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Spectral incoherent solitons (SIS) refer to an incoherent solitonic structure that can only be identified in the
frequency domain and which is sustained by noninstantaneous Raman-like nonlinearities. We provide a general-
ized formulation of SISs by considering the generalized nonlinear Schrödinger equation. We show that nonlinear
dispersive effects (e.g., self-steepening) dramatically affect the structure of SISs, in particular by significantly
decelerating their spectral velocity in frequency space. The wave turbulence description of the problem
reveals an underlying self-organization process: The soliton trajectory in frequency space is selected in such
a way that it allows the system to self-organize into a stationary SIS state. c© 2014 Optical Society of America
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The propagation of partially coherent nonlinear op-
tical waves is a topic of growing interest in different
fields of investigations, such as, e.g., wave propagation
in homogeneous [1–4] or periodic media [5], waveguides
[6], cavity systems [7–11], supercontinuum generation
(SC) [12–14], shock waves [15], or nonlinear interferom-
etry [16]. In analogy with kinetic gas theory, an incoher-
ent wave is expected to exhibit a nonequilibrium pro-
cess of thermalization toward thermodynamic equilib-
rium [17]. Besides wave thermalization, a partially co-
herent wave can self-organize into incoherent solitons
(IS), which thus constitute genuine nonequilibrium sta-
ble states of the random field. Originally observed in pho-
torefractive crystals [18], ISs have become a bloomy area
of research, as illustrated by important achievements,
such as, e.g., the modulational instability of incoherent
waves [19, 20], the existence of ISs with spatial or tem-
poral nonlocal nonlinearities [21–23].
An IS of a fundamentally different nature has been

identified by exploiting the noninstantaneous property of
the nonlinear Raman response in optical fibers [25–27].
The incoherent wave associated to this soliton exhibits
fluctuations that are statistically stationary in time, so
that it does not exhibit a confinement in the temporal
domain, but exclusively in the frequency domain. For
this reason, it has been termed ‘spectral incoherent soli-
ton’ (SIS). Some experimental signatures of the genera-
tion of SISs have been obtained through the study of SC
generation in photonic crystal fibers [27, 28].
Our aim in this Letter is to report a nontrivial gen-

eralization of SIS structures. We consider the 1D gen-
eralized nonlinear Schrödinger equation (GNLSE) which
accounts, in particular, for the self-steepening (or shock)
term, and a frequency dependence of the nonlinear Kerr
coefficient [29–31]. Nonlinear dispersive effects are shown
to dramatically affect the dynamics of the incoherent
wave. Starting from the GNLSE, we derive a generalized
kinetic equation (GKE) which does not admit incoher-

ent soliton solutions: When considered as initial condi-
tion, the standard SIS exhibits a significant deceleration
in frequency space as well as a significant reduction of
its power. However, the underlying soliton structure is
unveiled by a change of variables, which reveals an un-
expected process of self-organization: The specific form
of the soliton trajectory in frequency space is selected
in such a way that it allows the system to self-organize
into a stationary SIS state. In this way, the spectral de-
celeration of SIS is obtained in explicit analytical form
and in quantitative agreement with the simulations of
GNLSE, without adjustable parameters. Besides its fun-
damental interest, this generalized formulation of SISs
can shed new light on the spectral dynamics of SC gen-
eration [27,28].
The starting point is the GNLSE which is usually writ-

ten in the frequency domain [29–31]

∂zψ̃ω(z) = ik(ω)ψ̃ω − αψ̃ω(z) + iΓ(ω)F{ψR ∗ |ψ|2} (1)

where F is the Fourier operator [ψ̃ω(z) = F{ψ(z, t)} =∫
ψ(z, t) exp(iωt) dt], while ∗ denotes the temporal con-

volution product between the intensity |ψ|2(z, t) and the
response function, which includes both the instantaneous
(Kerr) contribution and the noninstantaneous (Raman)
contribution, R(t) = (1 − fR)δ(t) + fRhR(t), where

hR(t) = H(t) 1+η2

ητR
sin(ηt/τR) exp(−t/τR), H(t) being

the Heaviside function [τR = 32fs, η = τR/τ1, fR � 0.18].
The Taylor expansion of the dispersion relation reads
k(ω) =

∑
j≥2 βjω

j/j!, βj being the j−th dispersion
coefficient. The function Γ(ω) = (1 + ω/ω0)γ(ω0 + ω)
accounts for the self-steepening effect (1st factor), as
well as the frequency dependence of the nonlinear co-
efficient that arises from the frequency variation of the
effective area and corresponding effective index (2nd fac-
tor), ω0 being the carrier frequency of the wave. The
parameter α accounts for the losses during propaga-
tion. If α = 0, Eq.(1) conserves the ‘number of pho-
tons’, N =

∫ |ψ̃(ω, z)|2/Γ(ω) dω. Note that by setting
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Even if more sophisticated and accurate models have been developed for strong frequency dependence of effective area  [30,31], the phenomenon we are interested in is dominated by the leading self-steepening term, so we keep using the traditional and simplest form of GNLSE (1).



Γ(ω) = γ0 where γ0 = γ(ω0), Eq.(1) recovers the con-
ventional NLS equation.
It is important to recall that the typical spectral width

of SISs is of the same order than the Raman gain spec-
tral bandwidth (∼ 13THz). To study SISs we thus need
to avoid spectral broadening effects due to SC-like phe-
nomena. In the following we thus consider the spectral
dynamics of SISs far from a zero-dispersion frequency.
Note that, as revealed by the theory [Eq.(2)], linear dis-
persive effects do not play any role in the dynamics of
SISs, as previously discussed in several works [24,26,27].
This also reveals that, in spite of their apparent simi-
larities, the phenomenon of spectral deceleration of SISs
discussed here is of a fundamental different nature than
that discussed in the framework of Raman-induced self-
frequency shift of optical solitons [28, 31, 32], which are
inherently temporally localized coherent entities.
We report in Fig. 1 (left column) the evolution of the

spectrum of the incoherent wave obtained by integrating
numerically the GNLSE (1). As usual, the initial condi-
tion is a partially coherent wave with Gaussian spectrum
and random spectral phases, superimposed on a white
noise spectral background [24, 27]. Neglecting nonlinear
dispersive effects, i.e., Γ(ω) = γ0, the initial incoherent
wave evolves into a conventional SIS, which propagates
with a constant spectral velocity V0, and thus virtually
crosses the zero-frequency component of the optical field,
i.e., ω = −ω0 (see Fig. 1a-d). Self-steepening and nonlin-
ear dispersion regularize this ‘unphysical’ negative fre-
quency propagation [33] through a significant spectral
deceleration of the SIS, as well as a significant reduc-
tion of its power N =

∫ |ψ̃ω|2dω (Fig. 1). Note that the
frequency reached by the SIS ω ∼ −180τ−1

0 can corre-
spond to a physical wavelength λ ∼ 3μm (for a source at
λ0 ∼ 1.06μm), where GNLSE (1) can still be considered
as an accurate model. Also note that propagation losses
have been neglected, so as to highlight the fact that the
decrease of power is solely due to nonlinear dispersion
effects. In this example we considered a linear frequency
variation γ(ω0+ω) = γ0(1+qω), with q = γ−1

0 ∂ωγ(ω)|ω0
.

To describe these novel properties of SISs, we resort to
a statistical description of the random wave based on the
wave turbulence theory [1, 24]. Since we are looking for
a soliton behavior, we neglect losses, α = 0 in Eq.(1). In
the weakly nonlinear regime, we obtain a closure of the
hierarchy of moments equations from Eq.(1), in which

the averaged spectrum of the wave
〈
ψ̃ω+Ω/2ψ̃

∗
ω−Ω/2

〉
=

nω(z) δ(Ω) is governed by the following GKE (details on
derivation will be given elsewhere):

∂znω =
nω
π

∫
G(ω, ω′)nω′ dω′, (2)

where G(ω, ω′) = Γ(ω)g(ω − ω′), and g(ω) = �[R̃(ω)] is
the imaginary part of the Fourier transform of R(t). Note
that GKE (2) accounts for nonlinear dispersion effects,
but not for linear dispersion effects (although linear dis-
persion is known to be essential for the establishment of a

−300 −200 −100 0 100
0

0.2

0.4

0.6

ω [τ
0
−1]

|ψ
|2

~

(e)

Z=200

−300 −200 −100 0 100
0

0.2

0.4

0.6

ω [τ
0
−1]

|ψ
|2

~

(f)
Z=600

Fig. 1. Numerical simulations of the GNLSE (1) (left
column (a)-(c)) and GKE (2) (right column (b)-(d)),
for p = q = 0 (Γ(ω) = γ0) (1st row, (a)-(b)), and
for p = ω−1

0 , q = 0.1ω−1
0 (2nd row, (c)-(d)). (e)-(f)

Corresponding spectral profiles obtained by simulations
of GNLSE (1) (gray line), and GKE (2) (red line), at
z = 200Lnl and z = 600Lnl. The vertical dashed-
line denotes the physical zero frequency component, i.e.,
ω = −ω0. [ω0/(2π) = 282THz (λ0 = 1.06μm), η = 2.6,
τ0 =

√
β2Lnl/2, Lnl = 1/(γ0P ), where P is the average

intensity of the incoherent wave.]

weakly nonlinear regime, which in turn leads to a closure
of the moments hierarchy [1]). Simulations of GKE (2)
are in quantitative agreement with GNLSE without ad-
justable parameters, as remarkably illustrated in Fig. 1.

Because of nonlinear dispersive effects, Γ(ω) �= γ0, the
integral in Eq.(2) does not reduce to a convolution. For
this reason, the GKE no longer conserves the power N =∫
nωdω, and thus does not admit soliton solutions [34].

However, to unveil the underlying soliton dynamics, let
us consider the variable change ñω(z) = nω(z)/Γ(ω), so
that GKE (2) can be recast into the symmetric form

∂zñω =
1

π

∫
ñωΓ(ω)g(ω − ω′)Γ(ω′)ñω′ dω′. (3)

This modified GKE (MGKE) conserves the power Ñ =∫
ñωdω and can thus exhibit soliton solutions. However,

as revealed by the simulations in Fig. 1, such soliton
solutions are not conventional, in the sense that they
do not propagate with a constant velocity in frequency
space. We thus look for a stationary soliton solution
in a ‘non-inertial’ reference frame in frequency space,
i.e., a reference frame travelling with a non-stationary
(z−dependent) spectral velocity V (z) = ∂zΩ

s(z): Ω =

2



ω − Ωs(z). The analysis will reveal that the soliton tra-
jectory, Ωs(z), is selected in such a way that it allows
the system to self-organize into a stationary SIS state.
In the non-inertial reference frame, the MGKE (3) reads

∂zñΩ − ∂zΩ
s(z) ∂ΩñΩ =

ñΩ
π

∫
g(Ω− Ω′) ñΩ′

×Γ[Ω + Ωs(z)] Γ[Ω′ +Ωs(z)] dΩ′, (4)

where Ω′ = ω′ − Ωs(z). In general, one cannot decouple
Eq.(4) into two independent equations for ñΩ(z), and
for the soliton trajectory Ωs(z). However, the SIS pro-
file and g(ω) vary on a frequency scale much smaller
than Γ(ω). We thus introduce the multi-scale expansion
ñΩ(z) = ε−1mΩ/ε(z), g(ω) = ε−1g̃(ω/ε), and look for a
solution of Eq.(4) in the form, mΩ̄(z) = ms

Ω̄
+ εδmΩ̄(z),

where ms
Ω̄

is the stationary soliton profile in the non-
inertial reference frame and δmΩ̄(z) a residual radiation
(Ω̄ = Ω/ε). To first order in ε, Eq.(4) then decouples
into two independent equations for the soliton profile,
ñsΩ = ε−1ms

Ω/ε, and the soliton trajectory:

∂zΩ
s(z) = −V0Γ2

(
Ωs(z)

)
/γ20 , (5)

V0∂Ωñ
s
Ω =

γ20
π
ñsΩ

∫
g(Ω− Ω′) ñsΩ′ dΩ′. (6)

Here, by introducing V0(> 0), we have recast Eq.(6) into
the usual stationary equation for a conventional SIS with
Γ(ω) = γ0 that propagates with the constant velocity V0.
This reveals a remarkable result: Within the new variable
ñω = nω/Γ(ω), the SIS spectral profile is almost identi-
cal to the conventional SIS spectral profile for Γ(ω) = γ0,
while the corresponding soliton trajectory, Ωs(z), satis-
fies the differential Eq.(5). Note that the multi-scale ex-
pansion also readily gives the power decay

N(z) = Ñ Γ
[
Ωs(z)

]
, (7)

where Ñ =
∫
ñsωdω is the conserved power of MGKE

(3) and Ωs(z) is obtained in explicit form in Eq.(8). The
power decay (7) is found in quantitative agreement with
simulations, as illustrated in Fig. 2b.

The soliton trajectory can be obtained analytically un-
der the assumption of a linear frequency dependence,
γ(ω0 + ω) = γ0(1 + qω). In this case (5) takes the form
∫ −Ωs

0
(1− qu)−2(1− pu)−2 du = V0z, with p = 1/ω0 and

Ωs(z = 0) = 0. The solution can be written as a function
of z vs Ωs:

z(Ωs) =
1

V0(q − p)3

[

2pq log

(
1 + qΩs

1 + pΩs

)

−Qqp(Ω
s)

]

(8)

where Qqp(Ω
s) = (q − p)[qp(q + p)Ωs + q2 + p2]Ωs/[(1 +

qΩs)(1 + pΩs)]. Note that, by neglecting nonlinear dis-
persive effects, i.e., Γ(ω) = γ0 (i.e., p = q = 0), Eq.(8)
reduces to the linear trajectory, Ωs(z) = −V0z, inherent
to conventional SISs [24, 25, 27]. Conversely, whenever
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Fig. 2. Soliton trajectory Ωs vs z plotted from Eq.(8), in
which V0 is given by Eq.(10): q = p = 0, Ωs(z) = −V0z
(green); q = 0, p = ω−1

0 (red); q = 0.2p, p = ω−1
0 (dark);

q = −0.2p, p = ω−1
0 (blue). The corresponding crosses

on the curves refer to the simulations of MGKE (3): a
quantitative agreement is obtained without adjustable
parameters. The inset (a) compare the simulations of the
MGKE (3) (green), GNLSE (1) (gray), with the analyt-
ical SIS solution Eq.(9-10), in log10−scale. The superpo-
sition of 5 spectral profiles at z = 200, 400, 600, 800, 1000
(in units of Lnl) has been plotted to stress the station-
ary character of the SIS solution obtained by simula-
tion of MGKE (3). The inset (b) shows the power de-
crease, N =

∫ |ψω|2dω vs z, in the GNLSE (1) (red),
and the theoretical prediction in Eq.(7) (dashed blue).
[ω0/(2π) = 282THz, η = 1].

Γ(ω) �= γ0, Ω
s(z) asymptotically reaches −ω0 for large

propagation lengths z (see Fig. 2), which regularizes the
unphysical negative frequency propagation predicted by
the linear trajectory, Ωs(z) = −V0z.

An analytical expression of SIS solution with velocity
V0 was obtained in Ref. [25] through a generalization of
the particular solution originally derived in [35] in the
limit n0/nm � 1, where nm and n0 respectively denote
the soliton peak and the level of the background noise.
Note that, so far this SIS solution has not been compared
with numerical simulations. The solution reads

ñsΩ = n0 exp

[

log

(
nm
n0

)
H(Ω)

giωi

]

, (9)

where gi = [|∂ωg(0)|H(0)]
1/2

denotes the typical amount

of gain of g(ω), ωi = [|∂ωg(0)|H(0)]
1/2

its typical spec-
tral bandwidth, and H(Ω) = − ∫∞

Ω
g(ω)dω. The SIS

propagates with the constant velocity

V0 =
γ20
π

∫
(ñsΩ − n0)dΩ∫
log(ñsΩ/n0)dΩ

∫
H(Ω)dΩ. (10)

We have compared the expression of the soliton tra-
jectory (8) as well as the corresponding SIS solution (9-
10) with the results of the numerical simulations of the

3



Fig. 3. Transition to a discrete behavior of general-
ized SISs in the presence of a small noise background,
n0/n

0
m = 10−7, n0m being the initial spectral peak am-

plitude: Simulations of the GNLSE (1) (a), and GKE (2)
(b) [ω0/(2π) = 282THz, η = 2.6, p = ω−1

0 , q = 0.1ω−1
0 ].

MGKE (3) and NLS Eq.(1). A quantitative agreement
has been obtained without adjustable parameters, as re-
markably illustrated in Fig. 2. In the limit of a small SIS
spectral shift, the trajectory recovers the straight line,
Ωs(z) = −V0z of conventional SISs, where V0 is given by
(10). In the limit q = 0 (Γ(ω) = 1 + pω), the SIS trajec-
tory takes the simple form Ωs(z) = −V0z/(1 + V0z/ω0)
(red line in Fig. 2). A positive (negative) value of q then
decelerates (accelerates) the spectral shift of the SIS (see
dark and blue lines in Fig. 2). Finally, the plot of the ana-
lytical SIS solution (9-10) has been found in quantitative
agreement with simulations of MGKE (3) and GNLSE
(1), as illustrated in Fig. 2a.

We have provided a generalized wave turbulence for-
mulation of incoherent optical waves and SISs accounting
for nonlinear dispersive effects. Note that, as the spectral
noise background decreases, the generalized SIS exhibits
a transition to a discrete behavior (see Fig. 3), in a way
similar to conventional SISs [26], a feature that will be
the subject of future investigations.
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