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. The outline of the proof is as follows. First we write a variational formulation of the problem which is transformed into a first order evolution equation. The unbounded operator of this evolution equation is the generator of a contraction semigroup so that the problem is well-posed. This operator has a compact resolvent but it is non-self-adjoint. The spectrum of this operator is studied by making a change of variable in order to reduce the problem to a first-order system asymptotically linear in the spectral parameter. By applying some results of [2], we obtain the asymptotics of the spectrum of this operator and we show that its eigenvalues are asymptotically algebraically simple. Then we show that the system of root vectors of the operator is complete and, applying a theorem from [3], that they form a Riesz basis. As a consequence of this result, one obtains an asymptotic expansion of the solution of the initial problem.
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Introduction

In what follows, l is the length of the beam, A its cross-sectional area, E its Young modulus, ρ its mass density, I the moment of inertia of its cross-section, G its shear modulus, α s its shear correction factor, w its infinitesimal transverse displacement, ϕ the infinitesimal rotation of its cross-section, k w , k ϕ , c w and c ϕ the corresponding spring and damping con-stants at the junction. All the coefficients and their inverses are assumed to be in W 1,∞ (0, l). If u 0 , v 0 are given in subspaces of [H 1 (0, l)] 2 and [L 2 (0, l)] 2 , the corresponding variational problem reads as follows: find

u = t (w, ϕ) ∈ C 1 ([0, +∞[; [H 1 (0, l)] 2 ) ∩ C 2 ([0, +∞[; [L 2 (0, l)] 2 ) such that ∀δu ∈ [H 1 (0, l)] 2 , m(ü, δu) + b( u, δu) + a(u, δu) = 0 and such that u(0) = u 0 ; u(0) = v 0 (Problem (P )), where ∀ u, δu ∈ [H 1 (0, l)] 2 , a(u, δu) = l 0 [T w δw + EIϕ δϕ ]dx + l 0 α s GA× [(w -ϕ)(δw -δϕ)]dx + k w w(0)δw(0)+ k ϕ ϕ(0)δϕ(0) -Ω 2 l 0 ρIϕδϕdx, b(u, δu) = c w w(0)δw(0) + c ϕ ϕ(0)δϕ(0), and ∀ u, δu ∈ [L 2 (0, l)] 2 , m(u, δu) = l 0 ρIϕδϕdx + l 0 ρAwδwdx. Setting v = t (z, ψ), U = u v , U 0 = u 0 v 0 -Ωu 0
, after replacing u(t) by e Ωt u(t), (P ) boils down to

U = AU, U(0) = U 0 , where A is an unbounded operator of H = [H 1 (0, l)] 2 × [L 2 (0, l)] 2 with domain D(A). A * is an unbounded operator of H with a do- main D(A * ) = D(A) so that A is non-self- adjoint.
On the other hand 0 ∈ ρ(A) and A -1 is a compact operator of H therefore the spectrum of A consists of isolated eigenvalues of finite algebraic multiplicity. A is maximaldissipative hence A is the generator of a contraction semigroup on H. Returning to the initial problem (P ) it follows that if U 0 ∈ D(A), there exists a unique solution to

(P ) such that u ∈ C 0 ([0, +∞); [H 2 (0, l)] 2 ) ∩ C 1 ([0, +∞); [H 1 (0, l)] 2 ) ∩ C 2 ([0, +∞); [L 2 (0, l)] 2 ) and such that U ∈ C 0 ([0, +∞); D(A)).
Suggested members of the Scientific Committee: Vincent Pagneux, Cédric Bellis

2 Spectral theory of A Setting α 1 = ρA T +αsGA , α 2 = ρ E , Λ1 = diag (α 1 , α 2 , -α 1 , -α 2 ) there exist matrices T 0 , Λ0 , Λ-1 , B1 , B0 , C1 , C0 such that for λ ∈ C * , the conditions: U ∈ D(A), U = 0 and (A -λId)U = 0 are equivalent to the condi- tions: Z ∈ [H 1 (0, l)] 4 , Z = 0 and T (λ)Z = 0 where Z = T -1 0 u u /λ , T (λ) = T D (λ) T R (λ) , T D (λ)Z = Z -(λ Λ1 + Λ0 + 1 λ Λ-1 )Z, T R (λ)Z = ( B1 + 1 λ B0 )T 0 Z(0)+( C1 + 1 λ C0 )T 0 Z(l).
Assume that there exists a constant

C > 0 such that |α 1 -α 2 | ≥ C > 0 on [0, l]. Then from [2],
Theorem 2.8.2, there exists an asymptotic fundamental matrix function of T D (λ)Z = 0 denoted Ẽ(., λ) such that for λ ∈ C * , the conditions: 0) and c ϕ = (α 2 EI)(0) the eigenvalues of A are given asymptotically by the formulas If Ω is an open nonempty subset of C, E and F are Banach spaces, µ ∈ Ω, S ∈ H(Ω, L(E, F )) and x ∈ H(Ω, E) are holomorphic families, x is called a root function of S at µ if x(µ) = 0 and (Sx)(µ) = 0. The order of the zero of Sx at µ is called the multiplicity of x with respect to S at µ. One can also define the geometric and algebraic multiplicities of S at µ [2], Chapter I. By comparing the multiplicities of the root functions and the geometric multiplicities of the three holomorphic families

Z ∈ [H 1 (0, l)] 4 , T D (λ)Z = 0 are equivalent to the condition: ∃ c(λ) ∈ C 4 with Z(., λ) = Ẽ(., λ)c(λ). It follows that λ is an eigenvalue of A iff detM (λ) = 0 where M (λ) = T R (λ) Ẽ(., λ). If c w = (α 1 (T + α s GA))(
λ 1 n = µ 1 -Ω+ν 1 n , λ 2 n = µ 2 -Ω + ν 2 n where µ 1 , µ 2 ≤ 0, ν 1 n , ν 2 n ∈ iR, |ν 1 n |,
λ ∈ C * → T (λ) ∈ L([H 1 (0, l)] 4 , [L 2 (0, l)] 4 ×C 4 ), λ ∈ C * → A(λ) = A -λId ∈ L(D(A), H) and λ ∈ C * → M (λ) ∈ L(C 4 , C 4
) at an eigenvalue of A, it can be shown that if µ 1 = µ 2 , the eigenvalues of A are asymptotically algebraically simple (in the "classical" sense). By estimating the resolvent of A first on the negative real axis (comparing A with the self-adjoint operator obtained by taking c w = c ϕ = 0) and then on the right half-plane (using the Hille-Yosida Theorem) and by applying the Phragmen-Lindelöf Theorem to a certain function of exponential type, it is shown that the system of root vectors of A is complete in H.

Recall that a sequence (h n ) n∈N of a Hilbert space V is a Riesz basis of V iff there exists an isomorphism U of V and a Hilbert basis (e n ) n∈N of V such that ∀n ∈ N, h n = U e n . Applying Theorem 1.1 of [START_REF] Xu | The expansion of a semigroup and a Riesz basis criterion[END_REF], it follows that there exists a sequence of root vectors of A which forms a Riesz basis of H. The following theorem gives an expansion of the solution of (P ).

Theorem 1 Assume that U 0 ∈ D(A). Let {λ k , k ∈ N} be the set of eigenvalues of A. For all k ∈ N, let r k be the geometric multiplicity of λ k , U k,i,j , i = 1, . . . r k , j = 0, . . . , m k,i -1 a familly of root vectors corresponding to λ k such that (A -λ k Id)U k,i,j = U k,i,j-1 , i = 1, . . . r k , j = 0, . . . , m k,i -1 (with U k,i,-1 = 0) and set U k,i,j = u k,i,j v k,i,j .

Then there exists a familly of polynomial functions P k,i,j of degree ≤ m k,i -1 -j, k ∈ N, i = 1, . . . r k , j = 0, . . . , m k,i -1 such that if for all n ∈ N and t ∈ R we set where a k,i,j (t) = e (Ω+λ k )t P k,i,j (t), then for all T > 0, u n → u in C 0 ([0, T ]; [H 2 (0, l)] 2 ) ∩ C 1 ([0, T ]; [H 1 (0, l)] 2 ) ∩ C 2 ([0, T ]; [L 2 (0, l)] 2 ).

|ν 2 n

 2 | → +∞ when |n| → +∞. If µ 1 = µ 2 the zeros of det M (λ) are asymptotically simple and inf n =m |λ n -λ m | > 0.

  i,j (t)u k,i,j