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Abstract. A general formalism is presented to describe resonance
line polarization for a two-level atom in an optically thick, three-
dimensional medium embedded in an arbitrary varying magnetic
field and irradiated by an arbitrary radiation field. The magnetic
field is supposed sufficiently small to induce a Zeeman splitting
much smaller than the typical line width. By neglecting atomic
polarization in the lower level and stimulated emission, an inte-
gral equation is derived for the multipole moments of the density
matrix of the upper level. This equation shows how the multi-
pole moments at any assigned point of the medium are coupled
to the multipole moments relative at a different point as a con-
sequence of the propagation of polarized radiation between the
two points. The equation also accounts for the effect of the
magnetic field, described by a kernel locally connecting multipole
moments of the same rank, and for the role of inelastic and elas-
tic (or depolarizing) collisions.

After having given its formal derivation for the general case,
the integral equation is particularized to the one-dimensional
and two-dimensional cases. For the one-dimensional case of a
plane parallel atmosphere, neglecting both the magnetic field and
depolarizing collisions, the equation here derived reduces to a
previous one given by Rees (1978).

Key words: radiation transfer — polarization — magnetic field —
solar and stellar atmosphere

1. Introduction

Resonance scattering is one of the fundamental physical pro-
cesses that are responsible for the appearance of linear polari-
zation—called in this case resonance polarization—in spectral
lines. Resonance polarization is heavily modified by the presence
of a magnetic field when the Zeeman splitting induced by this
field is comparable to or larger than the natural width of the
upper level involved in the transition (Hanle effect). Resonance
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polarization and the Hanle effect have proven in recent years to
be a powerful diagnostic tool for the analysis of various physi-
cal properties of the solar atmosphere; in particular, the Hanle
effect is, in most cases, the unique physical process that makes
possible the measurement of the magnetic field vector through
a convenient analysis of spectropolarimetric observations.

Resonance polarization has been widely observed in solar
spectral lines, either on the disk close to the limb or in coronal
(or prominence) plasma. Important contributions in this field are
those of Stenflo et al. (1983a,b) and Wiehr (1975, 1978, 1981) for
disk observations and those of Leroy et al. (1977), Querfeld (1977),
Arnaud (1977), Leroy (1981) for the coronal plasma.

The modification of resonance polarization due to the pre-
sence of a magnetic field (Hanle effect) has also been observed
in solar spectral lines; most of the observations were obtained
in prominences where the Hanle effect generally manifests itself
through a depolarization of resonance radiation and the rotation
of the plane of linear polarization. Extensive series of measure-
ments on the He1 Dj line and various Balmer lines from pro-
minences have been reported by Leroy et al. (1977, 1984), Leroy
(1981) and Athay et al. (1983). A single observation in the
Ca144227 line by Stenflo (1982) has however shown that the
Hanle effect can be observed also on the solar disk.

Although the physical processes that are at the basis of re-
sonance polarization and the Hanle effect are nowadays well
understood, little effort has been devoted to the development of
a suitable theoretical scheme for the description of resonance
polarization in an optically thick medium embedded in a mag-
netic field. Early contributions in this field are those of Dumont
et al. (1973, 1977), Stenflo and Stenholm (1976), and Rees (1978),
where resonance polarization is derived for non-magnetic, plane-
parallel atmospheres (or for slabs of finite optical thickness) in
the approximation of complete (or partial) redistribution in fre-
quency. In successive works, more general redistribution func-
tions are considered but the calculations are still restricted to
non-magnetic plane parallel atmospheres or slabs (Rees and
Saliba, 1982; Saliba, 1985, 1986; Faurobert, 1987, 1988).

Resonance scattering in magnetic media with geometries dif-
ferent from the plane-parallel case have been considered by
Landi Degl’'Innocenti et al. (1987) and by Bommier et al. (1989)
in a series of papers that was aimed at the interpretation of
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linear polarization observed in Balmer lines from optically thick
prominences (or filaments). In the last paper the prominence
plasma was schematized as an infinite cylinder having an ellip-
tical cross-section and standing horizontally over the solar sur-
face. Resonance polarization, as modified by the presence of a
magnetic field, was computed by means of a perturbative ap-
proach starting from a zero-order prominence model developed
by Heasley and Milkey (1978). Although the results presented in
the papers by Landi Degl’'Innocenti et al. (1987) and Bommier
et al. (1989) can be safely applied to the interpretation of the
observations, the approach followed in these papers for the des-
cription of resonance polarization is rather empirical and needs
to be improved from the point of view of internal consistency.

The aim of the present paper is to derive a convenient for-
malism able to describe the physics of resonance polarization in
an optically thick, magnetic medium. The approach that we will
follow is to describe the atomic system through its density-
matrix operator. The value of the density-matrix at any assigned
point of the medium is coupled to the polarized radiation field,
and, through the effect of collisions, to the local thermodynamical
properties like temperature and density. This coupling is suitably
described by the statistical equilibrium equations which also
contain the effect of the local magnetic field. On the other hand,
the polarized radiation field propagating, at any assigned point,
along a given direction is coupled, through the equations of
radiative transfer, to the atomic density-matrix at the points
belonging to the associated ray-path. From this point of view,
the problem that we are going to attack is nothing but a gener-
alization of the well-known non-LTE problem with the only
difference that the atom is now described in terms of its density-
matrix (rather than justits level populations) while the radiation
field is described through the four Stokes parameters (and not
only through its intensity). For this reason, we will refer in the
following to this problem as a non-LTE problem of the 2nd kind.

The approach followed in the present paper is quite different
from the one of the papers quoted above, where the introduc-
tion of the atomic density-matrix is avoided and the physics of
resonance polarization is just described in terms of the Rayleigh
scattering phase-matrix. This makes the generalization of this
last approach to more complicated cases either more difficult
or impossible. Indeed, in the presence of a magnetic field the
scattering phase-matrix becomes very involved (see Landi
Degl’Innocenti and Landi Degl’'Innocenti (1988) for its analytical
expression). This fact has practically precluded any generalization
to the magnetic case of previous works on resonance polarization.
On the other hand, in those cases where resonance scattering
also induces atomic polarization in the lower level (depopula-
tion pumping), the Stokes parameters of the scattered radiation
cannot be expressed as a linear function of the Stokes parameters
of the incident radiation, so that the concept itself of scattering
phase-matrix loses any meaning. On the contrary, the approach
of the present paper does not suffer from this kind of limitation,
and the influence of the magnetic field on resonance polarization
can be taken into account, as we will see in the following, just
by the addition of one term in the relevant equations.

The formalism that will be used in the present paper is the
one developed by Landi Degl’'Innocenti (1983a,b, 1984, 1985;
hereafter referred to as Papers I, II, III and IV); in particular,
the atomic density matrix will be described through its irreduci-
ble spherical components (or multipole moments) which have the
advantage of making the underlying physics more transparent.

Obviously, the results that will be obtained in the following suffer
from the same limitations contained in Papers I to IV; namely,
the scattering process is described in the approximation of com-
plete redistribution in frequency. Dumont et al. (1977) have shown
that this is not a severe limitation for weak and medium lines
and even for the core of the strongest lines, so that the theory
developed here can be safely applied to a large number of as-
trophysical problems.

In this paper, the non-LTE problem of the 2nd kind is at-
tacked for the simplest atomic model, namely for a two-level
atom having an unpolarized ground level. Moreover, stimulated
emission is neglected and the magnetic field is supposed to be
sufficiently weak that its Zeeman splitting is negligible with
respect to the Doppler broadening of the line (Hanle effect re-
gime according to the classification scheme of Paper II). This
simple model deserves particular attention and can serve as a
standard reference for more complicated models that will be the
subject of further investigations. In this respect it is sufficient to
remind the reader about the importance of the analogous two-
level atom problem in the usual non-LTE theory.

In Sect. 2, the basic theory for the two-level atom will be
established in the general three-dimensional case for a medium
of arbitrary geometrical shape. The theory will then be particu-
larized to simpler geometrical situations where all the physical
quantities depend only on one coordinate (Sect. 3) or only on
two coordinates (Sect. 4). The basic equations for resonance
scattering in a magnetized, plane-parallel atmosphere are thus
obtained as a particular case of a more general formulation.

This paper is only aimed at establishing the basic theoretical
formulation of the problem. The numerical solutions of the
equations derived here will be the subject of further papers of
this series.

2. Formulation

We consider a two-level atom having a lower level with angular
momentum J and an upper level with angular momentum J’
and Landé factor g, and we suppose that the lower level has no
atomic polarization, so that its only non-vanishing density-matrix
element on the basis of the statistical tensors is p3(J). The de-
finition used here for the statistical tensors is the standard one
given in Eq. (28) of Paper III, namely:

J K J
M

K(J) — _Y-M, 12
pED = 3 (17 MK +1) (_ o I

)pJ(M,M'), 1
and we normalize the density matrix elements to the overall
population of the ground level so that we have:

P = (2 + 1)—1/2;pJ(M»M) =@/ + 1712 @

Neglecting stimulated emission we now write the statistical equi-
librium equations for the statistical tensors of the upper level in
a reference system having its z-axis directed along the magnetic
field. Considering, for the time being, only the contribution from
radiative processes, we have, from Eq. (12) of Paper IV:

d K

= —2mivig, Qp§ — Ap§ + BRI + 1) 2w (=12 T (3)

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1990A%26A...235..459L

rTOV0AGA T 735  T459L !

where p§ is the density matrix of the upper level that will be
written, from now on, without its argument (J’) to shorten nota-
tions; v, is the Larmor frequency that is connected to the local
value B, of the magnetic field: v, = e,B,/(4nmc); A and B are
the Einstein coefficients for spontaneous emission and for ab-
sorption respectively; wiX) is the symbol introduced in Eq. (38)
of Paper III Finally J¥, is the irreducible tensor of the polar-
ized radiation field that is defined in terms of the Stokes param-
eters Sy(v, 2) propagating at frequency v along the direction £,
and in terms of the absorption profile ¢(v, — v) centered at the
frequency v, of the atomic transition:

JE = fdvq&(vo - v)gS i i
0

where 7 § (i, 2) is a spherical tensor defined in the Appendix of
Paper III.

Equation (1) holds in a reference system having its z-axis
directed along the magnetic field. To obtain a more general equa-
tion we consider a new reference system xyz (see Fig. 1). In this
new system the magnetic field direction is specified by the angles
03 and yg, while the rotation Ry bringing the old reference sys-
tem into the new one is specified by the Euler angles:

RB = (d, _OB’ _XB) (5)

where o is an angle that can be arbitrarily set equal to zero and
whose actual value is related to the orientation of the x and y
axes of the old system.

Under a rotation of the coordinate system the statistical
tensors transform according to the equation [see Eq. (31) of
Paper IIT]:

[pg]new = ; [pg’]oldgng

(@, 2)5(v,2) @

(Rp) (6

where 2 are the ordinary rotation matrices. On the other hand,
the radiation tensor J§ transforms according to [see Eq. (A18)
of Paper IIT]:

V)
w
mi

v

Xs

X

Fig. 1. The direction of the magnetic field vector is specified through the
angles 03 and yp
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JIQ(]new = ; [Jg’]oldng(’Q (RB) . (7)

Multiplying Eq. (3) by 2§,(Rg), summing over Q, and dividing
the same equation by A4, we obtain after some algebra the
following equation for the tensors defined in the new reference
system:

0= —il'Y A §ops — P&+ —(2J’ + )= 12wE(—1)2T%,  (8)

&

where I' = (egBog;)/(2mcA) is the value of the magnetic field in
relative units and where 5Q,, the magnetic kernel, is defined by:

H oo = Z Q'9g RB)@Q 0(Rg). 9

Through some Racah algebra, whose details are given in Appen-
dix A, the magnetic kernel can be expressed in the form:

Ao = [K(K + 12K + 1)]V(~1

K K 1
X(Q iy Q'—Q)g‘l”o"Q(R")'

Substituting for Ry its expression given in Eq. (5), we obtain for
the magnetic kernel the analytical values contained in Table 1.

We now turn to the equations of radiative transfer to find a
convenient expression for the radiation tensor appearing in Eq.
(8). Neglecting stimulated emission we have, for the Stokes vector
propagating at frequency v along the direction £ (see Eq. (65)
of Paper I):

s, =

)K+Q’

(10)

=Y K;j(v,2)S)(v, Q) + &(v, Q) (11)
J
where K;;is the absorption matrix written here in condensed form,
g(v, Q) is the emission vector and s is the coordinate measured
along the ray path.

As we have supposed the ground level to be unpolarized and
as the magnetic field is supposed to be sufficiently weak to induce
a Zeeman splitting much smaller than the typical width of the
line profile, the absorption matrix K;; is proportional to the
identity matrix so that we can write:

K;;= ’7v5ij 12

where the absorption coefficient #, is given, in terms of the local
density N, of atoms in the lower level by:

hv,

ny = an BN ;(vo — v) = 1oP(vo — V).

(13)
The emission coefficient can be expressed in terms of the statis-
tical tensors of the upper level. Referring to Eq. (33) of Paper I1I
we havel:

h
0 @) = G2 AT + DN, 5w B TG00 )

AQJ + D)2
=, DT wmorsi )
KQ
= 5@ (19

! Note that the factor 4" contained in Eq. (33) of Paper III is
substituted here with N,. This is due to a different choice of the
normalization factor for the density matrix.
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Table 1. Analytical expressions for the magnetic kernel " §,

f80=0
AL =—AH1 = —cosby

1 .
AL o=HE =——sinlye’s

V2

1 .
A =H1y=——sinfze *s

J2
fl-u:féo:%}—l:()
fz_z_z = _f§2 = —2COSHB
A=A} = —cos 0y
A2y =HT, =sinbge»
A2, _, =A% =sinfge s

3
2 — 2 3 i
A2 0=Hs =—=sinfge'*s

NG
2 2 \/3 H =iy
Ji’o_1=flo=$sm05e B
Jifz—zo—“”}{fz-u=3{2—22==9{2—11=9{2—12=1/%-2=3{%0
=9{(2)2=f%—2=f%—1=9{%~2=9{§—1=9{§o=0

where we have introduced the (angle-dependent) source function
s5{(2) for the various Stokes parameters.

For the equation of radiative transfer a formal solution can
easily be given. For any point P inside the medium, having
coordinate vector x, the Stokes vector can be written in the form
(see Fig. 2):

I(x,92)
S, 2] = | [s)]ee™ ™= n,(x)ds + SOy, Q)e ™ x>0
0

(13)

where s is the coordinate measured from the boundary along the
ray path having direction £ and passing through P; I(x, Q)is
the distance of point P from the point P, where the same ray-path
crosses the boundary; x’ is the coordinate of a given point P’
along the ray-path; 7,(x, x’) is the optical depth between points
P and P finally, S{®(v,R) is the Stokes vector entering the
medium at point P, along the same ray-path.

We can now evaluate the radiative rates entering Eq. (8) re-
membering the definition of J§ given in Eq. (4) and substituting
the formal solution for the Stokes parameters now obtained.

Introducing the symbol:

R¥, = g @+ )72 ®(—1)2%, (16)
and observing that the expression for S,[Eq. (15)] contains two
terms (an “internal” term due to the emission inside the medium,
and an “external” one due to the boundary conditions) we can
write:

RK, = (RK ) + (RK ))®. 17

For the “internal” part of the radiative rate, evaluated at point
P, we have:
I(x,2)

r e
KD — (—1)2wX) — e ~ T(x:x)
(REQP = (—D2wff) Of dvhlvo =) § [ {m(x)e

3
x Y Wy;}),,g:(x')(Z fgi(i,sz)ﬂ"fg(i,ﬂ)>} ds  (18)
Ky

i=0

where we have introduced the argument x’ in the expression for
pg to point out explicitly its dependence on the point P’ in the
medium. Moreover, for the “external” part we obtain:

B o0
(REQ® = — 27+ 1) 2wy (= 1)° [ dvplyo — )
0

dQ — Tu(x, X 2 7
P e L DT, (19)
We now introduce the following notation:
3
Go.xo(R) = wiPwi) (=12 Y. TE(, )T %0, Q). (20)
i=o

From the definition given in Eq. (A6) of Paper III, we have:

3
Groxg(® = wWH(=12 3 3 EOTE(RIFOVE - o(R)
21

where, referring to Fig. 3, R is the rotation bringing the coordi-
nate system (e,(£2), e,(£2), ) into the system xyz:

The calculations for the quantities Ggg ko are rather in-
volved and their details are given in Appendix 2. Here it is more
important to concentrate over their physical meaning. To this
purpose we rewrite Eq. (8) in the form:

° e
Kiy)— —j K oK _
p&x) = —il QZQ, Ao pE(x) + ! dv $(v, v)gﬁ -

I(x,2)
x [ {m(x’)e"m’) > GKQ,K,Q,(Q)pzi(x»} ds

0 K0

+ (RX)® (23)

and we observe that the integrals over the solid angle and the
ray-path can be transformed into a volume integral; we then

ray-path exits

ray-path
enters

Fig. 2. Explanation of the symbols introduced in Eq. (15)
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Fig. 3. For any given direction £, the Stokes parameters are defined with
respects to a couple of unit vectors e,(£2) and e,(£2), labeled with 1 and
2 in the figure, both perpendicular to the direction €. Note that the
angle y is arbitrary

obtain:

p8(x) = —il Z A5 505 (x) + f dv vy — v)
0

—Tu(x,x')
4n (

1 .y
X — dxnv(x)x_—x,)z

X nglz' Gio.x0(2) p5(x) + (RE )P . (24)
The physical meaning of the various quantities is now clear. The
statistical tensor at point P, p§(x), is determined by three different
contributions. The first reflects the influence of the local magnetic
field through its amplitude (I') and its orientation (contained in
the magnetic kernel A, ); this is the term responsible for the
Hanle effect. Through the second term, p§(x) is connected to
the different statistical tensors present at the various points of
the medium. The term Gy, x.o- represents the contribution to
p(x) arising from pf(x') as a consequence of radiative cou-
pling. Obviously this contribution is weighted through the usual
attenuation operator e ~***)/(x — x)> and through the local
density of the medium proportional to #,(x’). In the following
we will refer to Ggg xo- as the multipole coupling coefficients.
Finally, the third term appearing in the former equation describes
the contribution to p§(x) arising from boundary conditions.

From the expression given in Appendix B, the multipole
coupling coefficients can be evaluated in analytical form as a
function of the angles 6 and y defined in Fig. 3. Obviously, these
expressions do not depend on the angle y which is not related
to any physical direction but just reflects an arbitrary choice to

_define the linear polarization Stokes parameters for any £ direc-
tion. The analytical expressions for the non-vanishing multipole
coupling coefficients are given in Table 2.

An important result concerning the multipole coupling coef-
ficients is the fact that the K = 1 multipole moments of the statis-
tical tensors (describing atomic orientation) are coupled only

463

among each other; on the other hand there is a direct coupling
of the K = 0 multipole moment (the level population) with the
K = 2 multipole moments (atomic alignment).

If we return now to the “external” part of the radiative rate
[Eq. (19)], and suppose that the scattering medium is irradiated
only by the unpolarized radiation field I'(v, ), we can formally
write, for an expression there contained:

3
wif)(—1)2 .ZO SO, QT L (i, Q) = Iy, Q)

3
x wwil(—1)2 ._Zo T, )T X o6, ) = (v, 2)Ggg,00(2) ,
(25)
so that the “external” rate can be written in the form:
B i Qe
K \(E) - 1 -1/2 — R
(REQHD =73 @7 + 1) [dv gty NP3
x e~ [O(y, DGy 00(£2). (26)

In more complicated physical situations this expression does
not hold and one has to return to Eq. (19), which can be written
in a more compact form introducing the “attenuated radiation
field tensor” JX defined by [see Eq. (4) for comparison]:

- . do 3
JE(x) = | dv(vg — V) ) — e~ === Z (i, 2) SO, 2). (27)
Q' J 0 é 4 & Q

Thus one can write:

(REQP == (2J' + 1) 12w (= 1)2TK (). (28)
In Paper III, an analytical expression is given for JX; this expres-
sion holds also for .75 provided that the local values for the Stokes
parameters propagating along the 2 direction are substituted by
the corresponding boundary values attenuated by the factor
e~ =) From this expression one can note that, if the scattering
medium is irradiated by a radiation with no circular polarization
component (S (v,2) = 0), then the “external rates” for the
K = 1 multipole moments are identically zero. As these multipole
moments are not coupled with the others, and as they have no
source term in the statistical equilibrium equations, one obtains
the important conclusion that for such a scattering medium the
atoms do not show any atomic orientation irrespectively of the
presence of a (weak) magnetic field.

Summarizing the results so far obtained, we write down, in
their definitive form, the coupled statistical equilibrium equations
for the statistical tensors in a scattering medium [see Eqgs. (24)
and (28)]:

pix) = —il Y A Gopblx) + f dv (v — v)
—Tu(x,x")
x [Ex ) -z 3 Groxo @)
V

= (2J’ + 1) 712w (= 1)2TK o(x). (29)
This equation contains only the contribution of the radiative
rates; we want now to add the contribution due to collisions.
We will restrict ourselves to the case where the velocity distri-
bution of the colliders is isotropic and Maxwellian, as the analysis
of impact polarization is beyond the scope of this paper. We will
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Table 2. Analytical expressions for the non-vanishing symbols Gyg x.o(£2) as a function of 6 and y

G =1
00.00 3 G20,20 = a3
Gio,10 = a4 2 c?
3 Gzz,z1 =
Gi111=G1-1,1-1=4; ZSZ
3 G21,20 =
G = —Gp4-1= —a; —=SCe ™ *
11,10 10,1-1 1 2\/—2- G ~
3 . 21,22 =
Gio11=—G1-1,10= —a; mSCe"‘ G _
3 20,21 =
Giii-1=—a Zsze_ﬁx
3 . G20 =
Gi_111=—a ZSZeth

3
- _ 2, ~2i
G22,00 = Goo,2-2 =4, 4 Sfe™ 5

3 .
G21,00= —Goo2-1= —a2—2—SCe ix
1 2 Gy-121=
G10,00 = Goo,20 = 4, —=(3C* = 1)
22
3 . Gyap-1=
Gi-1,00= —Goo,21 =4, _ﬁ— SCe'*
3 . Gr-1,22=
Gy-2,00 = Goo,220 = ay vy S2e2ix
3 Gzz,z—z =
G220 =Gy_2,-2 =05 g(l + C?)?
Gz—2,22 =

3
G121=Gy-1 -1 =03 ZSZ(I +2C?)

1
;6122 +-9¢

3 .
—G2_1,2_2 = a3ZSC(1 + Cz)e_'x

NG

_G20,2—1 = a3 — SC(2 - 3C2)e—ix

242

3 .
—'G2_2,2_1 = a, ZSC(]. + Cz)e"‘

3 ;
_62—1,20 =a, i SC(2 - 3C2)ell

2.2
NG

Gio2-2 = a3 ——=S*(1 + 3C?e~ 2

42

3 .
Gy12-1=03 2 §%(1 - 2C?)e ™%

NG

G022 = G330 = a3 ——= S*(1 + 3C?)e?*

442

3 .
aaZSZ(l — 2C?)e?ix
3 33
—Gy2-2= aszs Ce™
3 3
—Gy521 = aszs Ce™x
3 ;
_S4 —4iy
a3 ¢ S'e

3 .
as g S4C4‘x

Note: C = cosf), S = sin 0, the quantities a;, a,, ay are defined in Appendix B

also make the further assumption that the collision time is much
smaller than the time interval between successive collisions and
also much smaller than the lifetime of the excited level (impact
approximation). Under these assumptions the atom-photon and
atom-perturber interactions are decoupled and the collisional
rates can be simply added to the radiation rates in the statistical
equilibrium equations.

Two different kinds of collisions are effective in altering the
statistical tensors of the upper level: inelastic and elastic (or
depolarizing) collisions. Inelastic collisions correspond to the
excitation or deexcitation of the upper level with an energy loss
or gain of the perturber (typically an electron). As the velocity
distribution of the electrons is isotropic, and as the lower level
is supposed to be unpolarized, the effect of inelastic collisional
excitation is described in the statistical equilibrium equations
for the statistical tensor of the upper level by a term of the form:

=0 +1)71C, 30800
where C;; is proportional to the density of the perturbers and
depends on their temperature T and on the relevant atomic
cross-section (see for instance Mihalas, 1970) and where the
factor (2J’ + 1)~ /2 has been introduced to make our notations
compatible with those used in the standard non-LTE theory.

(30)

The inverse process (inelastic collisional de-excitation) in-
duces a relaxation of the various multipoles of the upper level.
Again, as the velocity distribution of the perturbers is isotropic,
all the multipoles relax at the same rate, so that we have, adding
the two contributions:

d , _
- P’é =QJ +1) I/ZCJJ’éK,OéQ,O - Cnﬂé

@ (31

The relation between C;; and Cj.; can be found through the
principle of detailed balance applied to the K = 0 multipole mo-
ments. Indeed, if only collisions are present we have to find for
pY its thermodynamical equilibrium value so that, remembering
our normalization for the statistical tensors, we obtain:

@+ Q7+ 1) ¢y,

0 _ —hKT _ 32
PO="0r 5 Cry (32
which gives:

27 +1 _,,
Y 1 e MCyy. (33)

Finally, for elastic collisions, it can be shown on theoretical
grounds (Ben Reuven, 1966; Omont, 1977) that, in an isotropic
environment, each multipole moment of the statistical tensor
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relaxes independently. The relaxation can be described by a rate
D® that will be proportional to the density of the perturbers.
Obviously the rate D@ is identically zero.

Adding together all the terms due to the collisions we have:

d QJ + 112
e[

dt (2.’ T 1) e_hV/kT 51(,0 5Q,0 — pg] _ D(K)pg (34)

and introducing the following notations:
_CG
A
J + 12
2J +1
DK
4

e~ hVkT

Bo=

5K = (35)

we generalize Eq. (29) to account for collisions:
(1 +¢&+ 6®)pf(x) = —il' Y. A §op8(x)
&

—Ty(x,x")

1 0
t o Oj dv d(vg — v) J B ) 7 . z Groxo (RpK(x)

(x -

B ~
+ i Q7 + )" 2w (= 1) 5(x) + £Bodx,000,0 - (36)

This is an integral equation that can in principle be solved once
the boundary conditions and the properties of the medium are
specified. When the statistical tensors are known, the Stokes
parameters for any line of sight can be computed. Referring to
Fig. 4 we have, for the Stokes parameters at frequency v emerging
from the medium along the direction 2, [see Eq. (15)]:

L(20)
Si(v,R20) = [ [54R0)]e ™™=y (x)ds + SO(v, R)e ~P&1-x0)
0

(37

where x, and x, are, respectively, the coordinates of the points
P, and P, marking the intersections of the line of sight with the

line of
sight

v

ray-path
enters

Fig. 4. Explanation of the symbols employed in Eq. (37)
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boundaries of the medium, s is the spatial coordinate measured
along the ray-path, x is the coordinate of a given point P along
the ray-path, and all the other symbols have the same meaning
as in Eq. (15). In particular we have:

AQRJ + )12

[5(20)]. = B Y. p(x)T §(1,2,) (38)
Ko
where
50,92, = Z t5()ZFo(Ro) (39)

R, being the rotation that brings the system (e,(£2,), e,(£2,), 2,)
into the system (x, y, z):

» —Xo) (40)

where y,, 85, and x, have, for the line of sight, the same meaning
as the corresponding angles defined in Fig. 3.

The formalism presented in this paper is very general and
can in principle be applied to any given three-dimensional struc-
ture. In the following sections we will particularize the formalism
to the special cases where the properties of the scattering me-
dium (and the boundary conditions) depend only on one or two
coordinates.

Ry = (=70, — by

3. Unidimensional case

We suppose that all the parameters entering Eq. (36) depend only
on the spatial coordinate z and not on x and y. In other words
we suppose that the scattering medium is composed of a plane
parallel slab (that can be eventually extended to infinity on each
side) invariant with respect to any translation in the x-y plane.
The radiation field that is illuminating the slab has obviously to
fulfil the same requirement.

Introducing cylindrical coordinates and supposing that the
slab extends between z, and z,, the volume integral appearing in
Eq. (36)—for which we introduce the symbol I,—can be ex-
pressed in the form (see Fig. 5):

I, = fdzr/vz)ZpQ(z') frdr

—tv(xx)
f AP

-z +
We now introduce the optical depth ¢,(z) measured from the top
of the slab along the z direction

Gro.xo(82). (1)

t2) = | () dz’ 7)

and observe that the quantity 7,(x,x’) can be written in the
form?

Tv(x’ xl) = (tv(zl) - tv(Z))/COS I//
where V is the angle defined in Fig. 5.

43)

2 Indeed, Eq. (43) holds only if there is no macroscopic motion
in the medium. This requirement is not necessary for the equa-
tions derived in the former section.
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1 /1
/0!
¥

~ Fig. 5. Geometry for the plane-parallel case

We next observe, comparing the geometries of Figs. 3 and 5,
that the angles 0 and y, entering the expressions for the multi-
pole coupling coefficients in Table 2, are the same as y and ¢
defined in Fig. 5. Performing the integral over ¢, we observe that
this integration leads to a contribution equal to 2z for those
multipole coupling coefficients not depending on ¢, and to a
vanishing result for those having a dependence of the form e~ ™
with m integer. Next we observe that the multipole coupling
coefficients which lead to a non-vanishing contribution after
the ¢ integration can be expressed as a linear combination of
os 2"y, with n integer. Thus we are left with the evaluation of
integrals of the form

e — (tv(z’) —tv(2))/cos ¥

f drr—c— oS (44)
By changing to the new variable y with the substitution
r=(z—z)tgy (45)

this integral can be transformed to the following one (for z > z’):

2
ﬂ./“ e~ (tv(2') — t(2))/cos Y tgl// COSZRW dl// R (46)
0

and introducing the new variable y = 1/cos s, we finally obtain:

[ T T2l dy = By (6(2) — 0(2)) (47)
1

where E,(x) is the usual exponential-integral function.
By considering also the case where z < z’ one can easily prove
that the result of the integral can be expressed in the general form:

E,uvt 1(|tv(zl) - tv(z)D . (48)

Summarizing the results now obtained, one has for I:

Iy =2n [d2n,@) ¥ PB4 k0 (49)
Ko’

Za

where the non-vanishing components of ) are given in Table
3.

As far as the “external rate” is concerned, no obvious simpli-
fication of Eq. (27) can be obtained in the one-dimensional case
as the boundary-value radiation field S!°(v,2) may have an
arbitrary dependence on the €2 direction. However, if we restrict
to the particular case where the radiation field is unpolarized
and we suppose that it can be described by an expression of the
form:

190, 2) = Y I,(v)cos" (50)
where « is the angle defined as in Fig. 5, we find from Eq. (26)
that the only non-vanishing components of the external rates are:

(RY® = %g @J + 1)1

x [ dvvo = Y LE otz — 1,2)
0 n

1 B R
(RYP = —za,—Q2J + 1)72 [ dv p(vo — V) Y. 1)
(U 4\/5 2A »(!‘ ° n

X [3E,+4(t)(z0) — 1,(2) — E,15(t(22) — 1(2))] . (51)

The results now obtained can be easily applied to the description
of a semi-infinite atmosphere (z, = 0, z, > — ).

In the absence of magnetic fields (I" = 0) and neglecting the
influence of depolarizing collisions (6% = 0), the resulting equa-
tions for the only non-vanishing multipole moments assume the

Table 3. Expressions for the non-vanishing symbols 4§} 4.,
The argument of the various exponential-integrals is |t,(z') — £,(z)|

(E1

1"'“1

L 6E,-E

2\/5 3 1
3

G2 =9022= aag(E1 +2E; + Es)

3
IR0 =91, = asz(E1 + E; — 2Ey)

1
IR 20 = a3y (5E, — 12E; + 9Ey)
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form:

P30 = (1 — &) I Kyi(J — 7)od)dr
+(1—¢) 35 Kool — 7)p3)de + &Bo.

P30) = (1 — &) °j° Kau(Jr — 7)pd(e)de

+(1-¢) g Kjal|e — 7pd(r)dr’ (52)
where
L' (53)
l+e A+4+Cyy

and where we have introduced the optical depth 7 in strict anal-
ogy to Eq. (42):
zp=0
w2)= | no(z)dz’". (54)
z

For an atmosphere where the line profile does not vary with z,
the quantities ¢, and ¢ are simply related through the relation:

£,2) = p(vo — V) = Plx) (55)
and the various kernels are given by:
1 + o
Ku@ =3 [ dxd*E[rg(].
Kpo) = "—ﬁ fw dx §2(03Es[16(x)] — E,[r¢()]}
K,,(t)= 12(‘5),
Ko =3 f dx $%(x)
x {SE,[1¢(x)] — 12E;[1¢(x)] + 9Es[td(x)]}.  (56)

These equations are very similar to those derived by previous
authors (Rees, 1978; Faurobert-Scholl and Frisch, 1989). In their
formalism, the reduced source functions S(r) and P(r) obey
coupled integral equations of the form of Eq. (52). Their equa-
tions can be obtained from our ones by equating to one the
quantities a, and a; and performing the formal substitutions:

W+l

er+ e S

2+, 22
oy ePe > —— P
@7+ 1) 3
2J + 1
(2]/ )1/2 BO (57)

In the more general case of a magnetic, semi-infinite atmosphere
with depolarizing collisions the equations assume the following
form:

p3) = (1 — &) °§° Kyy(e — 7Pp)de + (1 — &)

o
x | Kualle = eode)de + o,

467
PO = il T A b 30 + (1 =) [ Kaullr = 7oBle)de
(=& { Kanlle = <pie)ie,
pii(1) = —il" %: Hi10Pp@) + (1 —¢")
X ,[ Ksz("f - T'l)Pi 1(r)d,
pia(t) = —il” Z AL 20p3(0) + (1 —¢")
x g Kaol|r = 7)o o()dr (58)
where, besides the symbols previously introduced, we have:
. r _ eoB
T 1464069 2me(A+ Cpy+ DP) (59)
5@ 1L D@D
v &+ 2= CJJ+ - (60)
l+e+6? A+Cpy+D?
+ o0
3
Kss(®) =gy [ dx@*(I{Eu[16(9)] + Es[cd(x)]
— 2E; [t¢(x)]}
Kayf) = a3 f dx $2({E,[1¢(x)] + 2E3[v¢(x)]
+ Es[t¢(x)]} - (61)

Note that in these equations all the parameters introduced,
namely ¢, ¢, I, B, plus the magnetic field direction contained
in the magnetic kernel are arbitrary functions of 7.

4. Two-dimensional case

In strict analogy to what has been done in the previous section,
we now suppose that the parameters entering Eq. (36) depend
on two spatial coordinates, z and x, but do not depend on y. In
other words, we now suppose that the scattering medium is com-
posed of an infinite cylinder of arbitrary cross-section invariant
with respect to any translation along the y-direction. Obviously,
the radiation field that is illuminating the slab has to fulfil the
same requirements.

Again, we turn our attention to the volume integral appearing
in Eq. (36) that we express in the form:

Iy = f L) 3 o5E)

— Tu(x,x’)

(5
fy(é P+ (y—y)

Gko.xo(82) (62)

where Z is the cross-section of the cylinder and where we have
introduced the reduced coordinate ¢ = (x, z).

The integral in dy’ represents the contribution to the volume
integral arising from all the points P’ lying on a straight line
parallel to the y-axis. Each of these straight lines intersects the
cylinder cross-section containing P in a point Py which can be
characterized, in polar coordinates, by the quantities o = [ — &|
and 0,, defined as in Fig. 6. Any point P’ belonging to a given
straight line can be specified through the angle  defined in Fig.
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A

Fig. 6. The cylinder cross-section ) passing through P is intersected, by
any straight line parallel to y, in the point Py The y-axis is perpendicular
to the plane of the figure and is directed towards the reader

7, and the polar angles 0 and y, relative to the direction £ from
P’ to P, can be evaluated through the spherical triangle of Fig. 8,
from which we have:

cosf = cosf,cosy,
sinfsiny = siny,
sinfcos y = sinf,cosy . (63)

The integral in dy’ can now be performed by introducing the
new variable y through the substitution:

y = —otgy
We obtain:

+ o 1 +m/2

f dy.=— f dye @G L () (64)
- —n/2

where the trigonometric functions contained in Ggg - have to
be expressed through y by means of Eq. (63), and where we have
introduced the expression 7,(§, &) to denote the optical depth
between two points belonging to the cylinder cross-section X.

With the help of Egs. (63), the non-vanishing integrals con-
tained in Eq. (64) can all be transformed to integrals of the fol-
lowing form:

2 /2
e " ™(&:&)/cosy COS"l// dl// =2 J‘ e~ v(&:8)/cosy COS"I// dl//
—m/2 0

=24(1(&¢))

where £,(x) is a well-known mathematical function that can
be related to the repeated integrals of the modified Bessel func-
tions of the second kind, K(x). [In the notation of Abramowitz
and Stegun (1964) the same function is denoted by the symbol
Kin + 1(x)']

Taking into account Eq. (65), we can finally write:

(65)

I=2 [#En@) Y 5@ 5 Fho (66)
J £y & —¢l
where the analytical expressions of the symbols @) ¢ are given
in Table 4.
For the two-dimensional case, Eq. (36) can then be written
in the form:

1 0
(1 + e+ 0%)f(E) = =i ¥ X E0p§(®) +5- [dv oo —v)
Q T °
1
d2en (& &) —— D20 ko
x! Ene) 3, Q) =g FRoxe

B -
+5 @7+ 1) 2 wi(—1)°T8(8)

+ &Bo0k,000,0 - (67)

5. Conclusion

The density-matrix formalism in the representation of the irre-
ducible spherical tensors has been employed to give a self-con-
sistent description of resonance scattering in an optically-thick,
three-dimensional medium of arbitrary geometrical shape. The
formalism, that has been developed for a two-level atom having
an unpolarized ground level, allows for the presence of an arbi-
trary magnetic field, supposed sufficiently weak to introduce a

A A
I VAl | — L ;
I \ [ y
I\ AN
_L_ L S
L/ P’ 7’ (o]

Fig. 7. Definition of the angle  introduced to reckon the point P’ along the straight line a

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1990A%26A...235..459L

oC

FTOO0AGA © “Z357 745

Fig. 8. The sphere is centered on the point P. The direction 2 is the one
from P’ to P

Zeeman splitting much smaller than the typical width of the line
profile. These two hypotheses (unpolarized ground level and
weak magnetic field) lead to the decoupling of the transfer equa-
tions for the Stokes parameters propagating between different
points inside the medium. The further hypothesis of neglecting
stimulating emission produces a system of coupled linear, integral
equations for the multipole moments of the density-matrix.

These equations account for the presence of the magnetic field
and describe the coupling, due to the propagation of polarized
radiation, between multipole moments relative to different points
in the medium. Both elastic and inelastic collisions can be easily
introduced in the formalism through suitable rates.

Once the geometry of the scattering medium, its physical
properties and the relevant boundary conditions are specified,
the coupled linear equations for the multipole moments of the
density-matrix can, in principle, be solved. From the solution,
the radiation field propagating along any line of sight can be
finally recovered.

The formalism presented in this paper significantly differs
from the one presented in previous works on resonance scattering
in the sense that the unknowns of the problem are now the multi-
pole moments of the atomic density-matrix instead of the radia-
tion field propagating inside the medium.

The general equations for the multipole moments can be
easily particularized to the one-dimensional or bi-dimensional
cases. For the one-dimensional case of the plane parallel atmo-
sphere, neglecting the magnetic field and depolarizing collisions,
these equations reduce to similar equations previously derived
by Rees (1978).

Appendix A: calculations for the magnetic kernel

In Eq. (9) we substitute for Q" by taking into account the identity:
K K 1
g -Q" 0

and we express the product of the two rotation matrices through
their conjugation and contraction properties (Brink and Satchler,

Q" =[K(K + 1)2K + 1)]1/2< )(— k=" (A1)

469
1968):
DEG(R) D5, o (R)
=(=1)2"722% . _o(R) Z§..o(R)
=(—1)2"2Y K’ + 1)
g
K K K K K X ,
X (_ Q// Ql/ 0 > (__ Q Q/ QIII) @IO(Q"""(R) (Az)

Table 4. Expressions for the non-vanishing symbols 9}, x-o-- The
argument of the functions £, is 7,(¢, &)

gOOOO_‘]O

3
g(lzo),lo = a1§ C3 s,

3
g(121),11 =9 1,1-1 = alZ (o — C35)

3
= —a;——="50Co 4>

242

2
gﬁ,m = g(lzg,u = —g(ng,lﬂ = —g(llmo

3
g(lzl) 1-1= g(lzll,ll = a1z(fo -2- C(z))fz)

2 2 2 (2
g(22) 00 = gf)o) 22 = gg)(; 2-2 % gz ) 2,00

—azi( o+ (2~ CYS)

g(Zzl) 00 = goo 21 < “goo 2-1 % —gz 1,00
3
= _azg S0C0f2

1
GR00 =920 =0 —= 2\/5 (— Fo +3C3%)
3
bR, =920, 5= asg (Fo + 2C3F, + C34y)

3
g(221),21 = g(2211 2-1 7 asz(fo + C3F, — 2C45,)

G2 20 = asy (SJO 12C24, + 9C$4,)

9921 = 54‘221’,22= —9D L, =—9,,
= a3§ SoCo(# + CE L)

g(zzx),zo = g(zz&n = —gzo 2-1 5 -4 1,20
=a; 3 S,Co(2#, — 3C35,)

22

2 — @2 (2
. ggZ),ZO - g(zg 22 = gZO 2-2 % g212,20

V3
4+/2
g212 1—g2 1,21

( Fo+ Q2+ CHS —2C32 - CYH) A

=a, Y (= + 21 — 2C2)F, + 3C32 — CD.F,)

{4(222),2_1 = gz—l,zz = _g(221),2—2 = —g2—2,21
3
= aszso Co(—35, + (4 — C)A)
g(zzz),z—z = gz 2,22

asg (Jo —2(4—3C2S + (8 —8C2 +

C3)54)

Note: Cy = cos by, Sy = sinf,
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We thus obtain:
H§or = [K(K + 12K + )]V2(—1)K-2

K K 1 ,
XQZ,,<Q" iy 0);(2K+1)

X ( _ IQ<// IQ<// OK ) ( _IQ< IQ<I IQ<//I> @gVQ’E”(R) (A3)

We then perform the sum over Q™

K K 1 K K K\ _15
QZ" Q// _Q// 0 _Qrt Q// 0 - 3 K',1

and substituting in (A3) we finally obtain, after some transforma-
tions, Eq. (10) of the text.

From Eq. (10) one can note that the magnetic kernel only
connects Q-values such that Q — Q' = 0, + 1. Moreover, the fol-
lowing symmetry properties can be easily proven:

(HGe)* = X
fggl = (— 1)1+Q"QXIEQ’_Q‘

(A4)

(A5)

Appendix B: calculations for the multipole coupling coefficients

For the evaluation of Eq. (21) we start by observing that, due to
Egs. (A7) of Paper III, we can write:

S 5G) ) = % [CK + DK’ + 1)]'?
i=0
1 1 K\/1 1 K
W -1 )4 -1 —P
1 1 K\/1 1 K
L U TR R - | TR T
1 1 K\/ 1 1 K
LA U T - A R R -
1 1 K\/1 1 K
+<—1 ~1 -P><1 1 —P'>}' ®1)

Evaluating this sum we obtain, for the only non-vanishing terms,
the following results:

L =1,

i t4(0) £3) = 3/2,
i £3()£86) = 12,
it%(i) 13() = 1/2,
Z t3(i) £2 ,(i) = 3/2 (B2)

and substituting into Eq. (21), we obtain for the only non-
vanishing coefficients:

Goo,oo(ﬂ) =1,

3
Gio10() =7 ai(— 1)° Z5¢(R) D5 -o(R)

1
ng,oo(ﬂ) =—a,(— I)Q 95 —Q(R) s

V2

1
Goo,zq'(ﬂ) = ﬁ a; 9gQ'(R) s

1
G20.20(8) =5 as(— 1)2 [Z50(R) 25 - o(R) + 322 20(R) 23 - o(R)

+ 230(R) D%, _o(R)] (B3)
where we have introduced the notations:
a; = W) = Wi(J,J),
a, = w),
ay = Wi = Wy(J,J); (B4)

a table of these symbols for the various atomic transitions can
be found in Paper III; for the simplest case of a transition J = 0,
J' =1 we just have: a;, =a, =a; =1.

The multipole coupling coefficients obey some symmetry rela-
tions that can be easily deduced from their definition:

(GKQ,K'Q’)* = GK'Q’,KQ:

GK—Q,K’—Q’ =(- 1)Q+Q,GK’Q’,KQ‘ (BS)
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