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On Stably Free Ideal Domains

We define a stably free ideal domain to be a Noetherian domain whose left and right ideals ideals are all stably free. Every stably free ideal domain is a (possibly noncommutative) Dedekind domain, but the converse does not hold. The first Weyl algebra over a field of characteristic 0 is a typical example of stably free ideal domain. Some properties of these rings are studied. A ring is a principal ideal domain if, and only if it is both a stably free ideal domain and an Hermite ring.

Introduction

In a principal ideal domain (resp. a Dedekind domain), every left or right ideal is free (resp. projective). An intermediate situation is the one where every left or right ideal is stably free. A Noetherian domain with this property is called a stably free ideal domain in what follows. In a Bézout domain, every finitely generated (f.g.) left or right ideal is free. An Ore domain in which every f.g. left or right ideal is stably free is called a semistably free ideal domain in what follows. Stably free ideal domains and semistably free ideal domains are briefly studied in this paper.

Free ideal domains and semistably free ideal domains

Theorem and Definition 1 Let A be a ring and consider the following conditions.

(i) Every left or right ideal in A is stably-free.

(ii) Every f.g. torsion-free A-module is stably-free.

(iii) Every f.g. left or right ideal in A is stably-free.

(1) If A is a Noetherian domain, then (i)⇔(ii)⇔(iii). If these equivalent conditions hold, A is called a stably-free ideal domain.

(2) If A is an Ore domain, then (ii)⇔(iii). If these equivalent conditions hold, A is called a semistably-free ideal domain.

Proof.

(1) (ii)⇒(i): Assume that (ii) holds and let I be a left ideal in A. Then I is a f.g. torsion-free module, therefore it is stably-free. (i)⇒(ii): Assume that (i) holds and let P be a f.g. torsion-free A-module. Since every left or right ideal is projective, A is a Dedekind domain. Therefore, P ∼ = A n ⊕I where I is a left ideal an n is an integer ([5], 5.7.8). Since I is stablyfree, say of rank r ≥ 0, there exists an integer q ≥ 0 such that I ⊕ A q ∼ = A q+r . Therefore, P ⊕ A q ∼ = A n+q+r and P is stably-free of rank n + r. (i)⇔(iii) is clear.

(

) (ii)⇒(iii) is clear. (iii)⇒(ii): If (iii) holds, A is semihereditary. 2 
Let P be a torsion-free left A-module. Since A is an Ore domain, there exists an integer n > 0 and an embedding P ֒→ A n [START_REF] Gentile | On rings with one-sided field of quotients[END_REF]. Therefore, there exists a finite sequence of f.g. left ideals (I i ) 1≤i≤k such that P ∼ = k i=1 I i ([4], Thm. (2.29)). For every index i ∈ {1, ..., k}, I i is stably-free, therefore there exist non-negative integers q i and r i such that I i ⊕ A qi ∼ = A qi+ri . As a consequence, P ⊕ A q ∼ = A q+r where q = 1≤i≤k q i and r = 1≤i≤k r i , and P is stably-free.

Examples of stably free ideal domains

The examples below involve skew polynomials.

Proposition 2 Let R be a commutative stably free ideal domain.

(1) Assume that R is a Q-algebra and let A = R [X; δ] where δ is an outer derivation of R and R has no proper nonzero δ-stable (left or right) ideals. Then A is a stably free ideal domain.

(2) Let A = R X, X -1 ; σ where σ is an automorphism of R such that R has no proper nonzero σ-stable (left or right) ideals and no power of σ is an inner automorphism of R. Then A is a stably free ideal domain.

Proof. The ring A is simple ([5], 1.8.4/5), therefore it is a noncommutative Dedekind domain ( [START_REF] Mcconnell | Noncommutative Noetherian Rings[END_REF], 7.11.2), thus every left or right ideal of A is projective, and, moreover, stably free ( [START_REF] Mcconnell | Noncommutative Noetherian Rings[END_REF], 12.3.3).

Thus we have the following examples:

1. Let k be a field of characteristic 0. The first Weyl algebra A 1 (k) and the ring

A ′ 1 (k) = k x, x -1 X; d dx ∼ = k [X]
x, x -1 ; σ with σ (X) = X + 1 ([5], 1.8.7) are both stably free ideal domains.

2. Likewise, let k = R or C, let k {x} be the ring of convergent power series with coefficients in k, and let A 1c (k) = k {x} X; d dx . This ring is a stably free ideal domain. where O (Ω) is the ring of all C-valued analytic functions in Ω. The ring A (Ω) = R (Ω) X; d dx is a simple Dedekind domain [START_REF] Fröhler | Continuous time-varying linear systems[END_REF] and, since R (Ω) is a principal ideal domain, A (Ω) is a stably free ideal domain.

Note that a commutative Dedekind domain which is not a principal ideal domain is not a stably free ideal domain ( [START_REF] Mcconnell | Noncommutative Noetherian Rings[END_REF], 11.1.5). 

Localization

Proposition 4 Let A be a stably free ideal domain (resp. a semistably free ideal domain) and let S be a two-sided denominator set ([5], §2.1). Then S -1 A is a stably free ideal domain (resp. a semistably free ideal domain).

Proof. (1) Let us consider the case of stably free ideal domains. Let A be a stably free ideal domain. For any left ideal a of S -1 A there exists a left ideal I of A such that a = S -1 I. Since I is stably free, there exist integers q and r such that I ⊕ A q = A r , therefore S -1 I ⊕ S -1 A q = S -1 A r , and a is stably free. The same rationale holds for right ideals, and this proves that S -1 A is a stably free ideal domain.

(2) The case of semistably free ideal domains is similar, considering f.g. ideals.

3 .

 3 Let Ω be a nonempty open interval of the real line and let R (Ω) be the largest ring of rational functions analytic in Ω, i.e. R (Ω) = C (x) ∩ O (Ω)
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  Connection with principal ideal domains, Bézout domains, and Hermite rings Proposition 3 (i) A ring is a principal ideal domain if, and only if it is both a stably free ideal domain and an Hermite ring. (ii) A ring is a Bézout domain if, and only if it is both a semistably free ideal domain and an Hermite ring.Proof. (i):The necessary condition is clear. Let us prove the sufficient condition. Let A be a stably free ideal domain and let a be a left ideal of A. This ideal is stably free. If A is Hermite, a is free, and since A is left Noetherian, it is a principal left ideal domain ([START_REF] Cohn | Free Rings and Their Relations[END_REF], Chap. 1, Prop. 2.2).

The proof of (ii) is similar, using ([1], Chap. 1, Prop. 1.7).
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