A. Hubert and R. Schäfer, Magnetic Domains (Springer, Berlin,
1998).

[33] A. Hubert, in Magnetism and Magnetic Materials 1973: Nine-
teenth Annual Conference, AIP Conf. Proc. No. 18 (AIP, New
York, 1974), p. 178.

[34] Y. Nakatani and N. Hayashi, IEEE Trans. Magn. 23, 2179
(1987).

[35] J. C. Slonczewski, J. Appl. Phys. 44, 1759 (1973).
[36] J. C. Slonczewski, J. Appl. Phys. 45, 2705 (1974).
[37] S. Lemerle, J. Ferré, C. Chappert, V. Mathet, T. Giamarchi, and

P. Le Doussal, Phys. Rev. Lett. 80, 849 (1998).
[38] A. Thiaville, Y. Nakatani, F. Piéchon, J. Miltat, and T. Ono, Eur.

Phys. J. B 60, 15 (2007).
[39] A. Thiaville and J. Miltat, in Topology in Magnetism, edited by

J. Zang, V. Cros, and A. Hoffmann, Springer Series in Solid-
State Sciences Vol. 192 (Springer, Cham, 2018), pp. 41–73.

[40] J. F. Dillon, Jr., in Magnetism, edited by G. Rado and H. Suhl
(Academic, New York, 1963), Vol. 3, pp. 415–464.

214404-9

https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1103/PhysRev.120.91
https://doi.org/10.1038/nphys2045
https://doi.org/10.1038/nphys2045
https://doi.org/10.1038/nphys2045
https://doi.org/10.1038/nphys2045
https://doi.org/10.1038/ncomms3671
https://doi.org/10.1038/ncomms3671
https://doi.org/10.1038/ncomms3671
https://doi.org/10.1038/ncomms3671
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1038/nnano.2013.29
https://doi.org/10.1209/0295-5075/100/57002
https://doi.org/10.1209/0295-5075/100/57002
https://doi.org/10.1209/0295-5075/100/57002
https://doi.org/10.1209/0295-5075/100/57002
https://doi.org/10.1063/1.3062855
https://doi.org/10.1063/1.3062855
https://doi.org/10.1063/1.3062855
https://doi.org/10.1063/1.3062855
https://doi.org/10.1038/nmat3020
https://doi.org/10.1038/nmat3020
https://doi.org/10.1038/nmat3020
https://doi.org/10.1038/nmat3020
https://doi.org/10.1038/nnano.2013.102
https://doi.org/10.1038/nnano.2013.102
https://doi.org/10.1038/nnano.2013.102
https://doi.org/10.1038/nnano.2013.102
https://doi.org/10.1038/nmat3675
https://doi.org/10.1038/nmat3675
https://doi.org/10.1038/nmat3675
https://doi.org/10.1038/nmat3675
https://doi.org/10.1126/science.1145799
https://doi.org/10.1126/science.1145799
https://doi.org/10.1126/science.1145799
https://doi.org/10.1126/science.1145799
https://doi.org/10.1063/1.1663252
https://doi.org/10.1063/1.1663252
https://doi.org/10.1063/1.1663252
https://doi.org/10.1063/1.1663252
https://doi.org/10.1109/TMAG.1978.1060004
https://doi.org/10.1109/TMAG.1978.1060004
https://doi.org/10.1109/TMAG.1978.1060004
https://doi.org/10.1109/TMAG.1978.1060004
https://doi.org/10.1103/PhysRevB.78.161303
https://doi.org/10.1103/PhysRevB.78.161303
https://doi.org/10.1103/PhysRevB.78.161303
https://doi.org/10.1103/PhysRevB.78.161303
https://doi.org/10.1103/PhysRevB.88.014428
https://doi.org/10.1103/PhysRevB.88.014428
https://doi.org/10.1103/PhysRevB.88.014428
https://doi.org/10.1103/PhysRevB.88.014428
https://doi.org/10.1038/nphys3535
https://doi.org/10.1038/nphys3535
https://doi.org/10.1038/nphys3535
https://doi.org/10.1038/nphys3535
https://doi.org/10.1209/0295-5075/113/67001
https://doi.org/10.1209/0295-5075/113/67001
https://doi.org/10.1209/0295-5075/113/67001
https://doi.org/10.1209/0295-5075/113/67001
https://doi.org/10.1063/1.5005798
https://doi.org/10.1063/1.5005798
https://doi.org/10.1063/1.5005798
https://doi.org/10.1063/1.5005798
https://doi.org/10.7567/APEX.8.093004
https://doi.org/10.7567/APEX.8.093004
https://doi.org/10.7567/APEX.8.093004
https://doi.org/10.7567/APEX.8.093004
https://doi.org/10.1063/1.4899186
https://doi.org/10.1063/1.4899186
https://doi.org/10.1063/1.4899186
https://doi.org/10.1063/1.4899186
https://doi.org/10.1103/PhysRevLett.111.217203
https://doi.org/10.1103/PhysRevLett.111.217203
https://doi.org/10.1103/PhysRevLett.111.217203
https://doi.org/10.1103/PhysRevLett.111.217203
https://doi.org/10.1103/PhysRevB.99.184412
https://doi.org/10.1103/PhysRevB.99.184412
https://doi.org/10.1103/PhysRevB.99.184412
https://doi.org/10.1103/PhysRevB.99.184412
https://doi.org/10.1109/TMAG.1987.1065751
https://doi.org/10.1109/TMAG.1987.1065751
https://doi.org/10.1109/TMAG.1987.1065751
https://doi.org/10.1109/TMAG.1987.1065751
https://doi.org/10.1063/1.1662444
https://doi.org/10.1063/1.1662444
https://doi.org/10.1063/1.1662444
https://doi.org/10.1063/1.1662444
https://doi.org/10.1063/1.1663654
https://doi.org/10.1063/1.1663654
https://doi.org/10.1063/1.1663654
https://doi.org/10.1063/1.1663654
https://doi.org/10.1103/PhysRevLett.80.849
https://doi.org/10.1103/PhysRevLett.80.849
https://doi.org/10.1103/PhysRevLett.80.849
https://doi.org/10.1103/PhysRevLett.80.849
https://doi.org/10.1140/epjb/e2007-00320-3
https://doi.org/10.1140/epjb/e2007-00320-3
https://doi.org/10.1140/epjb/e2007-00320-3
https://doi.org/10.1140/epjb/e2007-00320-3

