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Abstract. The general problem of resonance scattering for a two-
level atom in a magnetized plane-parallel atmosphere is formu-
lated by using the irreducible tensor representation of the atomic
density matrix. A more general formalism presented in a previous
paper (Paper I), convenient for taking into account arbitrary
magnetic field effects (Zeeman effect as well as Hanle effect), is
particularized in the present paper to the case of a “strong”
magnetic field (Zeeman splitting much larger than the natural
width of the upper level), and to the case of a unidimensional
medium. A system of coupled integral equations, relating the
density matrix elements at different depths in the atmosphere, is
derived, and the properties of the relative kernels are discussed. It
is shown that, in the limiting case of weak magnetic fields
(v, €Avp), the presence of atomic polarization induces a break-
down in the usual formula V(v)=gv, (dI/dv), that is commonly
used for measuring magnetic fields from magnetograph-type
observations.

Key words: lines formation — line polarization — Hanle effect —
Zeeman effect — radiation transfer — solar magnetic fields —
magnetic fields measurements

1. Introduction

In the previous paper of this series (Landi Degl'Innocenti et al.
1990b, hereafter referred to as Paper I), we have presented a
general formalism able to describe resonance polarization for a
two-level atom in an optically thick, threedimensional medium
embedded in a magnetic field of arbitrary strength and irradiated
by an arbitrary radiation field. In the present paper, we intend to
particularize the formalism of PaperI to the case of a plane-
parallel atmosphere, where all the quantities entering the relevant
equations depend only on one coordinate, namely the geometri-
cal (or optical) depth.

The problem of resonance scattering in a magnetic atmo-
sphere is particularly relevant to attack the associated problem of
the diagnostic of the magnetic field in the higher layers of a stellar
atmosphere. The diagnostic of these layers is indeed primarily
based on the analysis of the spectropolarimetric profiles of strong
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or medium strong lines (like, for instance, the Mg Ib lines, the
Na 1D lines and the Ca 11 H and K lines). On the other hand, the
polarization observed in these lines is due both to the Zeeman
splitting and to resonance polarization (as modified by the Hanle
effect). Hence, it is important to provide a theory of line formation
capable of encompassing the three mechanisms altogether.

As it will be discussed more extensively in Sect. 2, the physical
conditions of a typical stellar atmosphere are such that when the
magnetic field is sufficiently large to induce a noticeable Zeeman
splitting in the line profile, all the coherences between different
Zeeman sublevels vanish. This allows to simplify the physical
description of the atomic excitation by retaining only the dia-
gonal terms of the density matrix, in the magnetic field reference
frame. We then obtain a typical non-LTE problem, where the
unknowns are the populations of the various Zeeman sublevels of
the upper level (non-LTE of the 2nd kind, according to the
denomination proposed by Landi Degl'Innocenti 1989).

The same problem has already been attacked by different
authors (Rees 1969; Domke 1969, 1971a, 1971b; Domke & Staude
1973; Auer et al. 1977; Landi Degl’'Innocenti 1978). The advant-
age of the present paper is to introduce a very compact formalism
which fully employs the machinery of irreducible tensors and of
Racah algebra. Through this formalism, it is possible to obtain a
very general system of integral equations, which, once particu-
larized to different special cases, reduces to the equations pre-
sented in the quoted papers.

This paper is organized as follows: in Sect. 2, the approxima-
tion of neglecting coherences between different Zeeman sublevels
is discussed in detail. In Sect. 3, the general formalism presented
in Paper I, for an arbitrary three-dimensional medium, is particu-
larized to the case of a plane-parallel atmosphere. The explicit
expressions for the Stokes parameters emerging from the atmo-
sphere along any given line-of-sight are presented in Sect. 4, while
in Sect. 5 the limiting case of weak magnetic fields is considered.
Finally, in the two appendices, some important properties for the
kernels entering the relevant equations are proved. The numerical
solution of the integral equations derived in the present paper will
be the subject of a further investigation.

2. Classification of the magnetic field regimes

Following the same notations introduced in Paper I, we consider
a two-level atom having a lower level with angular momentum J
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and Landé factor g, and an upper level having angular
momentum J' and Landé factor g,.. Supposing the ground level
to be unpolarized, the physical properties of an atom, located at
the point having coordinate x in a three-dimensional medium of
arbitrary shape, can be specified by means of the density matrix
elements pg(x), describing the atomic polarization of the upper
level in the reference frame having its z-axis directed along the
magnetic field. By coupling the statistical equilibrium equations
for the atomic density matrix elements with the radiative transfer
equations for polarized radiation, the following integral equation
is obtained (cf. Eq.(55.I); from now on, we will refer to
equation (n) of Paper I with the symbol (n.I)):

(L+&+6%)p(x)= —iTQpS(x)

GKQKQ(xx)
(0) _Cen e 7
e f” ") ey

x p8i(x")d3x’ + E§(x)+ &P 0k 000.0- 0))

The derivation of this equation, together with the definitions
of the different symbols employed, has been given in Paper I, and
will not be repeated here. In this paper, we will just proceed to
particularize this equation to the case of a plane-parallel atmo-
sphere, and to introduce an important simplification that will
bring the same equation to a more tractable form.

Referring to Eq. (1), we observe that the magnetic field
amplitude — that in Paper I has been supposed constant through-
out the whole medium - is contained in two of the quantities
appearing in the right-hand side. Indeed, directly from the
definition, we have (see Eq. (50.1)):

2nvy,
A

where v, =¢,B,/(4nmc) is the Larmor frequency, and where 4 is
the Einstein coefficient for spontaneous deexcitation. Moreover,
the magnetic field amplitude is also contained, although in a more
involved form, in the multipole coupling coefficients GKQ, ko (X,
x'), whose definition is given in Eq. (53.I). These coefficients
depend on the magnetic field only through the parameter
y=vy/Avp, where Avy, is the typical Doppler broadening of the
absorption profile. If we then consider the ratio I'/y, we have:

r 2nAvp

—=4gy

b A

I'=g, R 2

€

For a typical stellar atmosphere and for a line at optical
wavelengths, this ratio is generally much larger than unity.
Writing Avyp, in the form:
V1
Avp=—, 4
p=7 4)
where vy is the thermal velocity, and 4, the wavelength of the line,
we get:

r 2wy 5

y =gy /10A ’ )
and assuming as typical values: vy=2kms™', A=10%s"",
Ao=5000 A, g, =1, we obtain:

r

~ 25102 )
Y

The high value of this ratio justifies to distinguish between two

different regimes for the intensity of the magnetic field vector. The
first regime (I'~ 1, y < 1) is the so-called Hanle effect regime that
has already been considered in two previous papers of this series
(Landi Degl’'Innocenti et al. 1990a; Bommier et al. 1990). The
second regime (I'> 1, y & 1) is the one that we are going to discuss
in the present paper, and is characterized by the fact that the
magnetic field is sufficiently strong to completely remove cohe-
rences between different Zeeman sublevels. Translated in prac-
tical terms on the particular case considered above, this regime is
characterized by values of magnetic fields larger than a critical
value, B,, that is of the order of 10 Gauss. The present theory can
then be safely applied to the interpretation of chromospheric lines
formed in typical magnetic regions of a stellar atmosphere.

The approximation of neglecting coherences between different
Zeeman sublevels considerably simplifies Eq. (1) that is now
reduced to an integral equation connecting only the diagonal
terms of the form p§ with Q=0. Introducing a more compact
notation:

PO=px;
we have:
(1+&+6% ) pg(x)

GKO.K’O(x’ x/)EGK,K’(x’ x'); EgEE,(, (7

_Z f 7(x") "K( ) )pK(x )d3x'+Ex(x)+8505K0
®)

This is an integral equation which involves, in general, 2J' +1
unknown functions of x, namely the density matrix elements py.
However, as we have already pointed out in Paper I, the coupling
coefficients connecting multipole tensors of different parity are
identically zero. Moreover, the tensors of odd rank do not have
any source term, either when the boundary conditions Stokes
parameters illuminating the medium from outside are identically
zero (like in the case of a semi-infinite atmosphere), or when they
satisfy certain symmetry properties (with respect to frequency
inversion) that are specified in Appendix B of Paper I. In these
cases, the tensors of odd rank are identically zero, and the
unknowns in Eq.(8) are only the tensors of even rank. This
reduces the number of unknown functions from 2J'+1 to N,.,
where:

3 {J’+ 1 (J' integer) o)
"7 \J'+1/2 (J half-integer).

3. The case of a plane-parallel atmosphere

For a plane-parallel atmosphere, or, more in general, for a slab,
like the one sketched in Fig. 1, the unknown functions pg(x) and
the other parameters entering Eq. (8) (7?, ¢, 8%, B,) depend only
on the spatial coordinate z, and not on x and y. The radiation field
that is illuminating the slab has obviously to fulfil the same
requirement of being independent of x and y, so that also the
external rate Ey is only a function of z.

Supposing that the point P is located on the z-axis (x =y =0),
the integral appearing in Eq. (8) can be expressed in the following
form:

J . ..d3x’=f dz'n' 9z ) pg(z')
v

[ ar e

Gxx(x x')

10
(z— z)2+x’2+y’2 (10)
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Fig. 1. Any direction Q through the point P is specified by the polar
angles  and 6

We now perform the surface integral contained in the r.h.s. by
suitably changing the integration variables. We first characterize
any direction Q passing through the point P by means of the
angles i and 0 defined as in Fig. 1. Any direction crosses the plane
z=2z'in a point P’ having coordinates:

{x’=(z'—z)tgz//cos0 an
y'=(z'—z2)tgysinb,

so that we can write, evaluating the Jacobian of this trans-
formation

dx'dy’ =(z'— )2' d (12)
sy
and we get:
dx’'dy’
Y _|tgwldydo. (13)

(z—z' ) +x"2+y"?

403
Substituting this expression in Eq. (10), we obtain:
Zp V2
j e d3x’=j dz'n (') px(2') | dyltgy]
v Za (2]
2n -
xj do0Gg k (x, x7), (14)
0
where:
{"’1 if 2> 2'; {w‘ M2 <z (15)
Yo=m/2 Yr=n

Introducing finally the optical depth t(z) measured from the top
of the slab along the z-direction:

t(2)=f n'9(z")dz’, (16)
we obtain:

ta (7} 2n -
J md3x'=j dtpr(t)j dlﬂltgilflj d0Gg g (x, x7), (17)
14 0 731 0

where t,=t(z,) is the optical depth corresponding to the bottom
of the slab.

Substituting this result in Eq.(2), we obtain the following
integral equation:

px(t)= 5(,0 Zj Kxx (¢, t)pg(¢")dt’

1 €

T+e+

T rera® X gy o Podxor 18)
where the kernels K. (t, t') are given by:
- 1
Kk (@, t()=—J‘ dytgy| j doGy i (x, x'), (19)

4n J,,
with:
=0 =x/2
{'/" ift<t’; {'/" M2 s
Y,=mn/2 Yo=m

The evaluation of the kernels requires a double integration,
over the angles i and 6, of the multipole coupling coefficients. The
explicit expression of these coefficients has been given in
Eq. (53.1); we have:

Gxx(xx)— Z Z

i,j=0 LL’

dV‘D'cf’L(J,J';V)(Dg"L’(J,J';V)

T L, Q)O i(x, x0T 53, Q) (20)
where O;;(x, x’; v) is given by (see Eq. (47.1)):
0;j(x, x'; v)=[exp{—1(x, xYH(», Q)} ];;. (21)

The explicit dependence of GK, x on the angles ¥ and 0 is
contained in the irreducible tensors 7 &(i, Q), in the matrix
H(v, Q) and in the factor 7(x, x’). This factor can be simply
expressed in the form:

=t

T(x, x')=—. (22)
cosy

For what the matrix H(v,Q) is concerned, remembering

Egs. (19.1), (39.1), (40.1), and (46.1), it is readily seen that its explicit
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dependence on the angles y and # is again contained in the
irreducible tensors X (i, Q). On the other hand, directly from the
definition [see Landi Degl’'Innocenti 1984, Eq. (A6)], we have:

T 56, Q=Y t5())25o(R), (23)
P

where tX(i) are the symbols defined in the same paper and where
R is the rotation bringing the coordinate system of the polariza-
tion unit vectors [e,(), e,(Q), Q] into the system having its z-axis
directed along the magnetic field. If the reference direction e,(Q)
for defining the Stokes parameters is the one of Fig. 2, denoting
with 65 and y, the polar angles of the magnetic field, we have:

R=(0, =y, —0)® (05, ¥3, 0). (24)

Various properties of the kernels are discussed in Appendix A.
In particular, the property described by Eq. (A1) allows to write
the kernels in the form:
de Z Z

- 1 [?

KKK’(,V):4_J dlﬁtglﬁj
T Jo i,j=0 LL’
x OFL(J,J"; v)T §i, Q)

x[exp{— y H}] T L, ),
cos Y i

where y=|t—t'|.

Once these kernels have been evaluated, they can be substi-
tuted in Eq. (18). The same equation can then be solved to get the
behavior of the multipole moments pg(t) as a function of optical
depth.

For the case of a semi-infinite atmosphere not illuminated
from above (the case to which we restrict in the following),
Eq. (18) can be simplified by putting Ex=0 and letting ¢,— co.
Moreover, introducing standard notations that are commonly
employed in non-LTE transfer problems, and remembering that
8@ =0, the same equation can be written in the form:

dv(I)"’“ J,J";v)

(25)

px(®)=(1-¢ek Zf Rix (It=t'1)pg (')At +¢'Bodx o, (26)

Az

Fig. 2. Polar angles for reckoning the direction Q and the magnetic field
in the reference system having its z-axis perpendicular to the atmosphere.
e,(Q) is the reference direction for defining the Q Stokes parameter
propagating along Q

where
. &’ for K=0
g =— g”é—: g4 0K (27)
—————  for K#0.
I+e 14+e+6%

An interesting particular case of this equation is obtained by
considering the limiting case of complete depolarization of the
upper level. This limit is obtained by letting % — co in Eq. (27),
which results in ex=1 for K#0. In this case, the system of
coupled integral equations reduces to a single integral equation
for the density matrix element py(t), a quantity proportional to
the overall population of the upper level:

po()=(1-¢") J Koo(lt—=t")po(t')dt’ +¢'Bo. (28)
0

This is the basic equation that has been solved by Rees (1968) in
his analysis of the problem of non-LTE line formation in a
magnetic field. Rees considered the particular case of a normal
Zeeman triplet (J=0, J'=1, according to our formalism), and
neglected magneto-optical effects in the transfer of polarized
radiation; he was able to show that, for a realistic atmospheric
model, the presence of a magnetic field has a weak influence on
the function p,(t) that is found by solving Eq. (28). In other words,
the function p,(¢) can be derived (within an accuracy of the order
of 10%) by simply neglecting the influence of the magnetic field on
the kernel K, (]t —t'|) and simply substituting it with the “zero-
field” limit (see Eq. (A11)):

dx¢*(x)E, [y (x)].

_ {[®
lim Roo(y)=7 J (29)

y=0

The results obtained by Rees were later confirmed by Domke
& Staude (1973), who included magneto-optical effect in their
analysis and by Auer et al. (1977), who performed some numerical
calculations on the Ca 11K line under the same approximation of
complete depolarization of the upper level.

It has to be remarked, however, that the approximation of
complete depolarization is not valid, in general, for the higher
layers of a stellar atmosphere, so that the Rees’ approximation
has to be applied with extreme care for the interpretation of
Stokes parameters profiles of chromospheric lines.

4. Emerging Stokes parameters

The expression for the Stokes parameters of the radiation emerg-
ing, along any given direction, from the plane-parallel atmo-
sphere can be derived from Egs. (41.I) and (45.1). Characterizing a
particular line of sight (€;) through the angles 6, and y, defined as
in Fig. 2, and assuming as reference direction the one specified in
the same figure (positive Q meaning linear polarization directed
perpendicularly to the atmospheric layers), we get:

A — 3 . .
S Q=5 V2 1 Y ¥ [Pe0)]y 7§ 0, QOFX(J, I )

KK’ j=0
(30)
where:
® . T dt
[PK(V)]ij=j px(®) [CXP {— H}} > (31
o cos Y, i COS Y,
and where the rotation R appearing in the tensor 7 X(j, Q,) is
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given by:
RE(O’ —‘l/l’ _01) ® (087 l/JB7 O) (32)

From the knowledge of the functions pg(z), the t-integral
leading to [Pg(v)];; can be evaluated numerically; the substitu-
tion of these quantities into Eq. (30) yields the final results for the
emerging Stokes parameters.

5. Limit for weak fields

In this section, we are going to deduce some results for the
emerging Stokes parameters under the limit of weak fields (y < 1).
These results are particularly important as they concern a
relationship between the profiles of the Stokes parameters I(v, ;)
and V(v, Q) (intensity and circular polarization), which is often
used for measuring the component of the magnetic field vector
along the line of sight.

In Eq. (30), we consider a Taylor expansion, extended up to
first order in v, of the various quantities there contained (with the
exception of pg(t) that we consider as fixed). For the generalized
profiles, we have:

d)g"(l(‘]’ Jl, ) 51( K’ W(K)¢v+g(K K’ )VL¢V’ (33)

where ¢, is the absorption profile relative to line center (¢,=¢
(vo—V)), ¢, is its derivative with respect to frequency (¢, =0d¢
(vo—v)/dv), w¥%) are the symbols defined in Landi Degl’Innocenti
(1983), and, finally, the quantities g(K, K') are generalized, effect-
ive Landé factors whose explicit expression can be found in
Appendix B.

We now take into account that, in Eq. (30), the sum over K is
extended only to even values of K (K =0, 2,4, . . . ), while the sum
over K’ is extended only to K’ =0, 1, 2. We then have, for the only
non-vanishing values of the generalized profiles (to first order in
VL)
®eOJ, I V)=,

(I, I v)=v 90, ),
DI, T V=92, D¢,

D52, I v)=wi)d,. (34)

Remembering the expression for the propagation matrix H
(see Eqgs. (19.1), (39.1), and (40.1)), considering that for the gen-
eralized anomalous dispersion profiles ¥ & X" we have expansions
strictly analogous to Egs. (34), and remembering that:

3
7(1)("» Ql)=5i.3\/59¢1)0(R)’

we obtain:
1.0 00
0100 3

H=¢, 0010 +v Ecos‘Pg(O, 1)
00 01
0 0 0 ¢
0 0 0

X Ve s (35)

0 —y, 0 0
] 0 0

405
where:
cos ¥ =cos i, cos Yz +siny, sin 5 cos (0, — 0g)

is the cosine of the angle between the line of sight and the
magnetic field, and where:

0
!//'v=g Y(vo—v).

From this expression, we obtain (to first order in v):

T T
— H= -
eXp{ cos i, } eXp{ cosy, ¢v}
/100 0
0100 T \/3 %90, 1)
X — —
00 1 0 | cosy, ty220H9%
000 1

0 0 0 ¢,
0 0 y, O
1 o —w, 0 0 ’ ()
¢, 0 0 0

and, substituting into Eq. (30), we get for I and V:

A —— © dt
I(v, Q,)=§ V2 +1, {L polr)e Cleesve )¢vcos ”

® d
@%o(R)J palje v — }

0 cosy,

2
+w@ —

(37)

where:

[7F; (R)=£(3COSZ‘I‘-—1)' (38)
00 2 )

3
Vv, Q)= \/21 +1v,_\/§cos‘l‘

{y(O D, f po(r)e” oIty —

cosd/,

dt

+g(2, )¢, J pz(T)e_"/“SW/)d’v
1]

cosy,

dz

cos n/z, cos Y,

—-g(0, )¢, ¢, f polr)e” eos ¥ )by —

=90, HwF) — 230¢,9),

0

0 cos t//, cosy, )’

(39)

From these equations, we obtain, after some algebra:

3 di(y, ©
Vo, Q)=v, \/Ecos w40, 1)%

3
+= \/ZJ +1vL\/§cos\P¢ [ 2, 1)—g(0, 1)

xw@)

N d
= @tz)o(R)] f p,(t)e(Flees ), T

o cosy, (40)
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Taking into account that the quantity \/g g(0, 1) is nothing
but g, or the usual effective Landé factor of the spectral line, we see
from this equation that the relationship

dI(v, Q)

Vv, Q)=v gcos¥ 41)
that is commonly used to find the line of sight component of the
magnetic field vector (in the limiting case of weak fields), is valid
only when the atom is devoided of atomic polarization (p,(7)=0).
For p, (1) #0, the same relationship is no longer true, but it has to
be substituted with the more general Eq. (40).

Finally, substituting Egs. (34) and (36) in Eq. (25), it is possible
to show that the various kernels Ky (y) have a quadratic
behavior, as a function of v, around v, =0. In other words:

Kxx'(Y)=[K'xx'()’)]v,_=o+(9("12.)~ 42

6. Conclusion

In this paper, we have attacked the general problem of resonance
scattering for a two-level atom in a magnetized plane-parallel
atmosphere. By particularizing a more general formalism pre-
sented in a previous paper (PaperI), and assuming that the
magnetic field is sufficiently strong to remove coherences between
different Zeeman sublevels (B> 10 Gauss), we have found a
system of coupled integral equations relating the density matrix
elements pX of even rank at different depths in the atmosphere.
The coupling of the various density matrix elements is described
by suitable kernels whose relevant properties are thoroughly
discussed in the appendices. The solution of the system of integral
equations leads, in principle, to the determination of the run with
optical depth of the various density matrix elements, from which
the emerging Stokes parameters can be derived for any assigned
direction of the line of sight.

Particularly interesting are the results for the case of weak
fields (v, < Avp) that have been derived in Sect. 5. These results
show that the presence of atomic polarization avoids to relate the
circular polarization Stokes parameter to the derivative with
respect to frequency of the intensity profile. This fact has to be
kept in mind when trying to deduce the magnetic field from
magnetograph-type observation of chromospheric lines.

Appendix A: properties of the kernels K, .. (7, t')

a) Inversion of the arguments t and t'

Rix(t, t')= Ry (t's ) =Ky (It —1')). (A1)
b) Reality

[Kix (1T* =K (y)- (A2)
¢) Inversion of the indices

Rix ()= Kix()): (A3)
d) Vanishing values

Kxx'()’) =(— 1)K+KIEKK'(Y)~ (A4)

All these properties descend directly from analogous properties of

the multipole coupling coefficients that have been proved in
Paper 1. In particular, property a) descends from Eq. (B18.1), and,
analogously, property b) from Egq.(B11.I), property ¢) from
Eq. (B27.1), and property d) from Eq. (B17.1). Moreover, we derive
the further properties given in the following.

e) Integral properties

© 1
J KOK(y)dy=§5O,K' (AS)

0

To prove this property, we start from Eq. (25), and integrate in dy.
We have:

where H™! is the inverse of H.

We next observe that (see Egs. (19.1) and (39.1)):
X756, QOFH(J, J'; v)=Ho, (A7)
L

so that we obtain, summing over the indices i and j:
© 1 2 o ©
f Kox(y)dy=—J dy siny J do ZJ dvog§t(J, J';v)
0 4n J, R <1,
x 7 §(0, Q). (A8)

We now integrate over 6 and  and take into account the Weil
theorem which gives:

1 /2 2n , 1
_J dtpsim//J d0.7 §(0, Q== 0,1
4 0 ) 0 2

we thus obtain:

o . 1 e
J Kox(y)dy=§f dv®§(J, J'; v), (A9)

0 0

and, taking finally into account Eq. (A3.I), we get the proof of
Eq. (A5).

f) Limit for weak fields

In the limit of weak fields (I'> 1, y< 1), we have (see Eq. (BS) in
Landi Degl’'Innocenti et al. (1990a)):

lim Gy, g (x, x')=Go, ko (@) 9> (vo— V) exp [~ (x, x')$(vo— V)],
-0

’ (A10)
where Gy ko(€) is defined in the same paper. The integration
over the solid angle can now be performed according to the
transformations described in Sect. 3 of the same paper. The

results for the only non-vanishing values of the kernel K. are
the following:

- L=
lim K°°(y)=ij dx¢?(x)E; [y (x)],

Y0

~ ~ 1
lim K,o(y)=1im Ko,(y)=—7=a,(3cos® y5—1)
8/2

Y0 Y0

x J_ dx¢?(x){3E[y$(x)]1—E, [y$(x)1},
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lim Izzz(y)=

y—0

a3(19—6cos? Yz +27 cos* )
X J dx¢*(x)E; [y$(x)]

3
3 a3 (1—30cos? yz+45 cos* )
|

9
+a a3(3—30cos? g+ 35cos* yp)
|

3 o0
lim K“(y)—-—a,sm wa

y—0 —w

dx¢?(x) E3[ye(x)]

dx¢?(x) Es[yp(x)],
dx¢?(x)E, [yo(x)]

+§al(36082 !//B—I)J dx¢*(x)E;[yo(x)], (A11)
where a,, a,, a; are the symbols defined in Landi Degl’Innocenti
et al. (1990a), and where E,(x) is the usual exponential integral.

By integrating these expressions with respect to y, Eq. (A5)
(which is valid in general and not only under the limit y—0) is
easily recovered. Moreover we obtain (independently of the angle

Yp):
lim J K,
=0 J0

© 7
limf =

1
1(y)dy=za1,

Ky (y)dy==—a;. (A12)

Equations (A12) and (AS) can also be condensed in a unique
formula that can be obtained through some Racah algebra. By
means of the identity:

5 K00 (2K+1)[ +(—1)"{1 ; f}] (A1)

it is possible to prove that:

lim J Ry (y)dy

y=>0Jo

=0 (2J’+1{1 : K}2[1+3( 1)"{1 : K”
kK )J’J’J 2 11 24)

(A14)
g) Limit for large fields
s 1
lim j Kyx (y)dy== 0k k- (A15)
y>0J0 2

To prove this identity, we observe that, when y— oo, all the
profiles ®(v;.,, ;y—V) relative to the different Zeeman compon-
ents are well separated in frequency so that they do not overlap.
From the direct expression of the generalized profiles (see
Eq. (36.1)), we then get, for values of v neighbouring the Zeeman

407
component due to the transition between M and N:
OF (I, I v~ vip an)
P — J' K J
=(—=D""M QK+ 1)(2J' +1
(— 1M 2K +1)( )(_M 0 M)
X @K (T, T v~ vypg gn)- (A16)

We see from this equation that the two profiles ®& X" and @ ¥
are proportional through a factor depending on the Zeeman
component and on K. Substituting this result into Eq. (25), we can

write:
1 /2 2n
- j dwtgwf
T Jo 0

X QG T MRGE(J, T VT 50 Q)

x [exp {—COZ ; H}]“.ﬁ‘ﬁ'(j, Q)

— J K J
x\/(2K+1)(2K'+1)(2J'+1)<~M 0 M)

J' K J
X b
-M 0 M
where, with the symbol [, v, dv, we mean the integral extended
over an interval in frequency fully covering the M, N component,
but excluding the other components.

If we now integrate in dy and repeat the same arguments
developed in subsection e), we get:

lim IZKK'(J’)

bands)

0y Y zﬁmdv

i,j=0 LL' MN

(A17)

lim J K~KK’(.V)dy
0

Y70

| - J' K J’
EMZ JC2K+1)2K +1)(21+1)<_M 0 M)

J' K J
X dv®d$°(J, J'; v). (A18)
-M 0 M/)uw
On the other hand, this last integral is given by:
JJ 1y
J v, s m=( ) . (A1)
(M, N) -M N ¢

Substituting this result in the former equation and performing the
sum over M and N, we finally get:

limJ KKK(y)dy— Z,/2K+1)(2K' X (20 +1)
Y20 JO
IOk J < J K J'>
“\om 0 M/\-Mm 0 M
( o 1)2 1,
X =— .
-M N gq) 2K

h) Further symmetry properties

(A20)

The kernel K. (y) depends implicitly on the type of transition
considered (specified by the quantum numbers J and J' and by
the Landé factors g, and g,.), and on the amplitude and direction
of the magnetic field (specified by the parameters 7, Y5, 05). For
symmetry reasons, however, the dependence on the angle 6,

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1991A%26A...244..401L

AL

FTOOIAGA - .-7447 ~

408

disappears once the f-integration is performed, as specified in the
definition of the kernel given in Eq. (25). For what the dependence
on the angle /5 is concerned, the inversion property specified in
Eq. (A1) allows to state that the kernel is invariant under inter-
change of Y5 with n—y/5.

Moreover, a further symmetry property with respect to the
plane containing the vertical to the atmosphere and the magnetic
field allows to extend the #-integration in Eq. (25) to the partial
interval [0, n]. Taking into account also the inversion properties
with respect to line center, and indicating with x the reduced
frequency from line center, Eq. (25) can be written in the simpler
form:

- 1 /2 T 3 ©
KKK’(y)=—J dytgy J a 3 ¥ dx®XL(J, J’; x)
0

T Jo i, j=0LL' Jo

x ®F Y (J, I x) T 500, Q)

>< [exp {—Coﬁ ; H}]Hﬂ’o; Q).

(A21)

Appendix B: Taylor expansion of the generalized profiles
as a function of v

The generalized profile ®&-¥'(J, J'; v) is given by the expression
[see Eq. (36.1)]:

OEK(J, M= Y (=1 N1 BRK+ DK + )2 +1)

MNgq

(J’KJ’)(J’JIZ
X
-M 0 M/\-M N g4

11 K
X SVyng, an—V): (B1)
-9 q 0
Observing that:
Vim, an—V=Vo+vL(gy M—g;N)—v, (B2)
we have, up to first order in v, :
SOrm n—V)=¢,—v (g, M—g;N)@,, (B3)
where:
, 0

= (vo—v); ¢v=5; ¢(vo—v). (B4)

Substituting Eq. (B3) into Eq. (B4), remembering Eq. (A2.I), and
observing that, with the help of some Racah algebra, one can
prove the following identities:

, J" K J’
Z (_1).1 —N—1M< )
MNg -M 0 M
( JJ 1)2< 11 K’>
X
-M N ¢ -qg q O
1 K K’
=(=1)y 7+t J’(J’+1)(2J'+1)( )

00 O
lKK’{llK'
x k]
AR LN L B O A A 4

Z(__I)J’—N—IN< J' K J’>

MNq -M 0 M
< JJ 1)2< 11 K’)
X
~M N ¢q/ \-q q 0
1 K K
- \/W(l K Kl) J o1 (BS)
= 00 0 ’
J J o1
one gets:
OFX(J, J'5 )=k x Wb, +9(K, K')v .0}, (B6)
where:
1 K K
g(K, K')=—/32K+1)2K '+ 1)2J +1) (0 0 0)
[NJ(J—H)TJIT)
x(—l)""“{l v {1 -
JoJ Iy woJJ
1 K K
+aJITHDRIFD{ T I 1 (B7)
J J o1

In particular, through the analytical expressions of the 3-j, 6-j,
and 9-j symbols, we obtain, after some algebra:

b (1 1
g(0, 1)=\/§ {E (gr+91)+Z(gr—gl)[1'(1'+ )—J(J+ 1)]}

_\/2-
- 3ga

where g is the so-called effective Landé factor (see, for instance,
Landi Degl’'Innocenti (1982));

1 1
92, 1)=7
300+ D)2 = 1D)(2J"+3)

x {g,2J —=1)QRJ'+3)[J'(J' +D)-J(J+1)+2]

(B8)

—g,(J+T =T +T +3[(J =)2J+1)+4]}. (BY)
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