

Crystal structure of dicarbonyl[μ 2 -methylenebis(diphenylphosphane)- κ 2 P: P '][μ 2 -2-(2,4,5-trimethylphenyl)-3-oxoprop-1-ene-1,3diyl](triphenylphosphane- κ P)ironplatinum(Fe - Pt)-dichloromethane-toluene (1/1/2), [(OC) 2 Fe(μ -dppm)(μ -C(=O)C(2,4,5-C 6 H 2 Me 3)=CH)Pt(PPh 3)]

Lukas Brieger, Isabelle Jourdain, Michael Knorr, Carsten Strohmann

▶ To cite this version:

Lukas Brieger, Isabelle Jourdain, Michael Knorr, Carsten Strohmann. Crystal structure of dicarbonyl[μ 2 -methylenebis(diphenylphosphane)- κ 2 P: P '][μ 2 -2-(2,4,5-trimethylphenyl)-3-oxoprop-1-ene-1,3-diyl](triphenylphosphane- κ P)ironplatinum(Fe - Pt)-dichloromethane-toluene (1/1/2), [(OC) 2 Fe(μ -dppm)(μ -C(=O)C(2,4,5-C 6 H 2 Me 3)=CH)Pt(PPh 3)]. Acta crystallographica Section E: Crystallographic communications [2015-..], 2019, 75 (12), pp.1902-1906. 10.1107/S2056989019015573. hal-02393655

HAL Id: hal-02393655 https://hal.science/hal-02393655v1

Submitted on 29 May 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

CRYSTALLOGRAPHIC COMMUNICATIONS

Received 12 November 2019 Accepted 18 November 2019

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; terminal alkyne; iron; platinum; heterobimetallic; metal–metal bond dimetallacyclopentenone; bis(diphenylphosphino)methane; hydrogen bonding; C— $H \cdots \pi$ interactions.

CCDC reference: 1964051

Supporting information: this article has supporting information at journals.iucr.org/e

Crystal structure of dicarbonyl[μ_2 -methylenebis-(diphenylphosphane)- $\kappa^2 P:P'$][μ_2 -2-(2,4,5-trimethylphenyl)-3-oxoprop-1-ene-1,3-diyl](triphenylphosphane- κP)ironplatinum(Fe—Pt)-dichloromethane-toluene (1/1/2), [(OC)₂Fe(μ -dppm)(μ -C(=O)C(2,4,5-C₆H₂Me₃)=CH)Pt(PPh₃)]

Lukas Brieger,^a Isabelle Jourdain,^b Michael Knorr^{b*} and Carsten Strohmann^{a*}

^aTechnical University Dortmund, Chemistry and Chemical Biology, Inorganic Chemistry, Otto-Hahn Str. 6, 44227 Dortmund, Germany, and ^bInstitut UTINAM UMR 6213 CNRS, Université Bourgogne Franche-Comté, 16, Route de Gray, 25030 Besançon Cedex, France. *Correspondence e-mail: michael.knorr@univ-fcomte.fr, carsten.strohmann@tu-dortmund.de

The title compound, [FePt(C₁₂H₁₂O)(C₁₈H₁₅P)(C₂₅H₂₂P₂)(CO)₂]·2C₇H₈·CH₂Cl₂ or [(OC)₂Fe(μ -dppm)(μ -C(=O)C(2,4,5-C₆H₂Me₃)=CH)Pt(PPh₃)], represents an example of a diphosphane-bridged heterobimetallic dimetallacyclopentenone complex resulting from a bimetallic activation of 1-ethynyl-2,4,5-trimethylbenzene and a metal-coordinated carbonyl ligand. The bridging μ_2 -C(=O)C(2,4,5-C₆H₂Me₃)=CH unit (stemming from a carbon–carbon coupling reaction between CO and the terminal alkyne) forms a five-membered dimetallacyclopentenone ring, in which the C=C bond is π -coordinated to the Fe centre. The latter is connected to the Pt centre through a short metal–metal bond of 2.5770 (5) Å. In the crystal, the complex is solvated by one dichloromethane and two toluene molecules.

1. Chemical context

The coordination and transformation of alkynes on homobimetallic transition-metal complexes, in which the two metal centres are in close contact *via* a metal–metal bond, has been investigated intensively (Liddle, 2015). For example, during the course of a Pauson–Khand reaction, an acetylenic triple bond is added across $[Co_2(CO)_8)]$, yielding a dimetallatetrahedrane $[Co_2(CO)_6(\mu-C_2RR')]$ (Bennett *et al.*, 1992; Clément *et al.*, 2007).

The activation of alkynes by heterodinuclear transitionmetal complexes $L_n M - M' L_n$ has also stimulated much interest because of possible synergic effects exerted by the close proximity of metal centres (with different coordination spheres, oxidation states, ...; Stephan, 1989; Ritleng & Chetcuti, 2007; Cooper et al., 2012). Among the different heterobimetallic combinations, the investigation of the group 8-10 Fe-Pt couple has been pioneered by Fontaine et al. (1988), who has shown that, upon treatment of the μ -carbonyl complex $[(OC)_3Fe(\mu-dppm)(\mu-CO)Pt(PPh_3)]$ (dppm = bis-(diphenylphosphino)methane) with $ArC \equiv CH$ (Ar = Ph, p-Tol), dimetallacyclopentone complexes are formed, stemming from a carbon-carbon coupling reaction between CO and the alkyne. The first step involves formation of a kinetic isomer $[(OC)_2Fe(\mu-dppm)\{\mu-C(=O)C(H)=C(Ar)\}Pt(PPh_3)],$ which then evolves to the thermodynamic one $[(OC)_2Fe(\mu-dppm)-$

Reaction scheme for the synthesis of the title compound.

{ μ -C(=O)C(Ar)=C(H)}Pt(PPh₃)]. Other strategies leading to structurally characterized dimetallacyclopentones have been reported by Yamazaki *et al.* (2005, 2006), implying the reaction of Fe(CO)₅ with the π -alkyne-Pt⁰ complex Pt(η^2 -PhC=CC=CPh)(PPh₃)₂ or the bis-acetylide-Pt^{II} compound Pt(C=CTp)₂(dppe) (Tp = 3-thiophene, dppe = 1,2-bis(diphenylphosphino)ethane), and leading to [(OC)₃Fe{ μ -C(=O)C(Ph)=C(C=C-Ph)}Pt(PPh₃)₂] and [(OC)₂Fe(μ -CO){ μ -C(=O)C(Tp)=C(C=C-Tp)}Pt(dppe)], respectively.

Our investigations on the reactivity of bimetallic silvlsubstituted hydride complexes, $[(OC)_3Fe{Si(OMe)_3}(\mu PPh_2XPPh_2)Pt(H)(PPh_3)$] (X = CH₂, NH), toward a huge panel of terminal aliphatic and aromatic alkynes led to σ -alkenyl complexes [(OC)₃Fe{ μ -Si(OMe)₂(OMe)}(μ -PPh₂XPPh₂)Pt(RC=CH₂)], resulting from initial insertion into the Pt-H bond. The latter can then, depending on the function of the R substituent, convert to dimetallacyclopentones or to isomeric μ -vinylidene complexes [(OC)₃Fe(μ - PPh_2XPPh_2 { μ -C=C(R)H}Pt(PPh_3)] (Jourdain *et al.*, 2006). A third type of complex crystallographically characterized by our group is the dimetallacyclobutene $[(OC)_3Fe(\mu-dppm)]$ $C(o-CF_3-C_6H_4)C=C(H)$ Pt(PPh₃)]. This latter compound was obtained by treatment of $[(OC)_3Fe{Si(OMe)_3}(\mu-dppm) Pt(H)(PPh_3)$] or $[(OC)_3Fe(\mu-dppm)(\mu-CO)Pt(PPh_3)]$ with o-CF₃-C₆H₄C=CH, bearing a sterically crowded -CF₃ substituent at the ortho-position of the aryl group (Jourdain et al., 2013). To probe whether other sterically crowded alkynes may lead to the formation of dimetallacyclobutenes or rather dimetallacyclopentones, we also reacted $[(OC)_3Fe(\mu-dppm) (\mu$ -CO)Pt(PPh₃)] with 1-ethynyl-2,4,5-trimethylbenzene bearing three methyl groups on the aromatic cycle; see Fig. 1.

2. Structural commentary

The molecular structure of the title heterobimetallic complex is depicted in Fig. 2. It crystallized from CH_2Cl_2 /toluene in the

 Table 1

 Selected geometric parameters (Å, °).

0	1 ())		
Pt1-Fe1	2.5770 (5)	Fe1-C2	2.109 (4)
Pt1-P2	2.2700 (9)	Fe1-C12	1.929 (4)
Pt1-P3	2.2529 (9)	Fe1-C13	1.749 (4)
Pt1-C1	2.023 (3)	Fe1-C14	1.781 (4)
Fe1-P1	2.1857 (11)	O1-C12	1.207 (4)
Fe1-C1	2.107 (3)	C1-C2	1.386 (4)
P2-Pt1-Fe1	102.03 (3)	C1-Fe1-C2	38.38 (12)
P3-Pt1-Fe1	152.88 (3)	C13-Fe1-P1	95.17 (13)
C1-Pt1-Fe1	52.87 (10)	C14-Fe1-P1	104.63 (12)
P3-Pt1-P2	105.07 (3)	C12-Fe1-P1	94.69 (11)
C1-Pt1-P2	152.26 (10)	C1-Fe1-P1	137.46 (10)
C1-Pt1-P3	100.38 (10)	C2-Fe1-P1	135.94 (10)
Pt1-C1-Fe1	77.18 (12)	C13-Fe1-Pt1	170.69 (12)
C13-Fe1-C14	96.51 (17)	C14-Fe1-Pt1	91.16 (13)
C13-Fe1-C12	96.59 (16)	C12-Fe1-Pt1	74.38 (10)
C14-Fe1-C12	155.50 (17)	C1-Fe1-Pt1	49.95 (9)
C13-Fe1-C1	125.43 (16)	C2-Fe1-Pt1	74.35 (9)
C14-Fe1-C1	84.72 (15)	P1-Fe1-Pt1	87.95 (3)
C12-Fe1-C1	70.81 (14)	C2-C1-Pt1	112.5 (3)
C13-Fe1-C2	97.50 (15)	C2-C1-Fe1	70.9 (2)
C14-Fe1-C2	115.51 (16)	P1-C45-P2	108.83 (17)
C12-Fe1-C2	42.03 (13)		

monoclinic crystal system, space group $P2_1/n$, together with one molecule of CH_2Cl_2 and two molecules of toluene. Selected bond lengths and bond angles are given in Table 1.

The Fe-Pt bond is bridged by a dppm ligand, forming a five-membered ring that adopts an envelope conformation, with angle P1-C45-P2 = $108.83 (17)^{\circ}$, and the metal-phosphorus bonds Pt-P2 and Fe-P1 being 2.2700 (9) and 2.1857 (11) Å, respectively. These structural features are in line with those of other related structures published by our

Figure 2

The molecular structure of the title complex, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level. For clarity, only H atom H1 has been included, and the solvent molecules have been omitted.

Table 2

Hydrogen-bond geometry (Å, °).

*Cg*3, *Cg*6, *Cg*8, *Cg*9 and *Cg*10 are the centroids of the C21–C26, C39–C44, C52–C57, C59–C64 and C66–C71 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C11−H11A···O1	0.96	2.36	3.193 (4)	145
$C31-H31\cdotsO1^{i}$	0.93	2.55	3.370 (5)	147
$C41 - H41 \cdots O2^{ii}$	0.93	2.49	3.202 (5)	134
C48−H48···O3 ⁱⁱⁱ	0.93	2.46	3.325 (5)	154
$C11 - H11B \cdots Cg9^{iv}$	0.96	2.80	3.719 (4)	160
$C22-H22\cdots Cg6$	0.93	2.80	3.597 (3)	145
$C34 - H34 \cdot \cdot \cdot Cg3$	0.93	2.98	3.519 (4)	118
C38−H38···Cg10	0.93	2.82	3.694 (4)	156
$C60-H60\cdots Cg8$	0.93	2.81	3.543 (5)	137

Symmetry codes: (i) x + 1, y, z; (ii) $-x + \frac{1}{2}, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) x - 1, y, z; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$.

group and the Fe1–Pt1 bond length of 2.5770 (5) Å is in the range, 2.5453 (9) to 2.597 (4) Å, encountered for similar dppm-bridged compounds, *e.g.* $[(OC)_2Fe(\mu-dppm)\{\mu-C(=O)C(CH_2)_2=C(H)\}Pt(PPh_3)]_2$ and $[(OC)_2Fe\{\mu-C(=O)C(H)=C(H)\}(\mu-dppm)Pt(PPh_3)]$ (Mohamed *et al.*, 2019; Fontaine *et al.*, 1988). When the metals are not spanned by a diphosphane ligand, the Fe–Pt bond distance is slightly longer, as in $[(OC)_3Fe\{\mu-C(=O)C(Ph)=C(C=C-Ph)\}-Pt(PPh_3)_2]$ and $[(OC)_2Fe(\mu-CO)\{\mu-C(=O)C(Tp)=C(C=C-Tp)\}Pt(dppe)]$ with Fe–Pt distances of 2.608 (2) and 2.605 (2) Å, respectively (Yamazaki *et al.*, 2005, 2006). Both

metals are also incorporated in a dimetallacyclopentenone unit resulting from a carbon-carbon coupling reaction between CO and the terminal alkyne giving rise to an iron-acyl group [C12-O1 = 1.207 (4) Å]. The geometry at Fe1 can be considered as distorted octahedral resulting from π -coordination of the C1=C2 bond of the five-membered [FeC(=O)CR=C(H)Pt] unit [C1-Fe1 = 2.107 (3) and C2-Fe1 = 2.109(4) Å]. The C1=C2 bond length compares well with that of $[(OC)_2Fe\{\mu-C(=O)C(o,p-C_6H_3-F_2)=C(H)\}(\mu-C(=O)C(o,p-C_6H_3-F_2)=C(H)\}(\mu-C(=O)C(o,p-C_6H_3-F_2)=C(H)\}(\mu-C(=O)C(o,p-C_6H_3-F_2)=C(H))$ dppm)Pt(PPh₃)] [1.386 (4) vs 1.382 (5) Å; Jourdain et al., 2013]. The formation of the thermodynamic isomer, already evidenced by ¹H NMR spectroscopy, is indicated by the attachment of the aromatic C₆H₂Me₃ ring at the C2 atom in the β position relative to platinum. The $C(=O)C(C_6H_2Me_3)=C(H)$ moiety is σ -bonded to the platinum atom [C1-Pt1 = 2.023 (3) Å], which adopts an irregular shape; see Table 1. The τ_4 descriptor for fourcoordination is 0.39 ($\tau_4 = 0$ for a perfect square-planar geometry and = 1 for a perfect tetrahedral geometry; for intermediate structures, including trigonal-pyramidal and seesaw, τ_4 falls within the range 0 to 1; Yang *et al.*, 2007).

3. Supramolecular features

In the crystal, molecules are linked by a number of $C-H\cdots O$ hydrogen bonds, forming layers parallel to the *ab* plane (Fig. 3 and Table 2). There are also a number of intra- and inter-

Figure 3

A partial view along the *c* axis of the crystal packing of the title compound. The $C-H\cdots O$ hydrogen bonds (Table 2) are shown as dashed lines. For clarity, only the H atoms (grey balls) involved in these interactions have been included. Colour code: the two toluene molecules are red and blue and the dichloromethane molecule is green.

molecular C-H··· π interactions present (Table 2). The methyl group involving atom C11 forms an intramolecular C11-H11A···O1 hydrogen bond and an intermolecular C11-H11B··· π interaction (Table 2).

4. Database survey

examples of crystallographically Other characterized dimetallacyclopentenone complexes are $Fe_2Cp_2(CO)(\mu$ -CO { μ -CH=C(Ph)C(=O)} (Boni *et al.*, 2011), Fe₂Cp*₂(CO)- $(\mu$ -CO){ μ -C(C=CH)=CHC(=O)] (Akita *et al.*, 1993), $Fe_2(CO)_5(\mu-dppm)\{\mu-C(=O)CH=CH\}$ (Knox *et al.*, 1995), $Fe_2(CO)_5(\mu$ -dppm){ μ -C(=O)C(Ph)=CH} (Hitchcock *et al.*, 1993). $Fe_2Cp_2(CO)(\mu-CO){\mu-C(COR)=C(Me)C(=O)},$ where R = Ph, Bu (Wong *et al.*, 1991), Fe₂{(η -C₅H₄)₂SiMe₂}- $(CO)_2(\mu$ -CO){ μ -C(Ph)=C(H)C(=O)} (McKee *et al.*, 1994), $\operatorname{Ru}_2(\operatorname{CO})_4(\mu \operatorname{-dppm})_2\{\mu \operatorname{-C}(=O)\operatorname{C}(\operatorname{CO}_2\operatorname{Me})=\operatorname{C}(\operatorname{CO}_2\operatorname{Me})\}$ (Johnson & Gladfelter, 1991), $Ru_2(CO)_4(\mu$ -dppm)₂{ μ -CH=CHC(=O) (Mirza *et al.*, 1994), $Ru_2(\eta$ -C₅HMe₄)₂(CO)- $(\mu$ -CO){ μ -C(=O)C(R)=C(R)}, where R = Et, Me (Horiuchi *et al.*, 2012), Rh₂Cp₂(CO)₄{ μ -C(CF₃)=C(CF₃)C(=O)} (Dickson et al., 1981), Re₂Cp*₂(CO)₂{ μ -CH=C{C(=CH₂)CH₃}-C(=O)} (Casey et al., 1994). A rare example of a heterodinuclear combination is $CpFe{\mu-C(=O)C(CMe_2OH)=CH}$ - $(\mu$ -CO)Ru(CO)Cp* (Dennett *et al.*, 2005).

5. Synthesis and crystallization

 $[(OC)_3Fe(\mu-CO)\mu-Ph_2PCH_2PPh_2)Pt(PPh_3)]$ (110 mg, 0.1 mmol) was treated with an excess of 1-ethynyl-2,4,5-trimethylbenzene (30 mg, 0.2 mmol) in toluene (3 ml). The solution was stirred at 343 K for 2 h. The reaction mixture was filtered, and all volatiles removed under reduced pressure. The red residue was redissolved in a minimum of a dichloromethane/toluene mixture (50:50). Yellow crystals were isolated by layering with heptane (yield 123 mg, 88%).

Elemental analysis calculated for $C_{57}H_{49}FeO_3P_3Pt$, CH_2Cl_2 , 2(C_7H_8) ($M_w = 1395.09$): C, 61.99; H, 4.84%. Found: C, 61.75; H, 4.78%. ¹H NMR: δ 2.14 (s, 3H, CH₃), 2.17 (s, 3H, CH₃), 2.43 (s, 3H, CH₃), 4.64 (m, 2H, PCH₂P, ² $J_{PH} = 8.5$, ² $J_{PtH} = 42$), 6.81– 7.55 (m, 37H, Ph), 8.07 (dd, 1H, =CH, ³ $J_{PH} = 8.2$, ³ $J_{PH} = 5.0$, ² $J_{PtH} = 32$). ³¹P{1H} NMR: δ 8.6 (d, P_{dppm Pt}, ² $J_{PP} = 58$, ¹ $J_{PtP} =$ 2641), 33.7 (d, P_{PPh3 Pt}, ³ $J_{PP} = 36$, ¹ $J_{PtP} = 3432$), 61.3 (dd, P_{dppm Fe}, ² $J_{PP} = 58$, ³ $J_{PP} = 36$). IR(ATR): 1962, 1913vs v(CO), 1686mv(C=O).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. All of the hydrogen atoms were placed in geometrically calculated positions (C-H = 0.93– 0.98 Å) and refined as riding on the parent C atom, with $U_{\rm iso}({\rm H}) = 1.5U_{\rm eq}({\rm C-methyl})$ and $1.2U_{\rm eq}({\rm C})$ for other H atoms.

Table 3	
Experimental details.	

-	
Crystal data	
Chemical formula	$[FePt(C_{12}H_{12}O)(C_{18}H_{15}P)-$
	$(C_{25}H_{22}P_2)(CO)_2]\cdot 2C_7H_8$
	CH_2Cl_2
$M_{ m r}$	1395.00
Crystal system, space group	Monoclinic, $P2_1/n$
Temperature (K)	293
a, b, c (Å)	10.2117 (3), 24.7895 (6),
	24.6241 (7)
β (°)	92.056 (3)
$V(\text{\AA}^3)$	6229.4 (3)
Ζ	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	2.69
Crystal size (mm)	$0.49 \times 0.39 \times 0.15$
Data collection	
Diffractometer	Oxford Diffraction Xcalibur,
	Sapphire3
Absorption correction	Multi-scan (CrysAlis PRO; Oxford
	Diffraction, 2010)
T_{\min}, T_{\max}	0.923, 1.000
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	52106, 14857, 8982
R _{int}	0.070
$(\sin \theta / \lambda)_{\max} (\text{\AA}^{-1})$	0.687
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.035, 0.054, 0.81
No. of reflections	14857
No. of parameters	744
H-atom treatment	H-atom parameters constrained
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} \ ({\rm e} \ {\rm \AA}^{-3})$	1.52, -0.97

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXT (Sheldrick, 2015a), SHELXL (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Funding information

We are grateful to the Deutsche Forschungsgemeinschaft (DFG) for financial support. LB thanks the Fonds der Chemischen Industrie (FCI) for doctoral fellowships.

References

- Akita, M., Sugimoto, S., Terada, M. & Moro-oka, Y. (1993). J. Organomet. Chem. 447, 103–106.
- Bennett, S. C., Gelling, A. & Went, M. J. (1992). J. Organomet. Chem. 439, 189–199.
- Boni, A., Funaioli, T., Marchetti, F., Pampaloni, G., Pinzino, C. & Zacchini, S. (2011). J. Organomet. Chem. 696, 3551–3556.
- Casey, C. P., Ha, Y. & Powell, D. R. (1994). J. Am. Chem. Soc. 116, 3424–3428.
- Clément, S., Guyard, L., Knorr, M., Dilsky, S., Strohmann, C. & Arroyo, M. (2007). J. Organomet. Chem. 692, 839–850.
- Cooper, B. G., Napoline, J. W. & Thomas, C. M. (2012). *Catal. Rev.* 54, 1–40.
- Dennett, J. N. L., Knox, S. A. R., Anderson, K. M., Charmant, J. P. H. & Orpen, A. G. (2005). *Dalton Trans.* pp. 63–73.
- Dickson, R. S., Gatehouse, B. M., Nesbit, M. C. & Pain, G. N. (1981). J. Organomet. Chem. 215, 97–109.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Fontaine, X. L. R., Jacobsen, G. B., Shaw, B. L. & Thornton-Pett, M. (1988). J. Chem. Soc. Dalton Trans. pp. 741–750.

research communications

- Hitchcock, P. B., Madden, T. J. & Nixon, J. F. (1993). J. Organomet. Chem. 463, 155–162.
- Horiuchi, S., Murase, T. & Fujita, M. (2012). *Angew. Chem. Int. Ed.* **51**, 12029–12031.
- Johnson, K. A. & Gladfelter, W. L. (1991). J. Am. Chem. Soc. 113, 5097–5099.
- Jourdain, I., Knorr, M., Strohmann, C., Unkelbach, C., Rojo, S., Gómez-Iglesias, P. & Villafañe, F. (2013). Organometallics, 32, 5343–5359.
- Jourdain, I., Vieille-Petit, L., Clément, S., Knorr, M., Villafañe, F. & Strohmann, C. (2006). *Inorg. Chem. Commun.* 9, 127–131.
- Knox, S. A. R., Lloyd, B. R., Morton, D. A. V., Orpen, A. G., Turner, M. L. & Hogarth, G. (1995). *Polyhedron*, 14, 2723–2743.
- Liddle, S. T. (2015). *Molecular Metal–Metal Bonds*. Weinheim: Wiley-VCH.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- McKee, S. D., Krause, J. A., Lunder, D. M. & Bursten, B. E. (1994). J. Coord. Chem. 32, 249–259.

- Mirza, H. A., Vittal, J. J. & Puddephatt, R. J. (1994). *Organometallics*, **13**, 3063–3067.
- Mohamed, A. S., Jourdain, I., Knorr, M., Boullanger, S., Brieger, L. & Strohmann, C. (2019). J. Clust Sci. 30, 1211–1225.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Ritleng, V. & Chetcuti, M. J. (2007). Chem. Rev. 107, 797-858.
- Sheldrick, G. M. (2015a). Acta Cryst. A71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stephan, D. W. (1989). Coord. Chem. Rev. 95, 41-107.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Wong, A., Pawlick, R. V., Thomas, C. G., Leon, D. R. & Liu, L.-K. (1991). Organometallics, **10**, 530–532.
- Yamazaki, S., Taira, Z., Yonemura, T. & Deeming, A. J. (2005). Organometallics, 24, 20–27.
- Yamazaki, S., Taira, Z., Yonemura, T. & Deeming, A. J. (2006). Organometallics, 25, 849–853.
- Yang, L., Powell, D. R. & Houser, R. P. (2007). *Dalton Trans.* pp. 955–964.

Acta Cryst. (2019). E75, 1902-1906 [https://doi.org/10.1107/S2056989019015573]

Crystal structure of dicarbonyl[μ_2 -methylenebis(diphenylphosphane)- $\kappa^2 P:P'$] [μ_2 -2-(2,4,5-trimethylphenyl)-3-oxoprop-1-ene-1,3-diyl](triphenylphosphane- κP)ironplatinum(*Fe*—*Pt*)-dichloromethane-toluene (1/1/2), [(OC)₂Fe(μ -dppm)) (μ -C(&z-dbnd;O)C(2,4,5-C₆H₂Me₃)&z-dbnd;CH)Pt(PPh₃)]

Lukas Brieger, Isabelle Jourdain, Michael Knorr and Carsten Strohmann

Computing details

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO* (Oxford Diffraction, 2010);
data reduction: *CrysAlis PRO* (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: *SHELXL* (Sheldrick, 2015b); molecular graphics: *OLEX2* (Dolomanov *et al.*, 2009) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *OLEX2* (Dolomanov *et al.*, 2009), *SHELXL* (Sheldrick, 2015b), *PLATON* (Spek, 2009) and *publCIF* (Westrip, 2010).

Dicarbonyl[μ_2 -methylenebis(diphenylphosphane)- $\kappa^2 P:P'$][μ_2 -2-(2,4,5-trimethylphenyl)-3-oxoprop-1-ene-1,3-diyl] (triphenylphosphane- κP)ironplatinum(Fe—Pt)-dichloromethane-toluene (1/1/2)

Crystal data

$[FePt(C_{12}H_{12}O)(C_{18}H_{15}P)(C_{25}H_{22}P_2)]$	F(000) = 2824
$(CO)_2$]·2C ₇ H ₈ ·CH ₂ Cl ₂	$D_{\rm x} = 1.487 {\rm Mg} {\rm m}^{-3}$
$M_r = 1395.00$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Monoclinic, $P2_1/n$	Cell parameters from 14906 reflections
a = 10.2117 (3) Å	$\theta = 2.1 - 29.2^{\circ}$
b = 24.7895 (6) Å	$\mu = 2.69 \text{ mm}^{-1}$
c = 24.6241 (7) Å	T = 293 K
$\beta = 92.056 \ (3)^{\circ}$	Block, yellow
V = 6229.4 (3) Å ³	$0.49 \times 0.39 \times 0.14$ mm
7 = 4	

Data collection

Oxford Diffraction Xcalibur, Sapphire3 diffractometer Radiation source: microfocus sealed X-ray tube Grahpite monochromator Detector resolution: 16.0560 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (CrysAlisPro; Oxford Diffraction, 2010) $T_{\min} = 0.923, T_{\max} = 1.000$ 52106 measured reflections 14857 independent reflections 8982 reflections with $I > 2\sigma(I)$ $R_{int} = 0.070$ $\theta_{max} = 29.2^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -13 \rightarrow 13$ $k = -33 \rightarrow 33$ $l = -33 \rightarrow 33$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.035$	Hydrogen site location: mixed
$wR(F^2) = 0.054$	H-atom parameters constrained
S = 0.81	$w = 1/[\sigma^2(F_o^2) + (0.0167P)^2]$
14857 reflections	where $P = (F_o^2 + 2F_c^2)/3$
744 parameters	$(\Delta/\sigma)_{\rm max} = 0.004$
0 restraints	$\Delta \rho_{\rm max} = 1.52 \text{ e} \text{ Å}^{-3}$
Primary atom site location: dual	$\Delta \rho_{\rm min} = -0.97 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Pt1	0.54891 (2)	0.43749 (2)	0.70894 (2)	0.01562 (4)	
Fe1	0.51432 (5)	0.33557 (2)	0.72321 (2)	0.01800 (12)	
P1	0.41192 (9)	0.35546 (4)	0.79703 (4)	0.0181 (2)	
P2	0.42967 (9)	0.47366 (4)	0.77594 (4)	0.0166 (2)	
P3	0.63044 (9)	0.50877 (4)	0.66456 (4)	0.0174 (2)	
01	0.2571 (2)	0.36786 (10)	0.67002 (10)	0.0277 (7)	
O2	0.4463 (3)	0.22195 (10)	0.72360 (12)	0.0468 (8)	
O3	0.7908 (3)	0.32228 (13)	0.75629 (11)	0.0529 (9)	
C1	0.5924 (3)	0.37724 (14)	0.65717 (13)	0.0202 (9)	
H1	0.680375	0.370787	0.643864	0.024*	
C2	0.4823 (3)	0.34885 (14)	0.63921 (15)	0.0207 (9)	
C3	0.4833 (3)	0.30712 (15)	0.59518 (14)	0.0211 (9)	
C4	0.5756 (4)	0.26604 (15)	0.59748 (15)	0.0278 (10)	
H4	0.632062	0.264056	0.627904	0.033*	
C5	0.5883 (4)	0.22799 (16)	0.55717 (16)	0.0317 (10)	
C6	0.6912 (4)	0.18437 (17)	0.56150 (17)	0.0565 (14)	
H6A	0.747993	0.190977	0.592699	0.085*	
H6B	0.741631	0.184430	0.529337	0.085*	
H6C	0.649419	0.149939	0.565208	0.085*	
C7	0.5028 (4)	0.23059 (15)	0.51200 (16)	0.0323 (10)	
C8	0.5085 (4)	0.19051 (17)	0.46646 (16)	0.0475 (12)	
H8A	0.500249	0.154669	0.480700	0.071*	
H8B	0.590835	0.193877	0.449098	0.071*	
H8C	0.438224	0.197341	0.440447	0.071*	
C9	0.4092 (4)	0.27137 (16)	0.50997 (15)	0.0304 (10)	
H9	0.351454	0.272838	0.479938	0.036*	
C10	0.3974 (3)	0.30992 (15)	0.55019 (14)	0.0240 (9)	
C11	0.2989 (4)	0.35501 (16)	0.54280 (15)	0.0372 (11)	
H11A	0.248433	0.358014	0.574796	0.056*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H11B	0.241625	0.347360	0.512004	0.056*
H11C	0.344170	0.388334	0.536886	0.056*
C12	0.3729 (4)	0.35839 (14)	0.67444 (14)	0.0207 (9)
C13	0.4732 (4)	0.26710 (16)	0.72377 (15)	0.0272 (9)
C14	0.6811 (4)	0.32730 (16)	0.74531 (15)	0.0289 (10)
C15	0.5260 (3)	0.53319 (15)	0.60843 (14)	0.0185 (8)
C16	0.4393(3)	0.49690 (15)	0.58390 (14)	0.0241 (9)
H16	0 435154	0.461613	0 596549	0.029*
C17	0.3586(4)	0 51324 (17)	0.590519	0.029 0.0319(10)
H17	0.301231	0.488704	0.523745	0.038*
C18	0.3630(4)	0.56526 (19)	0.52205 (15)	0.0367(10)
U18	0.3030 (4)	0.50520 (19)	0.32203 (13)	0.0307 (10)
C10	0.309049	0.575920	0.492739	0.044
U19 U10	0.4470 (4)	0.00178(10)	0.54080 (10)	0.0337 (11)
П19 С20	0.448309	0.037397	0.534981	0.043
C20	0.5286 (4)	0.58554 (16)	0.58877(15)	0.0282 (10)
H20	0.58/186	0.610160	0.604539	0.034*
C21	0.6723 (3)	0.56935 (14)	0.70350 (13)	0.0184 (8)
C22	0.5742 (3)	0.60459 (14)	0.71862 (14)	0.0228 (9)
H22	0.488474	0.599401	0.705593	0.027*
C23	0.6035 (4)	0.64710 (15)	0.75278 (15)	0.0285 (10)
H23	0.537028	0.670266	0.762908	0.034*
C24	0.7283 (4)	0.65583 (15)	0.77201 (15)	0.0300 (10)
H24	0.747113	0.684953	0.794782	0.036*
C25	0.8256 (4)	0.62155 (15)	0.75764 (15)	0.0295 (10)
H25	0.910855	0.627190	0.771023	0.035*
C26	0.7987 (4)	0.57856 (14)	0.72340 (14)	0.0246 (9)
H26	0.866047	0.555636	0.713645	0.030*
C27	0.7855 (3)	0.49061 (14)	0.63509 (15)	0.0220 (9)
C28	0.8308 (4)	0.51595 (17)	0.58964 (15)	0.0350(11)
H28	0.782037	0.543429	0.573041	0.042*
C29	0.9485 (5)	0.5005 (2)	0.56880 (19)	0.0564 (15)
H29	0.978621	0.517932	0.538205	0.068*
C30	1.0213 (5)	0.4604 (2)	0.5922 (2)	0.0582 (16)
H30	1.099617	0.449824	0.577150	0.070*
C31	0.9788(4)	0.43555 (18)	0.63789 (19)	0.0445(12)
H31	1 029448	0 408646	0.654527	0.053*
C32	0.8601(3)	0.45036(14)	0.65964 (16)	0.0306(10)
U32 H32	0.831182	0.433221	0.690593	0.037*
C33	0.5020 (3)	0.4995221 0.40056 (13)	0.030533	0.037 0.0163 (8)
C34	0.5025(3)	0.4773(14)	0.83861(15)	0.0105(0)
U24	0.0295 (4)	0.51/45 (14)	0.83801 (13)	0.0240 (9)
П34 С25	0.070034	0.514056	0.807090	0.029°
U33	0.0885 (4)	0.55955 (10)	0.88470 (10)	0.0313 (10)
H33	0.7/4147	0.552029	0.884128	0.038°
U30	0.0194 (4)	0.54505 (16)	0.93152 (16)	0.0342 (11)
H30	0.658776	0.55/529	0.962884	0.041*
037	0.4921 (4)	0.52508 (16)	0.93185 (14)	0.0294 (10)
H37	0.444711	0.527762	0.963299	0.035*
C38	0.4356 (3)	0.50336 (14)	0.88599 (14)	0.0223 (9)

H38	0.349785	0.490820	0.886621	0.027*
C39	0.3165 (3)	0.52640 (13)	0.75401 (14)	0.0157 (8)
C40	0.3041 (3)	0.57485 (13)	0.78128 (15)	0.0250 (9)
H40	0.349673	0.580082	0.814244	0.030*
C41	0.2253 (4)	0.61542 (15)	0.76031 (16)	0.0316 (10)
H41	0.218062	0.647762	0.779109	0.038*
C42	0.1575 (4)	0.60827 (15)	0.71186 (16)	0.0298 (10)
H42	0.104378	0.635668	0.697618	0.036*
C43	0.1685 (3)	0.56021 (17)	0.68438 (15)	0.0319 (9)
H43	0.122081	0.555114	0.651600	0.038*
C44	0.2475 (3)	0.51976 (14)	0.70495 (14)	0.0232 (9)
H44	0.254809	0.487621	0.685819	0.028*
C45	0.3186 (3)	0.41845 (12)	0.79317 (13)	0.0167 (8)
H45A	0.279720	0.425680	0.827798	0.020*
H43B	0.248605	0.415473	0.765633	0.020*
C46	0.2875 (3)	0.30636 (14)	0.81481 (13)	0.0171 (8)
C47	0.1619 (4)	0.30890 (15)	0.79365 (15)	0.0307 (10)
H47	0.137670	0.337375	0.770842	0.037*
C48	0.0702 (4)	0.26986 (17)	0.80557(17)	0.0406 (12)
H48	-0.014739	0.272452	0.790848	0.049*
C49	0.1037 (4)	0.22774(15)	0.83871 (16)	0.0323 (10)
H49	0.041725	0.201813	0.847043	0.039*
C50	0.2290(4)	0.22384 (15)	0.85963 (15)	0.0310 (10)
H50	0.253127	0.195127	0.882155	0.037*
C51	0.3195 (4)	0.26267(15)	0.84714 (15)	0.0294 (10)
H51	0.404964	0.259288	0.861023	0.035*
C52	0.5016 (3)	0.36484(14)	0.86208 (14)	0.0198 (9)
C53	0.6322 (4)	0.37850 (14)	0.86408 (15)	0.0255 (9)
H53	0.677321	0.381007	0.832040	0.031*
C54	0.6971 (4)	0.38856 (16)	0.91340 (16)	0.0318 (10)
H54	0.785234	0.398083	0.914070	0.038*
C55	0.6334 (4)	0.38468 (16)	0.96099 (16)	0.0348 (11)
H55	0.678280	0.390548	0.994001	0.042*
C56	0.5024 (4)	0.37203 (15)	0.95967 (15)	0.0340 (11)
H56	0.458020	0.369732	0.991924	0.041*
C57	0.4365 (4)	0.36275 (14)	0.91088 (15)	0.0251 (9)
H57	0.347377	0.354967	0.910412	0.030*
C58	0.7015 (5)	0.21333 (19)	0.86522 (18)	0.0629 (15)
H58A	0.767069	0.185760	0.862975	0.094*
H58B	0.742922	0.247326	0.873172	0.094*
H58C	0.652954	0.215744	0.831189	0.094*
C59	0.6110 (5)	0.1997(2)	0.90902(19)	0.0455 (12)
C60	0.5850(5)	0.23732(19)	0.9492(2)	0.0520 (13)
H60	0.626737	0.270661	0.948931	0.062*
C61	0.4975(5)	0.2259 (2)	0.9899 (2)	0.0636 (16)
H61	0.482133	0.251653	1.016462	0.076*
C62	0.4343 (5)	0.1775 (2)	0.9912(2)	0.0716 (17)
H62	0.374855	0.169870	1.017964	0.086*
-				

C63	0.4614 (5)	0.1401 (2)	0.9516 (2)	0.0700 (17)	
H63	0.420309	0.106633	0.951855	0.084*	
C64	0.5489 (5)	0.1516 (2)	0.9113 (2)	0.0532 (14)	
H64	0.565255	0.125629	0.885175	0.064*	
C65	-0.0246 (4)	0.4584 (2)	0.8046 (2)	0.085 (2)	
H65A	-0.025429	0.419702	0.804299	0.128*	
H65B	0.028702	0.471343	0.776000	0.128*	
H65C	-0.112369	0.471694	0.799097	0.128*	
C66	0.0300 (4)	0.4778 (2)	0.8576 (2)	0.0549 (14)	
C67	0.0512 (5)	0.5325 (3)	0.8671 (3)	0.085 (2)	
H67	0.032387	0.557028	0.839253	0.102*	
C68	0.0994 (6)	0.5514 (3)	0.9166 (4)	0.099 (3)	
H68	0.112688	0.588053	0.922887	0.119*	
C69	0.1268 (5)	0.5136 (3)	0.9564 (3)	0.082 (2)	
H69	0.157815	0.525130	0.990425	0.098*	
C70	0.1098 (5)	0.4592 (3)	0.9473 (2)	0.0660 (16)	
H70	0.131156	0.434384	0.974479	0.079*	
C71	0.0617 (4)	0.4422 (2)	0.89843 (19)	0.0512 (13)	
H71	0.049822	0.405504	0.892407	0.061*	
C11	0.61998 (19)	0.31739 (7)	1.11202 (6)	0.1133 (6)	
Cl2	0.47570 (16)	0.22636 (7)	1.14958 (6)	0.0936 (5)	
C72	0.6305 (5)	0.2515 (2)	1.1363 (2)	0.0799 (17)	
H72A	0.685110	0.250711	1.169320	0.096*	
H72B	0.671131	0.228837	1.109553	0.096*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.01643 (7)	0.01350 (6)	0.01695 (7)	0.00082 (8)	0.00098 (5)	-0.00172 (8)
Fe1	0.0182 (3)	0.0137 (3)	0.0221 (3)	0.0020 (2)	0.0000(2)	-0.0001 (2)
P1	0.0171 (5)	0.0158 (5)	0.0214 (6)	-0.0004 (4)	-0.0008(5)	0.0012 (4)
P2	0.0173 (5)	0.0152 (5)	0.0174 (5)	0.0013 (4)	0.0009 (4)	-0.0023 (4)
P3	0.0183 (5)	0.0155 (5)	0.0184 (5)	0.0000 (4)	0.0018 (4)	-0.0015 (4)
01	0.0141 (15)	0.0360 (17)	0.0330 (17)	0.0090 (12)	-0.0007 (13)	-0.0043 (13)
O2	0.062 (2)	0.0146 (15)	0.064 (2)	-0.0073 (15)	0.0116 (17)	-0.0017 (15)
03	0.0243 (18)	0.080(3)	0.054 (2)	0.0202 (17)	-0.0047 (17)	-0.0024 (18)
C1	0.016 (2)	0.023 (2)	0.021 (2)	0.0030 (16)	-0.0019 (17)	0.0014 (17)
C2	0.023 (2)	0.0132 (19)	0.026 (2)	0.0020 (16)	0.0043 (18)	-0.0015 (17)
C3	0.022 (2)	0.020 (2)	0.021 (2)	-0.0015 (17)	0.0039 (18)	-0.0013 (18)
C4	0.030 (2)	0.028 (2)	0.025 (2)	0.0030 (19)	-0.0074 (19)	-0.009(2)
C5	0.037 (3)	0.028 (2)	0.030 (2)	0.009 (2)	0.002 (2)	-0.012 (2)
C6	0.069 (4)	0.047 (3)	0.052 (3)	0.028 (3)	-0.014 (3)	-0.024 (3)
C7	0.045 (3)	0.023 (2)	0.029 (3)	0.000(2)	0.001 (2)	-0.010 (2)
C8	0.062 (3)	0.038 (3)	0.042 (3)	0.004 (2)	-0.001 (2)	-0.015 (2)
C9	0.036 (3)	0.032 (2)	0.022 (2)	-0.003 (2)	-0.007 (2)	-0.003 (2)
C10	0.024 (2)	0.026 (2)	0.021 (2)	-0.0031 (18)	-0.0033 (18)	-0.0031 (19)
C11	0.040 (3)	0.037 (3)	0.034 (3)	0.006 (2)	-0.010 (2)	-0.003 (2)
C12	0.025 (2)	0.016 (2)	0.022 (2)	-0.0022 (17)	0.0021 (19)	0.0028 (17)

C13	0.025 (2)	0.027 (2)	0.030(2)	0.0008 (19)	0.0043 (19)	0.002 (2)
C14	0.032 (3)	0.029 (2)	0.025 (2)	0.004 (2)	0.000 (2)	-0.0013 (19)
C15	0.020 (2)	0.020 (2)	0.016 (2)	0.0008 (17)	0.0064 (17)	0.0031 (17)
C16	0.024 (2)	0.026 (2)	0.022 (2)	0.0020 (18)	-0.0017 (18)	0.0048 (19)
C17	0.030 (3)	0.039 (3)	0.026 (2)	-0.009(2)	-0.007 (2)	0.000 (2)
C18	0.038 (3)	0.050 (3)	0.021 (2)	0.014 (3)	-0.0043 (19)	0.008 (3)
C19	0.048 (3)	0.027 (2)	0.032 (3)	0.002 (2)	-0.002 (2)	0.009 (2)
C20	0.036 (3)	0.024 (2)	0.024 (2)	-0.0014 (19)	-0.003(2)	0.0008 (19)
C21	0.023 (2)	0.0134 (19)	0.0191 (19)	-0.0069 (17)	0.0025 (16)	0.0014 (17)
C22	0.023 (2)	0.020 (2)	0.025 (2)	-0.0041(17)	0.0030 (18)	0.0003 (18)
C23	0.034 (3)	0.023 (2)	0.029 (2)	0.0077 (19)	0.011 (2)	-0.0020(19)
C24	0.041 (3)	0.020(2)	0.029(2)	-0.008(2)	0.002(2)	-0.0083(19)
C25	0.027(2)	0.030(2)	0.030(2)	-0.0094(19)	-0.006(2)	0.001 (2)
C26	0.028(2)	0.019(2)	0.027(2)	0.0013 (16)	0.0004(19)	-0.0024(17)
C27	0.022(2)	0.021(2)	0.023(2)	-0.0045(17)	-0.0017(18)	-0.0068(18)
C28	0.022(2)	0.021(2) 0.044(3)	0.023(2) 0.023(2)	-0.004(2)	0.003(2)	-0.009(2)
C29	0.035(3)	0.088(4)	0.025(2) 0.037(3)	-0.020(3)	0.003(2) 0.017(3)	-0.027(3)
C30	0.010(3)	0.000(1) 0.070(4)	0.037(3) 0.075(4)	-0.020(3)	0.019(3)	-0.024(3)
C31	0.031(3)	0.070(1) 0.032(2)	0.073(1) 0.083(4)	0.001(3)	0.019(3)	-0.019(3)
C32	0.019(2)	0.032(2) 0.023(2)	0.009(1) 0.049(3)	-0.002(2)	0.000(2)	-0.003(2)
C33	0.020(2)	0.025(2)	0.019(3)	0.0010(17)	-0.002(2)	-0.003(2)
C34	0.025(2)	0.026(2)	0.010(2) 0.022(2)	0.0025(18)	0.00000(17)	0.0029(10)
C35	0.023(2)	0.020(2) 0.038(3)	0.022(2) 0.034(3)	-0.0023(19)	-0.004(2)	-0.007(2)
C36	0.029(2)	0.030(3)	0.023(2)	-0.004(2)	-0.005(2)	-0.007(2)
C37	0.035(3)	0.039(3)	0.023(2) 0.013(2)	0.001(2)	0.005(2)	-0.007(2)
C38	0.030(3)	0.037(3)	0.013(2) 0.022(2)	-0.001(2)	-0.0012(18)	-0.002(2)
C39	0.025(2)	0.023(2)	0.022(2)	0.0012(17)	0.0012(10)	0.0045 (16)
C40	0.019(2) 0.029(2)	0.019(2)	0.020(2) 0.026(2)	0.0000(13) 0.0088(17)	-0.0024(18)	-0.0020(10)
C41	0.023(2)	0.019(2) 0.021(2)	0.020(2) 0.040(3)	0.0000(17) 0.0089(19)	0.0021(10)	-0.002((1))
C41	0.033(3)	0.021(2) 0.025(2)	0.040(3)	0.0009(19) 0.0117(19)	-0.003(2)	0.000(2)
C43	0.020(2)	0.023(2) 0.033(2)	0.030(3)	0.0117(12)	-0.0112(18)	-0.005(2)
C44	0.031(2) 0.027(2)	0.033(2)	0.031(2) 0.025(2)	0.002(2)	0.0012(10)	-0.003(2)
C45	0.027(2) 0.018(2)	0.017(2)	0.023(2)	0.0000(10) 0.0003(15)	-0.0023(19)	-0.0036(16)
C46	0.016(2)	0.0170(1)	0.017(2)	0.0009(15)	-0.0001(17)	-0.0020(10)
C47	0.010(2) 0.029(2)	0.013(2) 0.023(2)	0.017(2)	-0.0009(19)	-0.005(2)	0.0017(17)
C48	0.023(2)	0.029(2) 0.039(3)	0.060(3)	-0.003(2)	-0.013(2)	0.012(2)
C49	0.021(2) 0.030(3)	0.039(3) 0.024(2)	0.000(3) 0.043(3)	-0.0107(19)	0.015(2)	0.012(2) 0.003(2)
C50	0.030(3)	0.021(2) 0.023(2)	0.015(3)	-0.0045(19)	-0.007(2)	0.003(2)
C51	0.031(3)	0.023(2) 0.030(2)	0.039(3)	0.00013(13)	-0.0033(19)	0.011(2) 0.002(2)
C52	0.019(2)	0.030(2) 0.017(2)	0.022(2)	-0.0002(16)	-0.0040(18)	0.002(2)
C53	0.020(2)	0.017(2)	0.022(2)	-0.0038(18)	-0.0051(19)	-0.0010(17)
C54	0.024(2)	0.020(2)	0.020(2)	-0.0014(19)	-0.010(2)	-0.002(2)
C55	0.020(2)	0.031(2) 0.033(2)	0.036(3)	-0.003(2)	-0.013(2)	-0.002(2)
C56	0.049(3)	0.033(2) 0.034(3)	0.023(3)	0.003(2)	0.013(2) 0.004(2)	-0.003(2)
C57	0.019(3)	0.027(2)	0.019(2)	-0.000(2)	-0.0008(19)	-0.007(2)
C58	0.02 + (2) 0.071 (4)	0.027(2) 0.061(4)	0.027(2)	0.012 (3)	-0.002(3)	0.0027(17)
C59	0.051(3)	0.001(4)	0.027(3)	0.012(3)	-0.017(3)	0.000(3)
C60	0.057(3)	0.036(3)	0.043(3)	0.016(3)	-0.021(3)	-0.003(3)
200	0.001 (0)	0.000 (0)	0.002 (7)	0.000 (0)	0.021(5)	0.000 (0)

C61	0.071 (4)	0.059 (4)	0.060 (4)	0.023 (3)	-0.017 (3)	-0.015 (3)
C62	0.067 (4)	0.061 (4)	0.085 (5)	-0.003 (3)	-0.018 (3)	0.001 (4)
C63	0.067 (4)	0.053 (4)	0.088 (5)	-0.010 (3)	-0.023 (4)	-0.006 (4)
C64	0.060 (4)	0.040 (3)	0.058 (4)	-0.002(3)	-0.018 (3)	-0.010 (3)
C65	0.037 (3)	0.151 (6)	0.069 (4)	0.026 (3)	0.001 (3)	0.019 (4)
C66	0.022 (3)	0.076 (4)	0.068 (4)	0.016 (3)	0.017 (3)	0.025 (3)
C67	0.034 (4)	0.075 (5)	0.148 (7)	0.020 (3)	0.036 (4)	0.042 (5)
C68	0.042 (4)	0.087 (6)	0.172 (8)	0.003 (4)	0.045 (5)	0.000 (6)
C69	0.049 (4)	0.103 (6)	0.096 (5)	-0.021 (4)	0.043 (4)	-0.041 (5)
C70	0.053 (4)	0.086 (5)	0.060 (4)	-0.008(3)	0.022 (3)	0.007 (3)
C71	0.037 (3)	0.067 (4)	0.050 (3)	0.000 (3)	0.011 (2)	0.019 (3)
Cl1	0.1933 (19)	0.0721 (12)	0.0726 (11)	-0.0196 (12)	-0.0191 (12)	-0.0096 (9)
Cl2	0.0980 (13)	0.0890 (13)	0.0943 (12)	0.0133 (10)	0.0097 (10)	0.0026 (10)
C72	0.083 (4)	0.055 (4)	0.101 (5)	0.008 (3)	-0.002 (4)	-0.002 (3)

Geometric parameters (Å, °)

Pt1—Fe1	2.5770 (5)	C33—C38	1.379 (4)
Pt1—P2	2.2700 (9)	C34—C35	1.378 (5)
Pt1—P3	2.2529 (9)	C34—H34	0.9300
Pt1—C1	2.023 (3)	C35—C36	1.375 (5)
Fe1—P1	2.1857 (11)	С35—Н35	0.9300
Fe1—C1	2.107 (3)	C36—C37	1.375 (5)
Fe1—C2	2.109 (4)	С36—Н36	0.9300
Fe1—C12	1.929 (4)	C37—C38	1.360 (5)
Fe1—C13	1.749 (4)	С37—Н37	0.9300
Fe1—C14	1.781 (4)	C38—H38	0.9300
P1—C46	1.824 (4)	C39—C40	1.384 (4)
P1—C45	1.830 (3)	C39—C44	1.386 (4)
P1—C52	1.831 (3)	C40—C41	1.377 (5)
Р2—С33	1.809 (3)	C40—H40	0.9300
P2—C39	1.814 (3)	C41—C42	1.369 (5)
P2—C45	1.837 (3)	C41—H41	0.9300
P3—C15	1.819 (4)	C42—C43	1.377 (5)
P3—C27	1.822 (4)	C42—H42	0.9300
P3—C21	1.824 (3)	C43—C44	1.372 (5)
O1—C12	1.207 (4)	C43—H43	0.9300
O2—C13	1.152 (4)	C44—H44	0.9300
O3—C14	1.149 (4)	C45—H45A	0.9700
C1—C2	1.386 (4)	C45—H43B	0.9700
C1—H1	0.9806	C46—C47	1.369 (4)
C2-C12	1.458 (5)	C46—C51	1.376 (5)
C2—C3	1.499 (5)	C47—C48	1.386 (5)
C3—C4	1.387 (5)	C47—H47	0.9300
C3—C10	1.390 (4)	C48—C49	1.362 (5)
C4—C5	1.379 (5)	C48—H48	0.9300
C4—H4	0.9300	C49—C50	1.366 (5)
С5—С7	1.391 (5)	C49—H49	0.9300

C5—C6	1.509 (5)	C50—C51	1.376 (5)
С6—Н6А	0.9600	С50—Н50	0.9300
С6—Н6В	0.9600	C51—H51	0.9300
С6—Н6С	0.9600	C52—C53	1.375 (4)
С7—С9	1.391 (5)	C52—C57	1.395 (5)
C7—C8	1.501 (5)	C53—C54	1.385 (5)
C8—H8A	0.9600	С53—Н53	0.9300
C8—H8B	0.9600	C54—C55	1.364 (5)
C8—H8C	0.9600	С54—Н54	0.9300
C9—C10	1.385 (5)	C55—C56	1.374 (5)
С9—Н9	0.9300	С55—Н55	0.9300
C10—C11	1.510 (5)	C56—C57	1.375 (5)
C11—H11A	0.9600	С56—Н56	0.9300
С11—Н11В	0.9600	С57—Н57	0.9300
C11—H11C	0.9600	C58—C59	1.484 (6)
C15—C16	1.386 (5)	С58—Н58А	0.9600
C15—C20	1.386 (5)	C58—H58B	0.9600
C16—C17	1.387 (5)	C58—H58C	0.9600
С16—Н16	0.9300	C59—C64	1.351 (6)
C17—C18	1.368 (5)	C59—C60	1.393 (6)
С17—Н17	0.9300	C60—C61	1.395 (6)
C18—C19	1.375 (5)	С60—Н60	0.9300
С18—Н18	0.9300	C61—C62	1.365 (7)
C19—C20	1.364 (5)	С61—Н61	0.9300
С19—Н19	0.9300	C62—C63	1.382 (7)
С20—Н20	0.9300	С62—Н62	0.9300
C21—C26	1.383 (4)	C63—C64	1.389 (6)
C21—C22	1.390 (4)	С63—Н63	0.9300
C22—C23	1.375 (5)	С64—Н64	0.9300
С22—Н22	0.9300	C65—C66	1.481 (6)
C23—C24	1.361 (5)	С65—Н65А	0.9600
С23—Н23	0.9300	С65—Н65В	0.9600
C24—C25	1.364 (5)	С65—Н65С	0.9600
C24—H24	0.9300	C66—C71	1.366 (6)
C25—C26	1.380 (5)	C66—C67	1.393 (7)
С25—Н25	0.9300	C67—C68	1.382 (8)
С26—Н26	0.9300	С67—Н67	0.9300
C27—C28	1.378 (5)	C68—C69	1.377 (8)
C27—C32	1.381 (5)	С68—Н68	0.9300
C28—C29	1.377 (6)	C69—C70	1.377 (7)
C28—H28	0.9300	С69—Н69	0.9300
C29—C30	1.358 (6)	C70—C71	1.349 (6)
С29—Н29	0.9300	С70—Н70	0.9300
C30—C31	1.368 (6)	С71—Н71	0.9300
С30—Н30	0.9300	Cl1—C72	1.741 (5)
C31—C32	1.392 (5)	Cl2—C72	1.741 (5)
C31—H31	0.9300	С72—Н72А	0.9700
С32—Н32	0.9300	С72—Н72В	0.9700

C33—C34	1.367 (4)		
P2Pt1Fe1	102 03 (3)	С28—С29—Н29	119.4
P3—Pt1—Fe1	152.88 (3)	C_{29} C_{29} C_{30} C_{31}	119.6 (4)
C1—Pt1—Fe1	52 87 (10)	C_{29} C_{30} H_{30}	120.2
P3Pt1P2	105.07 (3)	C_{31} C_{30} H_{30}	120.2
$C1_{Pt1_{Pt}}$	152 26 (10)	C_{30} C_{31} C_{32}	120.2 120.3 (4)
C1— $Pt1$ — $P3$	100.38(10)	C_{30} $-C_{31}$ $-H_{31}$	119.8
Pt1—C1—Fe1	77 18 (12)	C_{32} — C_{31} — H_{31}	119.8
C_{13} —Fe1—C14	96 51 (17)	$C_{27} - C_{32} - C_{31}$	1197(4)
C13—Fe1—C12	96 59 (16)	$C_{27} = C_{32} = H_{32}$	120.1
C14—Fe1—C12	155.50 (17)	C_{31} $-C_{32}$ $-H_{32}$	120.1
C13—Fe1—C1	125 43 (16)	$C_{34} - C_{33} - C_{38}$	118.6(3)
C14—Fe1—C1	84.72 (15)	C_{34} C_{33} P_{2}	118.5(3)
C12—Fe1—C1	70.81 (14)	$C_{38} - C_{33} - P_{2}$	122.9(3)
C13—Fe1—C2	97.50 (15)	C_{33} C_{34} C_{35}	120.8(3)
C14—Fe1—C2	115.51 (16)	C33—C34—H34	119.6
C12—Fe1—C2	42 03 (13)	C35—C34—H34	119.6
C1—Fe1—C2	38 38 (12)	$C_{36} - C_{35} - C_{34}$	119.6 (4)
C_{13} —Fe1—P1	95 17 (13)	C36—C35—H35	120.2
C_{14} F_{e1} P_{1}	$104\ 63\ (12)$	C34—C35—H35	120.2
C12—Fe1—P1	94 69 (11)	C_{37} $-C_{36}$ $-C_{35}$	119.8(4)
C1—Fe1—P1	137.46 (10)	C37—C36—H36	120.1
C2—Fe1—P1	135 94 (10)	C35—C36—H36	120.1
C_{13} —Fe1—Pt1	170 69 (12)	$C_{38} - C_{37} - C_{36}$	119.8 (4)
C14—Fe1—Pt1	91.16(13)	C38—C37—H37	120.1
C12—Fe1—Pt1	74 38 (10)	C36—C37—H37	120.1
C1—Fe1—Pt1	49.95 (9)	C37 - C38 - C33	120.1 121.3(3)
C2—Fe1—Pt1	74.35 (9)	C37—C38—H38	119.3
P1—Fe1—Pt1	87.95 (3)	C33—C38—H38	119.3
C2-C1-Pt1	112.5 (3)	C40—C39—C44	118.2 (3)
C2-C1-Fe1	70.9 (2)	C40-C39-P2	123.3(3)
C46—P1—C45	102.47 (15)	C44—C39—P2	118.2 (3)
C46—P1—C52	101.87 (16)	C41—C40—C39	120.9(3)
C45—P1—C52	100.39 (15)	C41—C40—H40	119.5
C46—P1—Fe1	114.02 (11)	C39—C40—H40	119.5
C45—P1—Fe1	114.40 (11)	C42—C41—C40	120.2 (4)
C52—P1—Fe1	121.13 (12)	C42—C41—H41	119.9
C33—P2—C39	103.75 (16)	C40—C41—H41	119.9
C33—P2—C45	107.90 (16)	C41—C42—C43	119.5 (3)
C39—P2—C45	102.34 (15)	C41—C42—H42	120.2
C33—P2—Pt1	122.98 (12)	C43—C42—H42	120.2
C39—P2—Pt1	114.88 (11)	C44—C43—C42	120.5 (3)
C45—P2—Pt1	103.02 (11)	C44—C43—H43	119.7
C15—P3—C27	105.92 (16)	C42—C43—H43	119.7
C15—P3—C21	104.21 (16)	C43—C44—C39	120.6 (3)
C27—P3—C21	102.83 (16)	C43—C44—H44	119.7
C15—P3—Pt1	114.37 (12)	С39—С44—Н44	119.7

C27—P3—Pt1	109.93 (12)	P1—C45—P2	108.83 (17)
C21—P3—Pt1	118.32 (11)	P1—C45—H45A	109.9
C2—C1—H1	123.6	P2—C45—H45A	109.9
Pt1-C1-H1	123.7	P1—C45—H43B	109.9
Fe1—C1—H1	123.7	P2—C45—H43B	109.9
C1—C2—C12	111.0 (3)	H45A—C45—H43B	108.3
C1—C2—C3	123.7 (3)	C47—C46—C51	117.1 (3)
C12—C2—C3	124.6 (3)	C47—C46—P1	122.0 (3)
C1—C2—Fe1	70.8 (2)	C51—C46—P1	120.8 (3)
C12—C2—Fe1	62.4 (2)	C46—C47—C48	121.2 (4)
C3—C2—Fe1	126.7 (2)	C46—C47—H47	119.4
C4—C3—C10	118.5 (3)	C48—C47—H47	119.4
C4—C3—C2	120.0 (3)	C49—C48—C47	120.4 (4)
C10—C3—C2	121.4 (3)	C49—C48—H48	119.8
C5—C4—C3	123.6 (3)	C47—C48—H48	119.8
С5—С4—Н4	118.2	C48—C49—C50	119.5 (4)
C3—C4—H4	118.2	C48—C49—H49	120.3
C4—C5—C7	118.1 (4)	С50—С49—Н49	120.3
C4—C5—C6	121.5 (3)	C49—C50—C51	119.6 (4)
C7—C5—C6	120.4 (3)	С49—С50—Н50	120.2
С5—С6—Н6А	109.5	С51—С50—Н50	120.2
С5—С6—Н6В	109.5	C46—C51—C50	122.2 (3)
H6A—C6—H6B	109.5	C46—C51—H51	118.9
С5—С6—Н6С	109.5	С50—С51—Н51	118.9
H6A—C6—H6C	109.5	C53—C52—C57	118.0 (3)
H6B—C6—H6C	109.5	C53—C52—P1	121.1 (3)
С5—С7—С9	118.3 (4)	C57—C52—P1	120.7 (3)
C5—C7—C8	121.8 (4)	C52—C53—C54	120.6 (4)
C9—C7—C8	120.0 (4)	С52—С53—Н53	119.7
С7—С8—Н8А	109.5	С54—С53—Н53	119.7
С7—С8—Н8В	109.5	C55—C54—C53	120.8 (4)
H8A—C8—H8B	109.5	С55—С54—Н54	119.6
C7—C8—H8C	109.5	С53—С54—Н54	119.6
H8A—C8—H8C	109.5	C54—C55—C56	119.3 (4)
H8B—C8—H8C	109.5	С54—С55—Н55	120.3
C10—C9—C7	123.6 (4)	С56—С55—Н55	120.3
С10—С9—Н9	118.2	C55—C56—C57	120.3 (4)
С7—С9—Н9	118.2	С55—С56—Н56	119.9
C9—C10—C3	117.8 (3)	С57—С56—Н56	119.9
C9—C10—C11	120.0 (3)	C56—C57—C52	120.9 (4)
C3—C10—C11	122.1 (3)	С56—С57—Н57	119.6
C10—C11—H11A	109.5	С52—С57—Н57	119.6
C10—C11—H11B	109.5	C59—C58—H58A	109.5
H11A—C11—H11B	109.5	C59—C58—H58B	109.5
C10—C11—H11C	109.5	H58A—C58—H58B	109.5
H11A—C11—H11C	109.5	C59—C58—H58C	109.5
H11B—C11—H11C	109.5	H58A—C58—H58C	109.5
01-C12-C2	138.3 (3)	H58B—C58—H58C	109.5

O1—C12—Fe1	145.3 (3)	C64—C59—C60	117.4 (5)
C2—C12—Fe1	75.6 (2)	C64—C59—C58	122.4 (5)
O2—C13—Fe1	179.3 (4)	C60—C59—C58	120.2 (5)
O3—C14—Fe1	175.8 (4)	C59—C60—C61	121.2 (5)
C16—C15—C20	118.4 (3)	C59—C60—H60	119.4
C_{16} C_{15} P_{3}	117.6(3)	$C_{61} - C_{60} - H_{60}$	119.1
C_{20} C_{15} P_{3}	1240(3)	C62 - C61 - C60	119.4 120.7(5)
C_{15} C_{16} C_{17}	124.0(3) 120.0(4)	$C_{62} = C_{61} = C_{60}$	110.6
$C_{15} = C_{16} = C_{17}$	120.0 (4)	$C_{60} = C_{61} = H_{61}$	119.6
C_{13} C_{16} H_{16}	120.0	$C_{00} = C_{01} = 1101$	117.8 (6)
C17 - C10 - H10	120.0	$C_{01} = C_{02} = C_{03}$	117.8 (0)
$C_{18} = C_{17} = U_{17}$	120.5 (4)	$C_{01} = C_{02} = H_{02}$	121.1
	119.8		121.1
	119.8	C62 - C63 - C64	121.2 (5)
	120.1 (4)	C62—C63—H63	119.4
C17—C18—H18	120.0	C64—C63—H63	119.4
C19—C18—H18	120.0	C59—C64—C63	121.7 (5)
C20—C19—C18	119.7 (4)	С59—С64—Н64	119.1
С20—С19—Н19	120.1	C63—C64—H64	119.1
C18—C19—H19	120.1	C66—C65—H65A	109.5
C19—C20—C15	121.5 (4)	C66—C65—H65B	109.5
C19—C20—H20	119.3	H65A—C65—H65B	109.5
С15—С20—Н20	119.3	С66—С65—Н65С	109.5
C26—C21—C22	118.3 (3)	H65A—C65—H65C	109.5
C26—C21—P3	121.3 (3)	H65B—C65—H65C	109.5
C22—C21—P3	120.0 (3)	C71—C66—C67	118.3 (6)
C23—C22—C21	120.1 (3)	C71—C66—C65	120.8 (6)
C23—C22—H22	119.9	C67—C66—C65	120.9 (6)
C21—C22—H22	119.9	C68—C67—C66	121.7 (7)
C24—C23—C22	121.0 (4)	С68—С67—Н67	119.1
C24—C23—H23	119.5	С66—С67—Н67	119.1
C22—C23—H23	119.5	C69—C68—C67	117.0 (7)
C23—C24—C25	119.5 (4)	C69—C68—H68	121.5
C_{23} C_{24} H_{24}	120.2	C67—C68—H68	121.5
$C_{25} = C_{24} = H_{24}$	120.2	C68 - C69 - C70	121.0 122.0(7)
C_{24} C_{25} C_{26} C_{26}	120.2	C68 - C69 - H69	119.0
$C_{24} = C_{25} = C_{26}$	119.7	C70 - C69 - H69	119.0
$C_{24} = C_{25} = H_{25}$	119.7	C71 C70 C69	119.0
$C_{20} = C_{20} = C$	119.7	C71 C70 H70	119.4 (0)
$C_{25} = C_{20} = C_{21}$	120.4 (4)	C/1 - C/0 - H/0	120.3
$C_{23} = C_{20} = H_{20}$	119.0	$C_{0} = C_{0} = H_{0}$	120.3
C21—C26—H26	119.8	C/0 - C/1 - C60	121.0 (0)
$C_{28} = C_{27} = C_{32}$	119.3 (4)	C/0 - C/1 - H/1	119.2
C_{28} — C_{27} — P_{3}	122.2 (3)	C00 - C/I - H/I	119.2
C_{32} — C_{27} — P_{3}	118.5 (3)	C11 - C/2 - C12	110.8 (3)
C29—C28—C27	119.9 (4)	C11—C/2—H/2A	109.5
C29—C28—H28	120.0	CI2—C72—H72A	109.5
C27—C28—H28	120.0	C11—C72—H72B	109.5
C30—C29—C28	121.2 (5)	Cl2—C72—H72B	109.5
С30—С29—Н29	119.4	H72A—C72—H72B	108.1

Pt1-C1-C2-C12	-17.8 (4)	Pt1—P2—C33—C34	25.8 (3)
Fe1—C1—C2—C12	48.8 (3)	C39—P2—C33—C38	71.6 (3)
Pt1-C1-C2-C3	171.6 (3)	C45—P2—C33—C38	-36.5 (3)
Fe1—C1—C2—C3	-121.8 (3)	Pt1—P2—C33—C38	-156.0 (3)
Pt1—C1—C2—Fe1	-66.57 (17)	C38—C33—C34—C35	-0.9 (5)
C1—C2—C3—C4	50.4 (5)	P2—C33—C34—C35	177.4 (3)
C12—C2—C3—C4	-118.9 (4)	C33—C34—C35—C36	0.9 (6)
Fe1—C2—C3—C4	-39.8 (5)	C34—C35—C36—C37	-0.8(6)
C1—C2—C3—C10	-126.4 (4)	C35—C36—C37—C38	0.8 (6)
C12—C2—C3—C10	64.3 (5)	C36—C37—C38—C33	-0.9(6)
Fe1—C2—C3—C10	143.4 (3)	C34—C33—C38—C37	1.0 (5)
C10—C3—C4—C5	0.9 (6)	P2—C33—C38—C37	-177.3 (3)
C2—C3—C4—C5	-176.0 (4)	C33—P2—C39—C40	3.1 (3)
C3—C4—C5—C7	-0.8 (6)	C45—P2—C39—C40	115.3 (3)
C3—C4—C5—C6	179.5 (4)	Pt1—P2—C39—C40	-133.9 (3)
C4—C5—C7—C9	0.0 (6)	C33—P2—C39—C44	177.3 (3)
C6—C5—C7—C9	179.7 (4)	C45—P2—C39—C44	-70.5 (3)
C4—C5—C7—C8	-179.3 (4)	Pt1—P2—C39—C44	40.3 (3)
C6—C5—C7—C8	0.4 (6)	C44—C39—C40—C41	0.0 (6)
C5—C7—C9—C10	0.7 (6)	P2—C39—C40—C41	174.2 (3)
C8—C7—C9—C10	-180.0 (4)	C39—C40—C41—C42	0.1 (6)
C7—C9—C10—C3	-0.6 (6)	C40—C41—C42—C43	0.1 (6)
C7—C9—C10—C11	175.8 (4)	C41—C42—C43—C44	-0.5 (6)
C4—C3—C10—C9	-0.2 (5)	C42—C43—C44—C39	0.6 (6)
C2—C3—C10—C9	176.7 (3)	C40—C39—C44—C43	-0.4(5)
C4—C3—C10—C11	-176.5 (4)	P2—C39—C44—C43	-174.9(3)
C2—C3—C10—C11	0.4 (6)	C46—P1—C45—P2	179.53 (17)
C1—C2—C12—O1	135.7 (5)	C52—P1—C45—P2	74.8 (2)
C3—C2—C12—O1	-53.8 (7)	Fe1—P1—C45—P2	-56.55 (18)
Fe1—C2—C12—O1	-171.1 (5)	C33—P2—C45—P1	-87.49 (19)
C1-C2-C12-Fe1	-53.2 (3)	C39—P2—C45—P1	163.46 (17)
C3-C2-C12-Fe1	117.2 (3)	Pt1—P2—C45—P1	43.94 (17)
C27—P3—C15—C16	96.0 (3)	C45—P1—C46—C47	38.0 (3)
C21—P3—C15—C16	-155.9 (3)	C52—P1—C46—C47	141.6 (3)
Pt1—P3—C15—C16	-25.2 (3)	Fe1—P1—C46—C47	-86.2 (3)
C27—P3—C15—C20	-83.6 (3)	C45—P1—C46—C51	-146.9 (3)
C21—P3—C15—C20	24.5 (4)	C52—P1—C46—C51	-43.3 (3)
Pt1—P3—C15—C20	155.2 (3)	Fe1—P1—C46—C51	88.9 (3)
C20-C15-C16-C17	0.5 (5)	C51—C46—C47—C48	1.7 (6)
P3-C15-C16-C17	-179.1 (3)	P1-C46-C47-C48	176.9 (3)
C15—C16—C17—C18	-0.8 (6)	C46—C47—C48—C49	-0.2 (7)
C16—C17—C18—C19	-0.4 (6)	C47—C48—C49—C50	-0.8 (7)
C17—C18—C19—C20	1.8 (6)	C48—C49—C50—C51	0.3 (6)
C18—C19—C20—C15	-2.1 (6)	C47—C46—C51—C50	-2.2 (6)
C16—C15—C20—C19	0.9 (6)	P1-C46-C51-C50	-177.5 (3)
P3-C15-C20-C19	-179.4 (3)	C49—C50—C51—C46	1.2 (6)
C15—P3—C21—C26	-136.5 (3)	C46—P1—C52—C53	150.9 (3)
			· · · ·

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C27—P3—C21—C26	-26.2 (3)	C45—P1—C52—C53	-103.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt1—P3—C21—C26	95.1 (3)	Fe1—P1—C52—C53	23.1 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—P3—C21—C22	50.2 (3)	C46—P1—C52—C57	-34.5 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C27—P3—C21—C22	160.5 (3)	C45—P1—C52—C57	70.8 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt1—P3—C21—C22	-78.1 (3)	Fe1—P1—C52—C57	-162.3 (2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C26—C21—C22—C23	-0.4 (5)	C57—C52—C53—C54	1.5 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P3-C21-C22-C23	173.1 (3)	P1—C52—C53—C54	176.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21—C22—C23—C24	0.6 (6)	C52—C53—C54—C55	0.6 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22—C23—C24—C25	-0.7 (6)	C53—C54—C55—C56	-1.7 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23—C24—C25—C26	0.7 (6)	C54—C55—C56—C57	0.8 (6)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C24—C25—C26—C21	-0.5 (6)	C55—C56—C57—C52	1.4 (6)
P3-C21-C26-C25 $-173.0 (3)$ P1-C52-C57-C56 $-177.2 (3)$ C15-P3-C27-C2829.2 (4)C64-C59-C60-C61 $-0.5 (7)$ C21-P3-C27-C28 $-79.8 (3)$ C58-C59-C60-C61 $178.2 (4)$ Pt1-P3-C27-C28153.3 (3)C59-C60-C61-C62 $-0.4 (7)$ C15-P3-C27-C32 $-151.3 (3)$ C60-C61-C62-C63 $1.0 (8)$ C21-P3-C27-C32 $-9.6 (3)$ C61-C62-C63-C64 $-0.8 (8)$ Pt1-P3-C27-C32 $-27.3 (3)$ C60-C59-C64-C63 $0.7 (7)$ C32-C27-C28-C29 $0.9 (6)$ C58-C59-C64-C63 $-177.9 (4)$ P3-C27-C28-C29 $-179.7 (3)$ C62-C63-C64-C59 $-0.1 (8)$ C27-C28-C29-C30 $0.3 (7)$ C71-C66-C67-C68 $-1.8 (8)$ C28-C29-C30-C31 $-1.5 (7)$ C65-C66-C67-C68 $178.6 (5)$ C29-C30-C31-C32 $1.6 (7)$ C66-C67-C68-C69 $0.6 (9)$ C28-C27-C32-C31 $-0.7 (6)$ C67-C68-C69-C70 $1.2 (9)$ P3-C27-C32-C31 $-0.5 (6)$ C69-C70-C71 $-1.7 (8)$ C30-C31-C32-C27 $-0.5 (6)$ C69-C70-C71 $-1.7 (8)$ C30-C31-C32-C27 $-0.5 (6)$ C69-C70-C71-C70 $1.4 (7)$ C45-P2-C33-C34 $-106.7 (3)$ C65-C66-C71-C70 $1.4 (7)$	C22—C21—C26—C25	0.4 (5)	C53—C52—C57—C56	-2.5 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P3-C21-C26-C25	-173.0 (3)	P1—C52—C57—C56	-177.2 (3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—P3—C27—C28	29.2 (4)	C64—C59—C60—C61	-0.5 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21—P3—C27—C28	-79.8 (3)	C58—C59—C60—C61	178.2 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt1—P3—C27—C28	153.3 (3)	C59—C60—C61—C62	-0.4 (7)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C15—P3—C27—C32	-151.3 (3)	C60—C61—C62—C63	1.0 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21—P3—C27—C32	99.6 (3)	C61—C62—C63—C64	-0.8 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Pt1—P3—C27—C32	-27.3 (3)	C60—C59—C64—C63	0.7 (7)
P3C27C28C29 $-179.7 (3)$ C62C63C64C59 $-0.1 (8)$ C27C28C29C300.3 (7)C71C66C67C68 $-1.8 (8)$ C28C29C30C31 $-1.5 (7)$ C65C66C67C68 $178.6 (5)$ C29C30C31C321.6 (7)C66C67C68C690.6 (9)C28C27C32C31 $-0.7 (6)$ C67C68C69C701.2 (9)P3C27C32C31179.8 (3)C68C69C70C71 $-1.7 (8)$ C30C31C32C27 $-0.5 (6)$ C69C70C71C660.3 (7)C39P2C33C34 $-106.7 (3)$ C67C66C71C70 $1.4 (7)$ C45P2C33C34145.2 (3)C65C66C71C70 $-179.0 (4)$	C32—C27—C28—C29	0.9 (6)	C58—C59—C64—C63	-177.9 (4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	P3—C27—C28—C29	-179.7 (3)	C62—C63—C64—C59	-0.1 (8)
C28—C29—C30—C31 -1.5 (7)C65—C66—C67—C68178.6 (5)C29—C30—C31—C321.6 (7)C66—C67—C68—C690.6 (9)C28—C27—C32—C31 -0.7 (6)C67—C68—C69—C701.2 (9)P3—C27—C32—C31179.8 (3)C68—C69—C70—C71 -1.7 (8)C30—C31—C32—C27 -0.5 (6)C69—C70—C71—C660.3 (7)C39—P2—C33—C34 -106.7 (3)C67—C66—C71—C701.4 (7)C45—P2—C33—C34145.2 (3)C65—C66—C71—C70 -179.0 (4)	C27—C28—C29—C30	0.3 (7)	C71—C66—C67—C68	-1.8 (8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C28—C29—C30—C31	-1.5 (7)	C65—C66—C67—C68	178.6 (5)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C29—C30—C31—C32	1.6 (7)	C66—C67—C68—C69	0.6 (9)
P3—C27—C32—C31179.8 (3)C68—C69—C70—C71 -1.7 (8)C30—C31—C32—C27 -0.5 (6)C69—C70—C71—C660.3 (7)C39—P2—C33—C34 -106.7 (3)C67—C66—C71—C701.4 (7)C45—P2—C33—C34145.2 (3)C65—C66—C71—C70 -179.0 (4)	C28—C27—C32—C31	-0.7 (6)	C67—C68—C69—C70	1.2 (9)
C30—C31—C32—C27 -0.5 (6) C69—C70—C71—C66 0.3 (7) C39—P2—C33—C34 -106.7 (3) C67—C66—C71—C70 1.4 (7) C45—P2—C33—C34 145.2 (3) C65—C66—C71—C70 -179.0 (4)	P3-C27-C32-C31	179.8 (3)	C68—C69—C70—C71	-1.7 (8)
C39—P2—C33—C34-106.7 (3)C67—C66—C71—C701.4 (7)C45—P2—C33—C34145.2 (3)C65—C66—C71—C70-179.0 (4)	C30—C31—C32—C27	-0.5 (6)	C69—C70—C71—C66	0.3 (7)
C45—P2—C33—C34 145.2 (3) C65—C66—C71—C70 -179.0 (4)	C39—P2—C33—C34	-106.7 (3)	C67—C66—C71—C70	1.4 (7)
	C45—P2—C33—C34	145.2 (3)	C65—C66—C71—C70	-179.0 (4)

Hydrogen-bond geometry (Å, °)

Cg3, Cg6, Cg8, Cg9 and Cg10 are the centroids of the C21–C26, C39–C44, C52–C57, C59–C64 and C66–C71 rings, respectively.

<i>D</i> —H··· <i>A</i>	D—H	H···A	$D \cdots A$	D—H···A
C11—H11A…O1	0.96	2.36	3.193 (4)	145
C31—H31…O1 ⁱ	0.93	2.55	3.370 (5)	147
C41—H41····O2 ⁱⁱ	0.93	2.49	3.202 (5)	134
C48—H48…O3 ⁱⁱⁱ	0.93	2.46	3.325 (5)	154
C11—H11 <i>B</i> ···· <i>Cg</i> 9 ^{iv}	0.96	2.80	3.719 (4)	160
C22—H22…Cg6	0.93	2.80	3.597 (3)	145
C34—H34…Cg3	0.93	2.98	3.519 (4)	118
C38—H38…Cg10	0.93	2.82	3.694 (4)	156
C60—H60…Cg8	0.93	2.81	3.543 (5)	137

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) -*x*+1/2, *y*+1/2, -*z*+3/2; (iii) *x*-1, *y*, *z*; (iv) *x*-1/2, -*y*+1/2, *z*-1/2.